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A Hierarchical Modeling for Reactive Power
Optimization With Joint Transmission and

Distribution Networks by Curve Fitting
Tao Ding, Member, IEEE, Cheng Li, Student Member, IEEE, Can Huang, Member, IEEE,

Yongheng Yang, Member, IEEE, Fangxing Li, Fellow, IEEE, and Frede Blaabjerg, Fellow, IEEE

Abstract—In order to solve the reactive power optimization
with joint transmission and distribution networks, a hierarchical
modeling method is proposed in this paper. It allows the reactive
power optimization of transmission and distribution networks
to be performed separately, leading to a master–slave structure
and improves traditional centralized modeling methods by
alleviating the big data problem in a control center. Specifically,
the transmission-distribution-network coordination issue of the
hierarchical modeling method is investigated. First, a curve-fitting
approach is developed to provide a cost function of the slave
model for the master model, which reflects the impacts of each
slave model. Second, the transmission and distribution networks
are decoupled at feeder buses, and all the distribution networks
are coordinated by the master reactive power optimization model
to achieve the global optimality. Numerical results on two test
systems verify the effectiveness of the proposed hierarchical
modeling and curve-fitting methods.

Index Terms—Curve fitting, decomposition, hierarchical
modeling, joint networks, reactive power optimization.

I. INTRODUCTION

R EACTIVE power optimization, employed in power
system operation, normally aims to minimize the total

transmission losses under a given load level by determining all
controllable variables (e.g., reactive power compensators, reac-
tive power outputs of generators, tap ratios of transformers, and
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outputs of shunt capacitors or reactors) while satisfying vari-
ous system design and operational requirements [1]. It is nor-
mally conducted by the automatic voltage control in every time
interval of several minutes (as in 15–60 min) to provide the
voltage set points for pivot buses and the remote control signals
for the reactors, shunt capacitors, and tap ratios of transformers,
respectively [2], [3].

Conventionally, the reactive power optimization problem
can be formulated as a mixed-integer nonlinear programming
(MINLP) model and be further solved by two categories of
approaches [4]. One is the intelligent approach, including sim-
ulated annealing [5], two-layer simulated annealing [6], evolu-
tionary algorithms [7], [8], fuzzy clustering [9]–[11], genetic
algorithms [12], tabu search [13], particle swarm optimization
methods [14], [15], seeker optimization algorithms [16], etc. The
other one is the conventional approach, such as gradient-based
optimization algorithms [17], quadratic programming [18], suc-
cessive linear programming [19], successive quadratic program-
ming [20], the Newton method [21], interior-point (IP) methods
[22], mixed-integer programming [23], and some decomposi-
tion methods [24].

Today, many countries, such as China, use the centralized
power network modeling. The energy management system
(EMS) of a control center collects a large amount of informa-
tion from every distribution network and sends exact operation
and control signals to the subordinated distribution management
systems (DMS). In this way, the models of transmission and dis-
tribution networks can be merged into one complete model. The
advantage of centralized modeling is that it can provide the exact
global optimal solution. However, using this centralized mod-
eling method in large-scale power grids will result in several
problems.

1) Highly reliable and heavy communications are required
to set up a complete model.

2) Huge numbers of data will come into the control center to
form a complete mode—big data issues, delays in model
updating, and sufficient disaster recovery backup should,
thus, be taken into consideration.

3) In some special cases, the detailed models of subordi-
nated distribution networks are private, and only limited
information can be provided to the control center.

In order to tackle the above issues, an organizational structure
of a power system operation in China has deployed a multi-

1937-9234 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Example of joint transmission and distribution networks.

Fig. 2. Hierarchical model of wind resources in Northern China.

level pattern in recent years, as shown in Fig. 1 [25], [26]. The
models of transmission and distribution networks are hierarchi-
cally administrated; they have demonstrated advances over the
centralized ones and led to a master–slave control and dispatch
structure.

For the slave level (the distribution network), a monitoring
system is installed in each individual DMS that has its own
administration privilege and only aggregates the detailed lo-
cal information within its administrating distribution network.
Then, the optimal decision is performed based on the obtained
local information.

For the master level (the transmission network), the EMS re-
ceives the information from each DMS, according to the IEC
61850 standard, and preforms a global optimal decision to co-
ordinate multiple DMS. However, it should be noted that only
limited information, instead of detailed information, is allowed
to be exchanged, which aims to alleviate the possibility of a
huge amount of data from subordinated systems.

In addition, this hierarchical modeling method has been used
in most centralized integrated wind farms in China, as shown
in Fig. 2. In China, the wind energy resources are mainly dis-

tributed in the northern and northwestern areas, which are far
from the major load centers in the eastern and coastal areas
[25]. At the wind-farm-side level, the topology and all wind
units can be explicitly modeled in each wind farm, and many
wind units are distributed and connected to the same 35-kV level
bus of 35-kV/220-kV substations, called the point-of-common
coupling (PCC) buses. At the system-wide level, some large-
scale wind farms are connected to the high-voltage substation
(e.g., 220–500 kV). Here, detailed information of each wind
farm (e.g., detailed states of wind units and topologies of each
wind farm) cannot be provided to the control center since the
data are private; instead, only limited information is allowed to
be exchanged, such as the total power and voltage magnitude of
the PCC bus.

The hierarchical modeling has a unique challenge: the model-
ing of reactive power optimization for distribution and transmis-
sion networks is established separately, but the optimal decisions
are strongly coupled. If the decisions of the hierarchical systems
are optimized separately, the global optimality will be sacrificed
due to the lack of coordination.

Recently, there have been many papers proposed to discuss
the topic of coordinated transmission and distribution network
optimization. In [27] and [28], the heterogeneous decentralized
algorithm was proposed to study the economic dispatch prob-
lem, which is in fact a convex optimization problem, meaning
the heterogeneous method can give the global optimization so-
lution. Li et al. [29] focused on the nonconvex optimization
problem for hybrid transmission and distribution networks, but
the heterogeneous algorithm may only lead to a local optimal.
Moreover, the heterogeneous algorithm is an iteration method
that needs the coordination message between transmission and
distribution networks, which itself needs highly reliable heavy
communications. Lin et al. [30] adopted a generalized Benders
decomposition method to solve the reactive power optimiza-
tion model considering transmission and distribution networks.
However, this method requires the subproblems to be convex so
that the Benders cut is a valid cut. In reality, the shunt capaci-
tors/reactors are discrete control variables in the reactive power
optimization, challenging the Benders decomposition method.
Ref. [31] discussed the dynamic simulations for coordinating
the transmission and distribution networks.

In this paper, a curve-fitting approach is proposed for the
mixed-integer programming problems to provide a cost function
of each slave-level model for the master model; this approach
reflects the impact of slave-level models on the feeder buses.
Furthermore, the modeling of feeder buses for the master model
is replaced by the calculated cost functions such that the trans-
mission and distribution networks are decoupled at the feeder
buses/substations. Thus, the distribution networks can be coordi-
nated by the master-level reactive power optimization model. In
particular, the proposed method is a direct method based on the
curve-fitting approach and does not need the coordination mes-
sage, alleviating the pressure on the communication systems.

The contributions of this paper are summarized as follows.
1) A hierarchical modeling for reactive power optimization

with joint transmission and distribution networks is pro-
posed to alleviate a huge amount of data for the control
center, in contrast to the centralized modeling.
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2) A decomposition method is utilized for the joint reac-
tive power optimization model by the curve-fitting ap-
proach, which decouples the transmission and distribution
networks.

The rest of this paper is organized as follows. In Section II,
a sequential IP method is presented to solve the general reac-
tive power optimization model. In Section III, a curve-fitting
function (CFF) is proposed to decompose the reactive power
optimization model with joint transmission and distribution net-
works. Following, in Section IV, numerical results on two test
systems and comparison with the centralized approach demon-
strate the effectiveness of the proposed method. Finally, conclu-
sions are drawn in Section V.

II. FORMULATION OF REACTIVE POWER OPTIMIZATION

In general, the reactive power optimization problem to mini-
mize transmission losses can be written as

min
∑

(i,j )∈Edge

(
rij I

2
ij

)
(1-a)

s.t. Pi = Ui

∑

(i,j )∈Edge

Uj (Gij cos θij+Bij sin θij )

∀i ∈ Node (1-b)

Qi + Qc,i = Ui

∑

(i,j )∈Edge

Uj (Gij sin θij − Bij cos θij )

∀i ∈ Node (1-c)

Umin
i ≤ Ui ≤ Umax

i ∀i ∈ Node (1-d)

Iij ≤ Imax
ij ∀ (i, j) ∈ Edge (1-e)

Qmin
c,j ≤ Qc,j ≤ Qmax

c,j ∀j ∈ Ω (1-f)

Qc,j ∈ integers ∀j ∈ Ω ∩ ΩD (1-g)

Iij =
U 2

i +U 2
j − 2UiUj cos θij

r2
ij +x2

ij

∀ (i, j) ∈ Edge (1-h)

where Node is the set of buses and Edge is the set of branches;
(i, j) is a branch whose “from” bus is i and “to” bus is j; rij

and xij are the resistance and reactance of branch (i, j); Gij

and Bij are the real and imaginary parts of the element in
the bus admittance matrix; Ui, Pi , and Qi denote the voltage
magnitude, injected active power, and injected reactive power
at bus i; θij is the voltage angle difference between bus i and
bus j; Qc,j is the reactive power compensation at bus j; Qmax

c,j

and Qmin
c,j are the upper and lower bound of the reactive power

compensation at bus j; Ω is the set of buses at which the reactive
power compensators are installed; ΩD ⊆ Ω denotes the set of
buses that possess discrete shunt capacitors/reactors; Umax

i and
Umin

i are the upper and lower bound of voltage magnitude at
bus i; and Imax

l is the current capacity limit of the branch (i, j).

The reactive power optimization problem (1) can be com-
pactly formulated as a mixed-integer programming problem

min f (x1 ,x2 ,x3) (2-a)

s.t. g (x1 ,x2 ,x3) = 0 (2-b)

xmin
1 ≤ x1 ≤ xmax

1 (2-c)

xmin
2 ≤ x2 ≤ xmax

2 (2-d)

xmin
3 ≤ x3 ≤ xmax

3 (2-e)

where f(�) is the total transmission losses; g(·) is the power
flow equations; x1 = [QC , T ]T are discrete control variables
including shunt capacitors/reactors and transformer tap ratios;
x2 = [QG]T are continuous control variables including reac-
tive power outputs of generators or static voltage generators;
x3 = [P G, θ, U ]T are continuous state variables including ac-
tive power output of slack buses, voltage angles, and magnitudes
of each bus; and (xmin

1 , xmin
2 , xmin

3 ) and (xmax
1 , xmax

2 , xmax
3 )

denote the lower and upper bound of each variable.
Each discrete integer variable can be expressed as

x1,i = yi · stepi + xmin
1,i , i = 1, 2, ..., l (3)

where l is the number of discrete variables; stepi is the step size
of discrete variables x1,i , and yi is an integer number which
can be equivalent to a combination of the 0-1 binary auxiliary
variables yi,0 , yi,1 , ..., yi,ti

, such that

x1,i = xmin
1,i + stepi

(
20yi,0 + 21yi,1 + ... + 2ti yi,ti

)
(4)

where ti is an integer number that is determined by

log2

(
xmax

1,i −xmin
1,i

stepi
+1

)
−1 ≤ tj ≤ log2

(
xmax

1,i −xmin
1,i

stepi
+1

)
.

(5)
When using (3)–(5), problem (2) can be transformed into the

following general MINLP problem:

min f (x,y) (6-a)

s.t. g (x,y) = 0 (6-b)

xmin ≤ x ≤ xmax (6-c)

where y ∈ {0, 1}m denotes the vector of discrete variables and
x = [x2 ,x3 ]T ∈ Rn denotes the vector of continuous variables
subject to lower bound xmin and upper bound xmax .

In general, the mixed-integer programming problem can be
solved by various methods like the branch and bound [32] and
the cutting plane [33]. The key to these methods is to relax
the integer variables into continuous ones and solve the relaxed
model to generate a lower bound. Hence, the relaxed model is
expected to be at least a convex problem such that its global op-
timal solution can be guaranteed by the Karush–Kuhn–Tucker
conditions. This kind of problem is called a mixed-integer con-
vex programing problem.

Unfortunately, the MINLP in (6) is not a mixed-integer con-
vex programming problem due to nonconvex power flow equa-
tions. This condition means that even after relaxing the integer
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TABLE I
PROCEDURE OF THE SEQUENTIAL IP METHOD

variables, the model still takes on a nonconvex nature, and the
global optimal solution is still difficult to achieve.

To address this issue, a sequential IP method in [34] is em-
ployed to solve the problem in (6), the procedure of which is
shown in Table I, where ε is a small number and m denotes the
number of binary variables. The procedure simply consists of
two nested loops. In the outer loop, a sequence of monotonously
decreasing minima of the relaxed model is obtained. In the in-
ner loop, an attempt is made to find the best feasible minimum
around every relaxed minimum obtained at the outer loop. Fur-
thermore, the point (xd ,yd) leading to the best objective value
is taken as the final optimal solution of the original model (2).

III. REACTIVE POWER OPTIMIZATION WITH JOINT

TRANSMISSION AND DISTRIBUTION NETWORKS

A. Hierarchical Modeling for Joint Transmission and
Distribution Networks

For the joint transmission and distribution networks, all the
network buses can be divided into three types: transmission
buses, distribution buses, and feeder buses, wherein the feeder
buses are the boundary buses that connect distribution and trans-
mission networks. Accordingly, the accurate reactive power

Fig. 3. Hierarchical modeling by feeder bus splitting.

optimization model for the joint transmission and distribution
networks can be formulated as (9), which puts all three types of
buses into one complete reactive power optimization model (2),

min f (xD ,xT , yT , yD , UF ) (9-a)

s.t. g (xD , xT , yT , yD , UF ) = 0 (9-b)

xmin
D ≤ xD ≤ xmax

D (9-c)

xmin
T ≤ xT ≤ xmax

T (9-d)

Umin
F ≤ UF ≤ Umax

F . (9-e)

In order to solve the optimization model (9) by hierarchical
modeling, we take one distribution network connected to the
transmission network, for example, as shown in Fig. 3. Once
the voltage magnitude of the feeder bus UF,k is available, the
entire joint network can be split into two individual networks by
adding one voltage source for each splitting bus with the voltage
value being as the original feeder bus UF,k . Equivalently, (9) can
be reformulated as (10) with respect to the three types of network
buses, where N is the number of distribution networks

min fT (xT , yT , UF )+
N∑

k=1

fD,k

(
xD,k , yD,k , UF,k

)
(10-a)

s.t. gT (xT , yT , UF ) = 0 (10-b)

gF,k (xT , yT , UF ) = gF,k

(
xD,k , yD,k , UF,k

)
,

k = 1, 2, .., N (10-c)

gD,k

(
xD,k , yD,k , UF,k

)
= 0, k = 1, 2, .., N (10-d)

xmin
D,k ≤ xD,k ≤ xmax

D,k , k = 1, 2, .., N (10-e)

xmin
T ≤ xT ≤ xmax

T (10-f)

Umin
F ≤ UF ≤ Umax

F (10-g)

where the subscript D and T denote the set of buses in the
distribution and transmission networks, respectively, and the
subscript F denotes the set of feeder buses.

Assuming the power flow from the kth transmission network
to distribution network is Ṡk , where the dot on top of Ṡk denotes
the complex power, we have

gF,k (xT , yT , UF ) = gF,k

(
xD,k , yD,k , UF,k

)
= Ṡk . (11)

Then, the centralized modeling in (10) can be decom-
posed into one transmission-level optimization model and k
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distribution-level optimization models such that

min fT (xT , yT , UF ) (12-a)

s.t. gT (xT , yT , UF ) = 0 (12-b)

gF,k (xT , yT , UF ) = Sk , k = 1, 2, .., N (12-c)

xmin
T ≤ xT ≤ xmax

T (12-d)

Umin
F ≤ UF ≤ Umax

F . (12-e)

For the kth distribution network, the reactive power optimiza-
tion model can be expressed as

min fD,k

(
xD,k , yD,k , UF,k

)
(13-a)

s.t. gD,k

(
xD,k , yD,k , UF,k

)
= 0 (13-b)

gF,k

(
xD,k , yD,k , UF,k

)
= Ṡk (13-c)

xmin
D,k ≤ xD,k ≤ xmax

D,k (13-d)

Umin
F,k ≤ UF,k ≤ Umax

F,k . (13-e)

In the above hierarchical framework, the models in (12) and
(13) can be performed separately. Specifically, the SCADA sys-
tem of the transmission network only captures the information
at the transmission network level by adding the use of coded
signals over communication channels. Then, the EMS performs
the reactive power optimization considering both transmission
and feeder buses at the transmission network level. Also, the
DMS only acquires the local-area information with each in-
dividual network, then performs reactive power optimization
model considering both distribution and feeder buses.

B. Curve-Fitting Approach for a Decomposition Method

The feeder buses, however, are coupled in both transmission
and distribution networks. Therefore, the big challenge is that
the optimal solution Sk , k = 1,..., N , from (12) and (13), may
not be consistent. This means that the minimization of transmis-
sion network losses may have conflicts with minimizing losses
at each distribution network, attaining different Sk .

To force the consistent optimal solution Sk from (12)
and (13), Ṡk in (12-c) should contain the information of
the distribution networks. Fortunately, from the distribution
network model in (13), it can be observed that for a given
voltage magnitude of the feeder bus, the optimal solution of
each distribution network Sk can be evaluated by executing the
model given in (13). In this sense, the optimal solution Ṡk is
actually a function of the feeder bus voltage magnitude such
that Ṡk = hD,k (UF,k ). Moreover, let Rk denote the total load
demand of kth distribution network and the total losses of kth
distribution network are real(Ṡk ) − Rk , which is the objective
function of reactive optimization model in (13).

Nevertheless, the accurate closed form of the nonlinear
function hD,k (·) is generally difficult to obtain. Therefore, a
curve-fitting approach is proposed to approximate the function
hD,k (·). Since hD,k (UF,k ) is only related to a single vari-
able UF,k with the range of Umin

F,k ≤ UF,k ≤ Umax
F,k , we can

discretize UF,k by wk points U
(1)
F,k , ..., U

(i)
F,k , ..., U

(wk )
F,k .

For each voltage magnitude U
(i)
F,k , solving the model in (14)

by a sequential IP method gives the corresponding power
flow Ṡk = h

(i)
D,k (x∗

F,k , y∗
F,k ), where (x∗

F,k , y∗
F,k ) is the optimal

solution from

h
(i)
D,k

(
x∗

D,k , y∗
D,k

)
= argmin

Ṡk

fD,k

(
xD,k , yD,k , U

(i)
F,k

)

(14-a)

s.t. gD,k

(
xD,k , yD,k , U

(i)
F,k

)
= 0 (14-b)

xmin
D,k ≤ xD,k ≤ xmax

D,k (14-c)

xmin
F,k ≤ xF,k ≤ xmax

F,k . (14-d)

Furthermore, the curve-fitting approach aims to find the func-
tion hD,k (·) that satisfies the mapping

(
U

(1)
F ,k , ..., U

(i)
F ,k , ..., U

(wk )
F ,k

)
hD ,k (∗)−−−−→

(
h

(1)
D,k

(
x*

D,k , y*
D,k

)
, ...,h(i)

D,k

(
x*

D,k , y*
D,k

)
, ..., h

(wk )
D,k

× (
x*

D,k , y*
D,k

))
. (15)

Thus, a curve-fitting technique [35] is employed to give an ap-
proximated “smooth” function that has the best fit to a series of
data points. There are a number of methods to implement curve
fitting. Here, we choose the polynomial functions and increase
the degree of the polynomial equation to achieve an exact match,
wherein fitting means trying to find the approximated polyno-
mial function hD,k (·) that minimizes the orthogonal distance to
the data points (e.g., least squares) so that

min
zD , k (∗)

wk∑

k = 1

(
hD,k

(
U

(i)
F ,k

)
− h

(i)
D,k (UF ,k )

)2
. (16)

After obtaining the approximated polynomial function
hD,k (·), we have Ṡk ≈ hD,k (UF,k ).

As aforementioned, in order to guarantee the decomposition
method to be equivalent to the accurate model in (13), the opti-
mal solution Sk from the transmission network and distribution
network models should be strictly consistent. To achieve that
Ṡk ≈ hD,k (UF,k ) can be added into the transmission network
model in (12), which yields

min fT (xT , yT , UF )+
N∑

k=1

(
real

(
hD,k (UF,k )

) − Rk

)

(17-a)

s.t. gT (xT , yT , UF ) = 0 (17-b)

gF,k (xT , yT , UF ) = hD,k (UF,k ) , k = 1, 2, .., N
(17-c)

xmin
T ≤ xT ≤ xmax

T (17-d)

Umin
F ≤ UF ≤ Umax

F . (17-e)

As shown in Fig. 4, it should be noted that: 1) the optimal so-
lution Ṡk from the transmission network model (17) is forced to
be equal to hD,k (UF,k ), which approximates to the exact value
of each distribution network model (13), i.e., hD,k (UF,k ), so
the optimality of distribution networks can be approximately
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Fig. 4. Decomposition by feeder bus splitting.

Fig. 5. Physical meaning of the CFF.

achieved; and 2) the constant number Rk in the objective
function can be eliminated, which will not affect the optimal
solution. Thus, the model in (17) can be reformulated as

min fT (xT , yT , UF )+
N∑

k=1

real
(
hD,k (UF,k )

)
(18-a)

s.t. gT (UF , xT , yT ) = 0 (18-b)

gF,k (xT , yT , UF ) = hD,k (UF,k ) , k = 1, 2, .., N
(18-c)

xmin
T ≤ xT ≤ xmax

T (18-d)

Umin
F ≤ UF ≤ Umax

F . (18-e)

It is obvious that the reactive power optimization for joint
transmission and distribution networks can be decomposed by
the CFF. First, (18) is performed on the transmission network
level; then, the optimal solution (x∗

T , y∗
T , U ∗

F ) can be obtained
by the sequential IP method. Second, after obtaining the optimal
solution of the new transmission network, the optimal solution
of each distribution network can be directly solved by the in-
verse of the CFF. Since the CFF is an approximated function, we
can calculate the approximated optimal solution of each distri-
bution network by (14) with respect to the optimal solution U ∗

F,k

from (18).
Intuitively, the physical meaning of the model (18) can be

illustrated in Fig. 5. For the transmission network model (10),
each distribution network connected to the feeder bus can be

Fig. 6. Topology of the joint WSCC 9-bus transmission network and 33-bus
distribution networks.

equivalent to a CFF. Meanwhile, the objective should take into
account the CFF as a cost function, such that all the distribution
networks can be cooperated. Hence, this new joint network
model can reflect the information of distribution networks.

IV. NUMERICAL EXAMPLE

In this section, the proposed modeling method is tested on
two test systems and the reactive power optimization is carried
out by the sequential IP method on a personal computer with an
Intel Core i5 Duo Processor T420 (2.50 GHz) and 4-GB RAM
(32-bit system).

A. Joint WSCC 9-Bus Transmission Network and 33-Bus
Distribution Networks

In this case, a 345-kV WSCC 9-bus transmission system in
Fig. 6 is used where each load bus is connected to a 63-kV 33-bus
distribution network. The topology of the distribution network
is the same as the original case [36], but the load demands with
both reactive and active powers are modified by scaling the base
load via a factor such that the total load demands are consistent
with the values given by the transmission network [37].

For the 33-bus distribution system, we assume that two
switchable capacitors/reactors (SCs/SRs) are connected to buses
3 and 6 whose capacities are [−0.6, +0.6] MVar and the step
sizes of the SCs/SRs are 0.3 and 0.2 MVar, respectively. As for
the transmission network level, only the reactive power outputs
of thermal generators are taken into account.

First, the general CFF for the three load buses is
tested by using a quadratic polynomial expression such that
Pk (Qk ) = αU 2

k + βUk + γ. Discretizing the voltage magni-
tude of each feeder bus Uk within [0.9, 1.1] p.u. with the step of
0.02 p.u. is then done, and the errors are compared in Table II,
where the maximum error (ME) of all buses resulting from the
quadratic polynomial functions is less than 0.23%, which can
be acceptable by practical power systems. Meanwhile, the CFF
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TABLE II
QUADRATIC CFF FOR CENTRALIZED AND HIERARCHICAL METHODS

CFF for active power CFF for reactive power

#5 #7 #9 #5 #7 #9

α 90.29 152.70 100.65 61.19 103.80 68.01
β −214.68 −355.47 −242.15 −145.32 −241.38 −163.47
γ 135.46 217.46 155.45 91.53 147.41 104.78
ME. 0.13% 0.15% 0.23% 0.12% 0.14% 0.23%

Fig. 7. CFF for the active power.

Fig. 8. CFF for the reactive power.

for active and reactive powers is plotted in Figs. 7 and 8, respec-
tively, which implies that the CFF functions strictly decrease
with the increase of the voltage magnitude. Institutively, the
CFF functions include two parts: power losses and the total load
demand. Since the total load demand is constant, the decreas-
ing CFF functions with respect to the voltage magnitude also
suggest that a higher voltage magnitude leads to less active and
reactive power losses. Figs. 9 and 10 depict the error between
centralized and hierarchical methods under different load fac-
tors. It can be observed that the error becomes larger with the
increase of the load factor, but the ME will not exceed 1%.

Fig. 9. Curve-fitting error for the active power.

Fig. 10. Curve-fitting error using a quadratic function for the reactive power.

TABLE III
COMPARISONS OF TRANSMISSION/DISTRIBUTION NETWORK LOSSES BETWEEN

CENTRALIZED AND HIERARCHICAL METHODS

Method T. D.-#5 D.-#7 D.-#9 Total

Normal 5.4130 16.1673 19.5517 19.5876 60.7196
Centralized 2.5301 9.7470 12.6314 12.7640 37.6725
Hierarchical 2.6232 9.7574 12.6259 12.7859 37.7924
Error 3.68% 0.11% 0.04% 0.17% 0.32%

Furthermore, the comparisons of transmission/distribution
network losses between centralized and hierarchical methods
are presented in Table III, where the centralized method is taken
as the benchmark. At first, it can be observed that under normal
conditions without reactive power optimization, the total power
loss is about 60.7196 MW; the reactive power optimization can
reduce 37.95% of the power loss. The ME of distribution net-
work losses is no more than 0.17% (about 0.02 MW), the error of
distribution network losses is 3.68% (about 0.09 MW), and the
error of the total network losses is relatively small, i.e., 0.32%
(about 0.12 MW).

The voltage magnitudes by centralized and hierarchical meth-
ods at each feeder bus are compared in Table IV. The reactive
power optimization can clearly improve the voltage profile, and
the comparison between the proposed and centralized methods
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TABLE IV
COMPARISONS OF VOLTAGE MAGNITUDE BETWEEN CENTRALIZED

AND HIERARCHICAL METHODS

Bus #1 #2 #3 #4 #5

Normal 1.0000 1.0000 1.0000 0.9870 0.9750
Centralized 1.0600 1.0600 1.0544 1.0545 1.0439
Hierarchical 1.0600 1.0600 1.0544 1.0541 1.0435

Bus #6 #7 #8 #9

Normal 1.0020 0.9830 0.9950 0.9560
Centralized 1.0600 1.0482 1.0597 1.0317
Hierarchical 1.0600 1.0484 1.0600 1.0310

Fig. 11. Comparison of distribution network losses between centralized and
hierarchical methods. (a) Distribution network loss. (b) Error of distribution
network loss.

suggests that the hierarchical method attains nearly the same
optimization results as the benchmarked method, verifying the
effectiveness of the proposed method.

B. Joint IEEE 118-Bus Transmission Network and 123-Bus
Distribution Networks

In this case, a 138-kV WSCC 118-bus transmission system
is utilized and each load bus is connected to a 35-kV 123-bus
distribution network. The topology of the 123-bus distribution

Fig. 12. Comparison of voltage magnitude between centralized and hierar-
chical methods. (a) Voltage magnitude. (b) Error of voltage magnitude.

network is the same as the original case in [31], and the total
load demands (a.k.a., reactive and active powers) are consistent
with the values given by the transmission network [32]. Five
reactive power compensators are connected to bus 12, 35, 54,
76, and 108, which can be continuously adjusted. The capacity
of each continuous compensator ranges in [−0.1, +0.1]MVar.

In Fig. 11, the distribution network losses using centralized
and hierarchical methods are compared, in which the error of
each distribution network between centralized and hierarchical
methods ranges from −3.02% to 5.29%. Also, the transmission
network losses calculated with the centralized and hierarchi-
cal methods are 9.15 and 9.23 MW, respectively, and the error
between the two methods is about 0.87%. For the total net-
work losses combined with transmission and distribution net-
works, the centralized and hierarchical methods give 76.13 and
76.38 MW, respectively, where the error between the two meth-
ods is 0.25 MW, i.e., 0.33% of the total network losses. Similarly,
voltage magnitudes between the centralized and hierarchical
methods are compared in Fig. 12, where the voltage magnitudes
between the two methods are roughly the same and the ME is
less than 0.5% and the average error is lower than 0.1%. On the
whole, the results from Figs. 11 and 12 verify the effectiveness
of the proposed method.
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TABLE V
COMPUTATIONAL TIME FOR THE TWO TEST SYSTEMS

Test Systems 9-33-bus 118-123-bus

Methods Pro. Cen. Pro. Cen.
# of variables 60 643 952 39753
# of constraints 63 653 1074 39874

Time (s) Solver CFF Solver Solver CFF Solver
0.23 5.88 36.54 4.72 8.27 1000.72

C. Computational Performance

Finally, the compuational time of the two test systems in
Sections IV-A and IV-B is presented in Table V. It illustrates
that the proposed method (Pro.) outperforms the centralized
method (Cen.). Specifically, in the 9-33-bus system, Pro. needs
a total of only 6.11 s to solve a nonlinear programming by the
traditional IPM, whereas Cen. takes 36.54 s to solve a MINLP
by the sequential IP method; and in the 118-123-bus system, all
the reactive power compensators are assumed to be continousely
adjusted, and the reactive power optimization is solved by IPM.
Pro. needs 12.99 s in total, but Cen. takes about 1000 s, which
is more than 100 times slower than what Pro. does. Moreover, it
can be found that computing for HLF by the repetitive solutions
of the optimization problem (13) under different values of the
boundary voltage is absolutely independent. That means we can
solve the problem (13) under different values of the boundary
voltage in a parallel framework, which will further accelerate
the speed of obtaining HLF.

Thanks to the proposed CFF for each distribution network, the
number of variables and constraints in the proposed hierarchi-
cal model is significantly reduced compared to the centralized
model, which greatly facilitates the modeling in the control cen-
ter and improves the computational time of the reactive power
optimization.

V. CONCLUSION

This paper has developed a hierarchical reactive power op-
timization model to minimize the total network losses of joint
transmission and distribution networks. Unlike the traditional
centralized modeling, the hierarchical modeling performs the
reactive power optimization model of transmission and distri-
bution networks separately, alleviating big data problems for
the control center. Moreover, in order to achieve the global op-
timality of the centralized modeling, a curve-fitting approach
has been proposed to provide a cost function of the distribu-
tion network model for the transmission network model, so that
all the distribution networks can be coordinated. Numerical re-
sults on two test systems show that the proposed method can
efficiently deal with joint transmission and distribution network
models, with the error of the optimal solution compared to the
centralized method very small.
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