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Abstract— Grid-connected Voltage Source Converters 

(VSCs) are widely used in Power Electronic-based (PE-based) 

power systems. Therefore, it is necessary to have stability 

analysis tools for different system conditions. In this paper, 

Lyapunov- and eigenvalue-based methods are used in order to 

analyze the stability of the grid-connected VSC. This 

Lyapunov-based technique is valid for large-signal stability 

analysis, when the system is subjected to a large disturbance. 

Eigenvalue-based methods are simpler but these are not valid 

under large disturbance conditions.  The Lyapunov-based 

analysis can systematically model the linear and non-linear 

behavior of the grid-connected VSCs. 

Keywords—Voltage Source Converter (VSC), Eigenvalue-

based stability, Energy function, Lyapunov-based stability, 

Power Electronic-based (PE-based) power systems.  

I. INTRODUCTION 

By the high integration of Power Electronic-based (PE-
based) systems like renewable energy systems into the 
electrical grid, many advantages such as sustainability and 
environment benefits are achieved [1]. Despite all of the 
advantages, some challenges are increasing into the system 
control and stability [2]. As PE-based systems include more 
complex units compared with the conventional power 
systems, the stability analysis of the PE-based systems 
becomes more complicated with many more units. 
Therefore, appropriate methods need to be used in order to 
analyze the stability of the PE-based power systems [3]. 

Stability analysis of the power systems is one of the most 
important issues in power system analysis [4]. Stability of 
the power system can be divided into several subgroups 
based on the subjected disturbance and the time frame of 
interest. Generally, disturbances that are small and may 
cause small changes in the system state variables, e.g. small 
change in load, are considered in small-signal stability 
issues, while large-disturbances such as faults in lines may 
lead to larger instability.  

In small-signal stability analysis of the power system, 
linearization is credible and normal mood. By linearizing 
system equations, many linear-based methods may be 
applied in order to find stability boundaries [5], [6]. As a 
result, control systems are mostly designed based on the 
linear-based stability methods, e.g. Nyquist stability criterion 
and state space stability analysis [5]–[7]. These techniques 
are widely used in PE-based power systems stability analysis 
and control [8]–[11]. 

In small-signal stability analysis of the power system, 
linearization is credible. By linearizing system equations, 
many linear-based methods may be applied in order to find 
stability boundaries. As a result, control systems are mostly 
designed based on the linear-based stability methods, e.g. 
Nyquist stability criterion and state space stability analysis. 
These techniques are widely used in PE-based power 
systems stability analysis and control. 

On the other hand, power system is a non-linear system 
in nature. Therefore, linear analysis mostly show an 
approximation response of the system. This means that 
linear-based stability methods, such as Nyquist criterion, are 
developed based on the linearized form of the system. This is 
not valid when the non-linear parts of the systems cannot ne 
neglected. In order to overcome the non-linearity behavior of 
the system, there are some non-linear techniques in stability 
analyzing of the system [12]. To do so, nonlinear-based 
control methods are developed, which is widely discussed in 
the literature [13]–[15].  

Lyapunov-based stability techniques are one of the most 
acceptable methods in large-signal stability analysis [15]. 
The concept behind the Lyapunov-based techniques is very 
fundamental- called Energy Function (EF). Based on the EF 
concept, every physical system includes an energy, which 
has a positive value. In this manner, a function may be 
defined in order to illustrate the energy of the system. If the 
derivative of the EF with respect to the time is negative, then 
the system will converge into a stable equilibrium point. 
Otherwise, the system may become unstable. 

Regarding to the PE-based power systems stability, 
energy function is one of the most credible method in order 
to find the boundary of the stability [15]. In [16], the VSC is 
modeled as an synchro-machine. Then, DC and AC parts are 
considered as kinetic and potential energy, respectively. 
Based on that, an EF is defined in order to model the stability 
boundaries of the system. The synchro-machine model for 
PE-based units are well known by [17]. In [18], another 
energy function is defined in which droop control of the VSC 
is considered in the model. As a simplified model of the 
system is considered for the EF, simulation results shows an 
approximation of the system stability behavior. This model is 
credible for the first swing after fault clearance. In [19], a 
new control method based on Lyapunov concept is 
developed in order to control PE-based units subjected to 
large-disturbance. The Lyapunov function is defined based 
on system state variables. The point in this paper is that it is 
not necessary to linearize equations in order to find the 
stability boundaries. This feature gives us more accurate 
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Fig. 1. A simplified model of a generator connected to the grid through a 

line (XL). 

system stability boundaries in compare with linearized-based 
methods, as in linear control techniques there is always an 
approximation of the non-linear system in modelling.  

By reviewing the literature about EF methods developed 
in stability analysis of the PE-based systems, it can be 
concluded there is no straight method in order to define the 
energy function, although there are some recommendations 
in this manner. This means that one can define an EF as long 
as it satisfy EF’s constraints. 

In this paper, the stability of the system based on the 
energy function and its eigenvalues is assessed. Results of 
the energy function are compared with the linear control 
method, specifically the linear state space stability analysis 
and the eigenvalues of the system, in order to validate the 
model. Here, the main goal is to define a systematic way in 
order to analyze VSC stability by energy function. This has 
been discussed to a large extent in power systems, while 
there has been less attention on this topic in PE-based power 
systems. 

The rest of the paper is organized as follows: in Section 
II, the concept of the Lyapunov-based method will be 
explained in order to clarify the method applied in the 
system. In Section III, the Lyapunov-based method and the 
small-signal methods are compared for the PE-based units. 
Simulation results are discussed in Section IV and finally the 
paper is concluded in Section V. 

II. LYAPUNOV-BASED STABILITY ANALYSIS 

As aforementioned, Lyapunov-based methods are 
developed based on the energy function concept. In this 
Section, the concept of the energy-based methods is 
explained. 

A. Basic concept of the Lyapunov function 

There is no straight way to define energy function for a 
system. Therefore, one of the main challenges in analyzing 
the system stability based on the energy function is to define 
an appropriate energy function. 

Assume that the energy function of the system is defined 
as follows: 

 ,V f x t   

where V defines the energy of the system. The variable x and 
t define state variables and time, respectively. Based on the 
Lyapunov concept, the energy of every physical system 
cannot be negative. This leads to the following equation: 

0V    

If the system subjected to a disturbance, then state variables 
of the system may change. As a consequence, the system 
energy will change. The derivative of the energy function 
with respect to time gives a valuable information of the 
system stability. If it is positive, then the system energy will 
rise with respect to the time, and therefore the system may 
become unstable. On the other hand, if the energy function 
derivative with respect to the time is negative, the system’s 
energy will decrease and the system will converge to a stable 
equilibrium point, eventually. Converting this into the 
mathematical model is shown as follows: 
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This is credible for non-linear and linear systems. The 
concept is widely accepted in many field, specifically in 
power systems. This is discussed in the next part. 

B. Application of the Lyapunov function in power systems 

The application of the Lyapunov function in power 
system is discussed in this part. Consider a generator 
connected to the grid through a line, shown in Fig. 1. 

In this manner, the generator and the grid are considered as 
voltage sources, E  and 0gV  , respectively, which are 

connected through a line, LX . The active power produced by 

the generator can be determined as follows: 
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The system state may be defined in three stages: before a 
fault, during the fault, and after clearing the fault, as follows: 

    

    

    

1

2

3

0

f

cl

cl

x t f x t t t

x t f x t t t

x t f x t t t

    



  


   

 

where  x t and  x t are system state variables and its 

derivative with respect to the time, respectively. ft and 

clt are the time when the fault happen and the clearing time, 

respectively.   1f x t ,   2f x t , and   3f x t  may be differ 

based on the fault and system characteristics. Consider swing 
equation of the generator as follows: 
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where mP and M are the mechanical power and momentum 

of generator rotor, respectively. In addition,  is the rotor 

angular displacement speed. The energy function based on 
the swing equation of the generator may be defined as 
follows: 
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where max
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 , and s is the stable equilibrium point of 

generator voltage after a fault. If the system’s energy 
function is positive definite and its derivative with respect to 
the time is negative definite, then the system will converge to 
a stable equilibrium point. It can be shown by using (4), if 
the fault is removed from the system after a critical time, the 
system’s energy function may not converge to a stable 
equilibrium point [20] and the system may become unstable. 
The critical time can be obtained based on (4). 

III. COMPARING LYAPUNOVE-BASED AND EIGENVALUE-

BASED STABILITY ANALYSIS OF THE VSC 

In this section, the stability of the grid-connected VSC by 
using the energy function method and the eigenvalue-based 
analysis is used. Consider a typical VSC connected to the 
grid, as shown in Fig. 2, where Iabc and Vabc are the measured 

values of the VSC output current and voltage, 

respectively. *
abcI is the current reference for the current 

control, which includes two parts in the dq rotating frame- 
Id.ref and Iq.ref.  The  control system is discussed in details in 
[3]. In this paper, a simplified model of the current control 
will be used, as the control system itself is not the subject of 
the paper; see Fig. 3. 

For simplification, time delay caused by the Pulse Width 
Modulation (PWM), and outer control loops, such as active 
power control, are neglected in the control system; therefore, 
only current control is considered as the converter’s 
controller. In addition, DC link control system is neglected, 
and the DC side of the PE-based unit is considered as an 
ideal DC voltage. While all the mentioned control system 
details can be added to the main control system, they may 
have no intensive effect on stability analyzing techniques and 
methodologies. If the grid side is considered as an ideal 

voltage source, i.e. 0gL  , omitting the delay introduced by 

the PWM, then the system’s model can be introduced in the 
following form: 
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where 1x  and 2x  are system state variables. pK and iK  are 

current controller’s proportional and integral coefficient, 
respectively. This state-space form is valid for both d and q 
components of the dq rotating frame. Transforming voltage 
and current values from three-phase system in an abc 
reference frame into dq rotating frame can be done by using 
Park transform matrix, shown as follows: 
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where θ is the phase angle of the three-phase input signal 
detected by the Phase Lock Loop (PLL) circuit. Here, the 
input signal is chosen to be the three-phase voltage of the 
converter’s output. The PLL circuit is illustrated as follows, 
while its dynamic is not considered in the control system, for 
the sake of the simplification. 

 

 The eigenvalues of the state-space equation (9) are 
determined as follows: 

2

1,2

4

2

p p i
R K R K K

L L L


    
     
   

  

If the real part of the eigenvalues are in the Left Half 
Plane (LHP) of the s-plane (with real and imaginary axis), 
then the system works in the stable status. This means that 
the real part of the eigenvalues should be negative, which 
means that the value of the (R+KP) and Ki must be positive. 
Regarding to the Lyapunov function, it can be defined in a 
matrix format as follows: 

 , . .TV X t X P X   

where X and XT are the state-variable vector and its transpose 
format, respectively. Matrix P may be defined differently, 
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Fig. 4. PLL block diagram for detecting phase of the voltage. 

Fig. 3. Converter control block diagram. 
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but it should be positive definite. The positive definite matrix 
is explained in the Appendix-A. The derivative of the energy 
function with respect to the time may be obtained as follows: 

   , . . . .T TV X t X P X X Q X


    

where  . .TQ A P P A   . If the Q is positive definite, then 

the derivative of the energy function with respect to the time 
will be negative. In this circumstance, the control system will 
be stable. Considering P and A as follow, Q can be obtained 
as (14): 
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By considering the definition of the parametric form of 
the P and Q, in addition to the definition of the positive 
definite matrix introduced in the Appendix A, it can be 
concluded that for the positive value of the (R+KP) and Ki 
and, P and Q are always positive definite. 

IV. SIMULATION RESULTS 

In this section, simulation results will be illustrated and 
discussed in details in order to have a better overview of the 
eigenvalue- and Lyapunov-based stability analysis. In this 
way, time domain simulations are developed in the 
Matlab/Simulink. In addition, stability analysis in the 
frequency domain are developed by using the Matlab 
software. 

The stability of the current control without considering 
PWM delay is subjected in this part. As discussed in Section 
III, as long as the control system damper ,(KP+R), and 
integrator coefficient, Ki, are positive, then the system will 
work in the stable mode. Based on the characteristic equation 
of the current control, the damping ratio and the natural 
frequency of the system are given as follows: 
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Assume R = 0.1 Ω, L = 10 mH, Ki = 800. Then, by increasing 
KP from 0.8 to 100, damping ratio will be increased. 
Therefore, step response of the current control will converge 
faster; see Fig. 5. In this figure, the current control step 
response in d-axis. The current reference is increased from 
zero to ten at t = 2 s. As you can see, for KP=0.8, the current 
control will converge to its final value after 100 ms. If the 
current control is designed to have a very fast response, such 
as 1 ms, then it needs a high bandwidth, which typically will 
be sensitive to noise. Therefore, in designing the current 
control, practical limits should be considered. The 
eigenvalues with respect to the related KP are illustrated in 

Fig. 6. As KP is increased, the poles may lie on the real axis. 
In this circumstance, one of the poles keeps closer to the 
imaginary axis, while the other one keeps out. Therefore, the 
whole system acts as first order system for a large KP, for 
instance KP  = 100, where a high bandwidth is obtained but a 
small steady-state error can be seen due to the effect of a 
small value of Ki. 

On the other hand, if the value of the KP assume to be 
constant, for instance 5, and then the value of the Ki increase 
from 200 to 1000 and the eigenvalues of the system include 
imaginary part; see Fig. 7.  

Fig. 5. Step response of the current control in time domain simulation 

(Matlab). Ki=800, and KP increasing from 0.8 to 100. 

Fig. 6. Eigenvalues of the current control Ki=800, and KP increasing from 

0.8 to 100 (green arrow). 

Fig. 7. Eigenvalues of the control system with KP=5, and Ki increasing 

from 200 to 1000. 



 

 

A recommendation for designing the controller’s 
parameters based on the characteristic equation of the system 
is to choose KP and Ki in a way that current control 
bandwidth becomes ten times faster than the fundamental 
frequency of the system. This means that if the system works 
in 50 Hz, then ωn = 10.(2.50.π) = 3141 rad/s with ξ = 0.707. 
Therefore, based on (14), KP = 44.31 and Ki = 98658. On the 
other hand, KP.s+Ki in the nominator of the system 
characteristic equation will increase the bandwidth. By 
increasing the bandwidth of the system, the system works 
faster, although it will become more sensitive to noise 
signals. A very fast response in the current control is needed 
in the control system of the VSC. A Bode plot of the control 
system is shown in Fig. 8. The system bandwidth is about 
6450 rad/s, which is twice the desired bandwidth. 

Although the Lyapunov method gives the status of the 
stability of the system, it gives no information about the 
bandwidth and system dynamic response assessment. 
Therefore, for simple control system it is more desirefull to 
use linear-based stability techniques such as state-space 
stability analysis. On the other hand, Lyapunov-based 
analysis gives us the boundary of the system’s stability. Fig. 
9. shows the stability of the current control. Consider it if the 
system is subjected to a disturbance and the trajectory of the 
state variables comes out of the stability zone, then the 
system will become unstable. 

It is worth mentioning that the system with positive 
damping, (KP+R)>0, is stable, even if KP is negative. For 
R=0.1Ω and KP = -0.05, the system is still stable 
(theoretically), as the damping part of the system is positive; 
see Fig. 10. Id.ref is set to be 10A with the step change to 15 A 
at t = 4s. Due to the small value of the damping ratio, it takes 
a while for the system to converge to the stable point. The 
system is theoretically stable, while it may be practically 
unstable, as the system limiter and protection system may act 
in order to protect the system from damage. If Ki is positive, 
then the system will only become unstable if the KP < -R. In t 
= 8s, KP changes from -0.05 into -0.15. This means that the 
total value of damping becomes negative at t = 8s, which 
leads the system into instability. 

The eigenvalues with respect to the related Kp are 
illustrated in Fig. 6. Regarding to the eigenvalues for the 
mentioned KP and Ki, they have real values. In addition, one 
of the system poles are closer to the imaginary axis, therefore 
the whole system acts as first order system. 

V. CONCLUSIONS 

In this paper, eigenvalue- and Lyapunov-based stability 
analysis is assessed for grid-connected VSC. It is shown that 
the stability margin can be obtained via both methods. 
Although linearized-based methods are recommended for 
linear models, Lyapunov-based method also gives the same 
results. 

This paper determined a systematic recommendation in 
order to implement non-linear analysis method for grid-
connected VSCs. PE-based power systems are non-linear in 
their nature. Therefore, it is more convenient to use non-
linear stability models in order to obtain more accurate 
results. 

VI. APPENDIX 

A. Positive definite matrix 

Assume G as an 2×2 matrix. Matrix G is positive definite 
if for any non-zero value of a and b the following equation is 
valid: 

Fig. 8. Bode plot of the system control with KP=44.31 and Ki=98658. 

Fig. 9. Stability region for the current control of the grid connected VSC. 

Stable Region
Unstable Region

-R

Fig. 10. Converter current (d axis) with KP = -0.05 and R = 0.1Ω up to t = 

8s and KP = -0.15 from t = 8s. Current reference is changed from 10A to 

15A at t = 4s. 
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The equation (A.2) is always valid if the following equations 
is true: 

11 22 11 22 12 210 & 0 & 2 .s s s s s s     
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