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A New Continuous Discrete Unscented Kalman Filter
Torben Knudsen and John Leth

Abstract— The time and measurement update for the discrete
time Kalman filter can be formulated in terms of conditional means
and covariances. The unscented Kalman filter can be interpreted as
calculating these conditional means and covariances by using the
unscented transform. This approach can also be directly applied
to nonlinear models as an alternative to the discrete time extended
Kalman filter. In this paper, a novel method for computing the
unscented Kalman filter for a nonlinear model with continuous time
dynamics and discrete time measurements is presented. Compa-
red to the existing approaches, this method is far simpler and less
computationally demanding, and it performs at least as well.

Index Terms— Estimation and filtering, Unscented Kal-
man filter, Stochastic differential equation, Unscented
transform, Continuous discrete estimation.

I. INTRODUCTION

Dynamical systems can be modeled as state space models, i.e., a
first-order vector ordinary differential equation (ODE) and a static
output equation. If there are measurement noise or unknown inputs,
they can be modeled as (white noise) stochastic processes. Such a
model is called a stochastic differential equation (SDE). Normally,
the output vector and the possible input are assumed to be the only
signals that can be measured. Based on these measurements, a state
estimate is needed in many applications, e.g., forecasting, control,
fault detection and system identification.

If both measurements and dynamics are in discrete time and the
system is linear, the well-known Kalman filter [1], [2] is the optimal
solution in the mean square error sense. This is abbreviated DD-KF,
standing for discrete-discrete Kalman filter. A corresponding optimal
solution called the CD-KF [3] exists for the CD (continuous-discrete)
linear problem where the dynamic state is described by an SDE,
and the measurements are at discrete times. For both DD and CD
problems with nonlinear systems, the extended KF (EKF) has been
very useful. The EKF simply linearizes the nonlinear system and
uses the linearized system parameters where necessary in the KF.
For DD nonlinear problems, [4] presents the so-called unscented KF
(UKF), where the need for linearization is avoided by estimating the
necessary covariances using the unscented transform (UT) [5], [6]
and then directly using them in the DD-KF. This method is referred
to as the discrete-discrete unscented Kalman filter (DD-UKF). One of
the pioneers in this field compares DD-UKF to DD-EKF as follows:
“It is more accurate, easier to implement, and uses the same order
of calculations as linearization.” [7, p. 401]. A similar statement is
found in [8, p. 158]. This is also our experience.

Inspired by the superior performance of DD-UKF, an algorithm,
referred to as CD-UKF in this paper, has been suggested by [9]
for computing the UKF in the continuous-discrete case. An earlier
alternative to CD-UKF is the ensemble methods (EnKF) discussed
by, e.g., [10] and [11] where Monte Carlo methods are used instead
of UT methods, which are much more computationally demanding.

It is typical to split the state estimation into a time update and a
measurement update. This approach is done in [9] and in this paper
(see section II). The measurement update for CD-UKF is similar to
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that for DD-UKF. The difficulties lie in the time update. The method
for the time update in [9] consists of the following steps:

1) Start with the CD system.
2) Obtain a DD system by discretizing the CD system using a

small time step ∆t.
3) Set up the DD-UKF equations for the above system.
4) Let the time step ∆t in the above equations tend to zero,

resulting in a set of ordinary differential equations that then
become the CD-UKF equations in [9].

5) The above so-called Moment Differential Equations (MDEs)
[12] cannot be solved analytically; hence, a numerical method
has to be used to integrate from one measurement time to the
next.

See [9] for more details, especially regarding the time update by
equations (34), (30) and (25) and the measurement update (27), where
these equation numbers refer to [9].

The method of [9] is further elaborated by [13], [14]. In [15], a
solution based on [9] is provided for a CD system extended with
algebraic states. In [16], the time update is performed using the
method from [9]; however, for the measurement update, alternative
factorizations are suggested and analyzed. The most detailed analysis
and development of methods for solving the MDEs numerically is
found in the recent work [12]. The paper develops an adaptive solver
with an automatic global error control and demonstrates its good
performance.

In summary, a number of methods for solving the CD-UKF
estimation problem numerically have been suggested. However, all
of the above are based on solving the MDEs developed by [9].

For comparison with the method of [9], the time update steps of
the method presented in this paper are as follows:

1) Start with the CD system.
2) Obtain a DD system by discretizing the CD system using a

small time step ∆t.
3) Use the unscented transform directly for the above system to

calculate the necessary covariances and variances to advance
from one measurement time to the next.

This is far simpler than the method of [9].
The main contribution of this paper is the new and simple CD-UKF

method, which avoids the MDEs used in [9]. It is simpler to explain in
an academic context, and it can be explained to practitioners without
involving complicated mathematics related to SDEs.

Moreover, we remark that if it is applied to the Lorenz system, the
CD-UKF method presented in this paper produces state and output
estimates with the same precision as the CD-UKF method in [9] (see
Table III) but outperforms it with respect to the accuracy of variance
of the state estimate error (see Table IV). Finally, for this example, it
runs more than 9 times faster than the CD-UKF method in [9] (see
Table III). Using the results reported in [12], this difference might
be reduced.

Notation: In what follows, the superscript T indicates transposition,
and , denotes “defined by”. For random vectors x, y and z, the
conditional covariance matrix and conditional variance are denoted

Cov(x, y|z) , E
(

(x− E(x|z))(y − E(y|z))T
∣∣z) ,

Cov(x|z) , Cov(x, x|z) ,
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where in the unconditional case, these are occasionally denoted by
Cxy = Cov(x, y) and Cx = Cov(x, x), respectively. Finally, the
estimate of a value x is denoted by x̂, and the estimation error by
x̃ , x− x̂.

The remainder of this paper starts by presenting CD-KF for linear
systems in section II. Section III presents CD-EKF for nonlinear
systems. The UT is presented separately in section IV. The main
contribution in the form of the new CD-UKF is developed in
section V and compared with the alternative CD-UKF by [9] and CD-
EKF in section VI based on a simulated Lorenz attractor example.
Finally, section VII gives the conclusion.

II. THE CONTINUOUS–DISCRETE KF
For reference, the basic CD-KF for linear CD systems is first

presented.
Consider the linear time varying CD system:

dx(t) = (F (t)x(t) +B(t)u(t)) dt+ dw(t) , (1a)

y(tk) = H(tk)x(tk) +D(tk)u(tk) + v(tk) , (1b)

w(t) ∈W (Q(t)) , v(ti) ∈ N(0, R(ti)) , (1c)

E
(
v(ti)v(tj)

T
)

= ∆(ti − tj)R(ti) , (1d)

where x ∈ Rn is the state, u ∈ Rm is the input, w ∈ Rn is a
Wiener process, y ∈ Rp is the output, and v ∈ Rp is the Gaussian
measurement noise. The matrices F,B,H,D are state space model
parameters of suitable dimensions, Q is the incremental process noise
covariance, R is the measurement noise covariance, and ∆ is the
discrete Dirac delta function. We remark that the SDE given by (1a)
is to be understood in the sense of Ito (see [17]).

Given the measurements and the initial values,

Y k0 , y(t0), y(t1), y(t2) . . . , y(tk) , (2a)

x̂(t−0 ) = x̂0 , P (t−0 ) = P0 , (2b)

the estimation problem is to find the estimate x̂(tk) that minimizes
the mean square error (MSE)

E
(

(x(tk)− x̂(tk))TA(x(tk)− x̂(tk))
)
, (3)

for any positive semi-definite A. It is well known that the general
solution, which is also applicable to nonlinear systems, is the condi-
tional mean value

x̂(tk) = E
(
x(tk)

∣∣Y k0 ) . (4)

The CD-KF that gives the solution to the estimation problem for the
linear time-varying CD system (1)-(2) can be formulated algorithmi-
cally as (5)-(6) below [3, Theo. 7.1]:

The measurement update at time tk is performed as follows:

K(tk) = P (t−k )H(tk)T

(H(tk)P (t−k )H(tk)T +R(tk))−1 ,
(5a)

x̂(t+k ) = x̂(t−k ) +K(tk)

(y(tk)−H(tk)x̂(t−k )−D(tk)u(tk)) ,
(5b)

P (t+k ) = (I −K(tk)H(tk))P (t−k )(I −K(tk)H(tk))T

+K(tk)R(tk)K(tk)T .
(5c)

The time update from tk to tk+1 is performed as follows:

x̂(tk) = x̂(t+k ) , P (tk) = P (t+k ) , (6a)
˙̂x(t) = F (t)x̂(t) +B(t)u(t) , (6b)

Ṗ (t) = F (t)P (t) + P (t)F (t)T +Q(t) , (6c)

x̂(t−k+1) = x̂(tk+1) , P (t−k+1) = P (tk+1) , (6d)

where (6a) are the initial conditions at time tk for the ODE (6b)–(6c)
used to obtain the time-updated results (6d) for time tk+1.

It is, of course, important to mention that the terms in algorithm
(5)-(6) have probabilistic interpretations:

x̂(t−k ) , E
(
x(tk)

∣∣Y k−1
0

)
, (7a)

x̂(t+k ) , E
(
x(tk)

∣∣Y k0 ) , (7b)

P (t−k ) , Cov
(
x(tk)

∣∣Y k−1
0

)
= E

(
(x(tk)− x̂(t−k ))(x(tk)− x̂(t−k ))T

∣∣Y k−1
0

)
,

(7c)

P (t+k ) , Cov
(
x(tk)

∣∣Y k0 )
= E

(
(x(tk)− x̂(t+k ))(x(tk)− x̂(t+k ))T

∣∣Y k0 ) .
(7d)

III. THE CONTINUOUS–DISCRETE EKF
Consider now, in place of (1a) and (1b), the nonlinear model (8)

below, where the drift f and output h are nonlinear but the noise v
is still additive:

dx(t) = f(x(t), u(t), t)dt+ dw(t) , (8a)

y(tk) = h(x(tk), u(tk), tk) + v(tk) . (8b)

The EKF is then derived from the KF by using the following
heuristic principle: use the nonlinear relations when possible and
the linearization otherwise. Thus, the following are changed in the
nonlinear setting.

The measurement update at time tk (5b) is replaced by

x̂(t+k ) = x̂(t−k ) +K(tk)(y(tk)− h(x̂(t−k ), u(tk), tk)) . (9)

The time update from tk to tk+1 (6b) is replaced by

˙̂x(t) = f(x̂(t), u(t), t) . (10)

In all the other equations, the linearized parameters (11) must be
used.

F (t) ,
∂f

∂x
(x̂(tk), u(tk), t) , (11a)

H(t) ,
∂h

∂x
(x̂(t−k ), u(tk), t) . (11b)

Unless explicitly mentioned, (5) and (6) are henceforth to be
understood with the changes (9)-(11).

IV. UNSCENTED TRANSFORM

The basic new idea in the UKF is to use the UT to calculate
conditional means and covariances in the measurement (5) and the
time update (6). How this is done for the nonlinear CD problem is
explained in section V. This section first explains the UT itself.

The problem solved by the UT is the basic probabilistic problem of
calculating the second-order statistics of x, y, given the second-order
statistics of x and a relation f :

y = f(x) , µx = E(x) , Cx = Cov(x) . (12)

The UT can formally be written as[
µ̂y, Ĉyx, Ĉy

]
= UT(f, µx, Cx) . (13)

From the mathematical point of view, this amounts to approximating
integrals of the type∫

Rn
h(z)φx(z)dz , (14)

where φx is the probability density function for x, and, e.g., h = f
in the case of µ̂y .
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For a nonlinear relation f , there is no exact solution for even
the second-order statistics. The EKF can be interpreted as using the
linearization approach:

y ≈ f(µx) +∇f(µx)(x− µx) ,

implying that

µ̂y = f(µx) , Ĉyx = ∇f(µx)Cx ,

Ĉy = ∇f(µx)Cx∇f(µx)T .

A Monte Carlo approach would involve generating random realiza-
tions xi based on the statistics of x and estimating the statistics for
x, y as follows:

µ̂y =
1

N

N∑
i=1

f(xi) , µ̂x =
1

N

N∑
i=1

xi ,

Ĉyx =
1

N

N∑
i=1

(f(xi)− µ̂y)(xi − µ̂x)T ,

Ĉy =
1

N

N∑
i=1

(f(xi)− µ̂y)(f(xi)− µ̂y)T ,

with N chosen to be sufficiently large.
The UT can be seen as a Monte Carlo method in which the

values of xi are not randomly drawn but constructed to obtain certain
features [18, p. 549-550]. These constructed xis are called sigma
points. In particular, if x is Gaussian, the eigenvectors of Cx can be
used to construct the sigma points; see [5] for details. An introduction
to UT can be found in, e.g., [4]. There are various versions of UT
with different features. The UT used here is given below, where n is
the dimension of x:

λ = 2 , (15a)

k =
√
n+ λ , (15b)

ui , eigenvector i for Cx , (15c)

li , eigenvalue i for Cx , (15d)

xi =


µx , i = 0

µx + kui
√
li , 1 ≤ i ≤ n

µx − kui
√
li , n+ 1 ≤ i ≤ 2n ,

(15e)

wi =

{
λ

n+λ , i = 0
1

2(n+λ)
, 1 ≤ i ≤ 2n ,

(15f)

µ̂y =

2n∑
i=0

wif(xi) , (15g)

Ĉyx =

2n∑
i=0

wi(f(xi)− µ̂y)(xi − µ̂x)T , (15h)

Ĉy =

2n∑
i=0

wi(f(xi)− µ̂y)(f(xi)− µ̂y)T . (15i)

Note that
∑2n
i=0 wi = 1. This construction can be shown to give

exact results for linear and affine functions f(x) = Ax + b. Here,
eigenvectors are used to construct the sigma points. There are other
ways, e.g., Cholesky factorization, which gives correct results for
linear functions but different results for nonlinear functions, as shown
in the test below.

The above UT has been tested and compared to the UT version
by Rudolph van der Merwe and S. J. Julier , that uses Cholesky
factorization [7], [19]. For reference, a Monte Carlo (MC) method
using 104 random samples has also been included. The results for
y = f(x) = xTx, i.e. squared length of x, are shown in Table I. The

chosen input statistics are E(x) = [1; 1] and Cov(x) = [1 1; 1 2]
(using the Matlab notation). The MC method assumes a Gaussian
distribution of x. This squared length example is chosen because the
theoretical results can be derived, as shown in Table I.

It is noted that the UT method (15) is correct up to third-order
moments [7], [20]. That is, the estimates of E(y) and Cov(y, x) agree
with the (correct) theoretical results, while the estimate of Cov(y)
does not, as it includes 4th moments. This is true only in the case
considered, where f is the square length of x, which is Gaussian.

The UT method’s performance is also compared to that of the
MC method. The two methods perform similarly, even though the
MC method uses 104 points compared to 5 points used by the
UT methods. The slightly better performance of the Cholesky-based
method compared to the UT is not the case in general, as shown in
Table II.1

Method E(y) Cov(y) Cov(y, x1) Cov(y, x2)
Estimates

UT 5.00 39.0 4.00 6.00
UTCH 5.00 31.0 4.00 6.00

MC 5.04 33.9 3.99 6.03
Theo 5 34 4 6

Relative error
UT 0 0.147 0 0

UTCH 0 -0.0882 0 0
MC 0.00766 -0.00428 -0.00309 0.00467

TABLE I
ESTIMATION PERFORMANCE WITH y = f(x) = x2

1 + x2
2 ,

E(x) = [1; 1], Cov(x) = [1 1; 1 2]. UT IS THE UNSCENTED

TRANSFORM (15), UTCH IS THE CHOLESKY-BASED METHOD, MC IS

THE MONTE CARLO METHOD, AND THEO REPRESENTS THE

THEORETICAL CORRECT VALUES. THE BOTTOM PART CONTAINS

ERRORS RELATIVE TO THE CORRECT RESULTS:
(ESTIMATE-THEO)/THEO.

Method E(y) Cov(y) Cov(y, x1) Cov(y, x2)
Estimates

UT 36.8 6617 52.8 82.4
UTCH 32.0 3100 40.0 60.0

MC 35.3 8175 44.9 73.1
Relative error

UT 0.0427 -0.191 0.175 0.128
UTCH -0.0933 -0.621 -0.110 -0.179

TABLE II
ESTIMATION PERFORMANCE WITH y = f(x) = x4

1 + x4
2 ,

E(x) = [1; 1], Cov(x) = [1 1; 1 2] AND THE MONTE CARLO (MC)
METHOD USING 105 RANDOM SAMPLES. THE BOTTOM PART CONTAINS

ERRORS RELATIVE TO THE MC METHOD: (ESTIMATE-MC)/MC.

V. CONTINUOUS–DISCRETE UNSCENTED KALMAN
FILTER

The CD-UKF solves the same problem as the CD-EKF, i.e.,
estimating the state from the outputs of the system (8). To understand
the CD-UKF, it is necessary to follow the derivation of the (linear)
CD-KF to recognize that the measurement update (5b) and (5c)
originates from basic relation for Gaussian variables. Assume that
x, y are Gaussian vectors, then

E(x|y) = E(x) + Cov(x, y) Cov(y)−1(y − E(y)), (16a)

Cov(x|y) = Cov(x)− Cov(x, y) Cov(y)−1 Cov(y, x), (16b)

1In Table II, the result of the MC method is used as a benchmark because
calculating the necessary theoretical statistics for Table II can be very lengthy.
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x− E(x|y) and y are independent, (16c)

and the MSE optimal estimate of x given y is the conditional mean
E(x|y). Note the important feature of (16c) that the estimation error
is independent of the data on which it is based. This fact, and its
implications, is used extensively below, e.g., in (18).

Now, let y denote some information that is already available and
z some new information that is to be obtained. The extra condition
z must then also be included in (16), resulting in

E(x|y, z) = E(x|z)
+ Cov(x, y|z) Cov(y|z)−1(y − E(y|z)) ,

(17a)

Cov(x|y, z) = Cov(x|z)
− Cov(x, y|z) Cov(y|z)−1 Cov(y, x|z) .

(17b)

Introducing the estimation errors

ỹ(t−k ) , y(tk)− ŷ(t−k ) , y(tk)− E
(
y(tk)

∣∣Y k−1
0

)
, (18a)

x̃(t±k ) , x(tk)− x̂(t±k ) , (18b)

then yields

Cov
(
ỹ(t−k )

∣∣Y k−1
0

)
= Cov(ỹ(t−k )) , (18c)

E
(
x(tk)

∣∣ỹ(t−k ), Y k−1
0

)
= E

(
x(tk)

∣∣Y k0 ) = x̂(t+k ) , (18d)

Cov
(
x(tk), ỹ(t−k )

∣∣Y k−1
0

)
= E

(
(x(tk)− x̂(t−k ))ỹ(t−k )T

∣∣Y k−1
0

)
= E

(
(x(tk)− x̂(t−k ))ỹ(t−k )T

)
= Cov(x̃(t−k ), ỹ(t−k )) = Cov(ỹ(t−k ), x̃(t−k ))T .

(18e)

Using (17) with x, y, z replaced by x(tk), ỹ(t−k ), Y k−1
0 and ap-

plying (7) then gives

E
(
x(tk)

∣∣ỹ(t−k ), Y k−1
0

)
= x̂(t−k )

+ Cov
(
x(tk), ỹ(t−k )

∣∣Y k−1
0

)
Cov

(
ỹ(t−k )

∣∣Y k−1
0

)−1
(y(tk)− ŷ(t−k )) ,

(19a)

P (t+k ) = P (t−k )− Cov
(
x(tk), ỹ(t−k )

∣∣Y k−1
0

)
Cov

(
ỹ(t−k )

∣∣Y k−1
0

)−1
Cov

(
ỹ(t−k ), x(tk)

∣∣Y k−1
0

)
,

(19b)

which, by (18) and (7), results in the following simpler formulas:

x̂(t+k ) = x̂(t−k )

+ Cov(x̃(t−k ), ỹ(t−k )) Cov(ỹ(t−k ))−1ỹ(t−k ) ,
(20a)

P (t+k ) = P (t−k )− Cov(x̃(t−k ), ỹ(t−k ))

Cov(ỹ(t−k ))−1 Cov(ỹ(t−k ), x̃(t−k )) .
(20b)

This completes the derivation of the basic formulas needed to
explain the specific context in which the UT appears.

Remark 1: Equation (20) represents the measurement update (5),
but in a more general formulation. Indeed, the standard formulation
(5) of the linear CD-KF can be derived from (20) as follows:

y(tk) = Hx(tk) +Du(tk) + v(tk)

ŷ(t−k ) = Hx̂(t−k ) +Du(tk)
(21a)

giving ỹ(t−k ) = Hx̃(t−k ) + v(tk) and thus

Cov(x̃(t−k ), ỹ(t−k )) = P (t−k )H(tk)T , (21b)

Cov(ỹ(t−k )) = H(tk)P (t−k )H(tk)T +R(tk) . (21c)

Hence, by defining

K(tk) , Cov(x̃(t−k ), ỹ(t−k )) Cov(ỹ(t−k ))−1 , (22)

equation (5a) can be obtained by using (21b)-(21c) in (22), and
equation (5b) can be obtained by using (22) in (20a). To derive
equation (5c), first note that (18b) may be used to write (7c)–(7d)
equivalently as

P (t−k ) = Cov
(
x̃(t−k )

∣∣Y k−1
0

)
, (23)

P (t+k ) = Cov
(
x̃(t+k )

∣∣Y k0 ) . (24)

Now, use (20a) with (22) to obtain

x̃(t+k ) = x̃(t−k )−K(tk)ỹ(t−k )

= (I −K(tk)H(tk))x̃(t−k )−K(tk)v(tk) ,
(25)

Then, applying (25) to (24), expanding and using (23) results in (5c).
The measurement update for the UKF corresponding to (5b)–(5c)

in the linear case is given by (20a)–(20b), where the UT is used
to estimate all the covariances and expected values. This is done
by defining an ancillary function ha by (26) for the measurement
equation such that the stochastic part x , [x, v] and the deterministic
part u are separated

y(tk) = h(x(tk), u(tk)) + v(tk)

, ha([x(tk), v(tk)], u(tk)) .
(26)

The function ha(·, u) plays the role of f in (12). Moreover, the
definition of x = [x, v] and ha does not in any way indicate a change
in the model (8) but is only a way to formally explain exactly how
the UT is used here. Given the function ha and the input statistics

µx =

(
x̂(t−k )

0

)
, (27a)

Cx =

(
P (t−k ) 0

0 R(tk)

)
, (27b)

the UT results in, via (15), the statistics

E
(
y(tk)

∣∣Y k−1
0

)
= ŷ(t−k ) , (28a)

Cov
(
y(tk), x(tk), v(tk)

∣∣Y k−1
0

)
=[

Cov
(
y(tk), x(tk)

∣∣Y k−1
0

)
Cov

(
y(tk), v(tk)

∣∣Y k−1
0

)]
=
[
Cov(x̃(t−k ), ỹ(t−k ))T Cov

(
y(tk), v(tk)

∣∣Y k−1
0

)]
,

(28b)

Cov
(
y(tk)

∣∣Y k−1
0

)
= Cov(ỹ(t−k )) , (28c)

that are necessary in the UKF measurement update (20). Note that
the additive measurement noise in (26) means that the UT only needs
to include the stochastic effect related to x, while the effect of v
can be added in a second step. The joint distribution of x, v in
(27) is included here because it is necessary for the more general
output equation y(tk) = h(x(tk), u(tk), v(tk)). Note also that
the distribution used in (27) is conditional on Y k−1

0 , and that the
omission of conditioning on Y k−1

0 in (28) is only correct in the linear
CD-KF Gaussian case where the prediction errors ỹ(t−k ) and the
measurement Y k−1

0 are both uncorrelated and independent. However,
this is an acceptable approximation in cases where the deviation from
linearity and the Gaussian distribution is not severe.

When the UT is used for the time update, it must be formulated
as a function of deterministic and stochastic inputs. The function
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must represent the integration of the state SDE (29) from tk to tk+1

starting from x̂(t+k ), P (t+k ), given u(t), Q(t), t ∈ [tk, tk+1].

dx(t) = f(x(t), u(t))dt+ dw(t) . (29)

The SDE (29) can be simulated by discretizing in time. In general,
the specific integration algorithm should relate to the interpretation of
the SDE in the sense of either Ito or Stratonovich. However, since the
diffusion (equal to 1 here) is independent of x, these two formalisms
are identical [17, p.171]. The Euler-Maruyama integration [17], [21]
may therefore be used as in (30).

δti , ti+1 − ti , δwi , w(ti+1)− w(ti) , (30a)

x(ti+1)− x(ti)

= f(x(ti), u(ti))δti + δwi

=

(
f(x(ti), u(ti)) +

δwi
δti

)
δti

= (f(x(ti), u(ti)) + ni) δti

, ni ∈ NID(0, Q(ti)δt
−1
i ) ,

(30b)

where i numbers the intermediate steps between tk and tk+1, and
NID stands for Normally and Independently Distributed, i.e., white
Gaussian noise. Similar to ha for the measurement update, an
ancillary function fa is defined to explain the use of the UT in the
time update. Using (30), the final state x(tk+1) is a function

x(tk+1) = fa([x(tk), N
tk+1
tk

], U
tk+1
tk

) , (31)

of the initial state x(tk), stacked noise N
tk+1
tk

and input U
tk+1
tk

.

Note that N
tk+1
tk

and U
tk+1
tk

are the stacked noise ni and input u(ti)
for the intermediate time steps in the integration (30b), respectively.
Additionally, note that x in (30)–(31) is an approximation of x in the
SDE (29). Now, the UT transform can be used with the function fa
and the input statistics

E

(
x(tk)

N
tk+1
tk

)
=


x̂(t−k )

0
...
0

 , (32a)

Cov

(
x(tk)

N
tk+1
tk

)
=


P (t−k ) 0 . . . 0

0 Q(tk)/δt . . . 0

0 . . .
. . . 0

0 . . . . . . Q(tk+1)/δt

 ,

(32b)

where the time step δt is assumed constant for simplicity. The result
of the UT is then the output-input statistics

x̂(t−k+1) , P (t−k+1) = Cov(x̃(t−k+1)) , (33)

that are necessary in the UKF time update corresponding to (6).
The choice of sub-sampling time δt is important; it must be chosen

to be sufficiently small to guarantee that the errors from discretization
are smaller than those from estimation. However, there is a tradeoff,
as the number of sigma points from (32) given by 2(tk+1−tk/δt +
1) + 1 increases with decreasing δt. For stiff systems in particular,
a variable step-size integration is advantageous [22]. The presented
method can easily change the sub-sampling step size δt at sampling
times tk; however, changing it between sub-samplings appears to be
difficult. A detailed study of the effect of sub-sampling time is outside
the scope of this paper; instead, the reader is referred to [22].

In summary, this section shows how to use the UT to calculate all
the conditional means, variances and covariances necessary for the
KF. This is why the method of this paper is called CD-UKF.

VI. TEST OF THE CD-UKF
In this section, the CD-UKF developed in section V is tested

by comparing it to two other methods using data from a simulated
(nonlinear) Lorenz system. The first method is that described in [9],
and the other method is the CD-EKF method presented in this paper.

From the theory, it is known that the methods will work perfectly
for linear models. In particular, the output prediction errors (residuals)
must be white noise. To rule out algorithmic errors, the methods
developed by the authors of this paper have been successfully tested
for linear models (the test results are not included here).

The comparison with the CD-UKF method of [9] and the CD-EKF
is performed on the Lorenz system (34) that is also used by others
for assessing filters [10]. Moreover, the deterministic part uses the
same parameters (34f) as the original work by Lorenz [23].

dx = f(x)dt+ dw , (34a)

y = h(x) + v , (34b)

f(x) =

 σ(x2 − x1)
x1(ρ− x3)− x2
x1x2 − βx3

 , (34c)

h(x) =

(
x1
x3

)
, (34d)

w ∈W(0, Q) , v ∈ NID(0, R) , (34e)

σ = 10 , ρ = 28 , β = 8/3 , (34f)

Q = 4.52I , R = I , (34g)

Ts = 0.01 , x(0) =
(
1 1 1

)T
. (34h)

The simulation runs from time 0 to 7 with a simulation time step of
0.0001 and an output sampling time of 0.01, resulting in 701 samples.
Initially, 50 subsamples for the time update step are used for the CD-
UKF method in [9]; however, this number could be reduced to 10
before the estimation RMS error started to increase. The sub sampling
used for the developed algorithm is then adjusted to obtain the same
performance, resulting in 2 subsamples. This choice is based on many
simulation runs; the results of one run are shown in Figure 1–3, while
Table III contains the statistics for 100 simulations.

Figure 1 shows the simulated states in 3D in blue; the measu-
rements y1, y2 of the states x1, x3 are shown in red in the x1, x3
plane. The estimates of the developed CD-UKF method are shown
in green. The output prediction errors are observed to be perfectly
white in Figure 2. This is not guaranteed theoretically, but it does
show that the filter works nearly optimally at least regarding the
“linear” correlation. The so-called lag dependence function (LDF)
[24], [25] estimates auto correlations from data, while also accounting
for nonlinear dependence. As this is appropriate for the nonlinear
system, it is also calculated, but not shown. The result is similar to
those in Figure 2 except the non-zero lag correlations are slightly
larger, though still small. The state estimation errors are shown in
Figure 3 to illustrate that the uncertainty of the states x1, x3 is smaller
and relatively stable compared to x2, as expected, as there is no
measurement of x2 (the following shorthand notation x̃±i , x̃i(t

±)

and ỹ−i , ỹi(t
−) is used in the figures and tables below).

Normal probability plots for the distribution of output and state
prediction errors are shown in Figure 4–5. In the linear case, both
will be Gaussian. For the Lorenz system, the output prediction
errors appear to be nearly Gaussian, even though there are some
deviations in the tails of the distribution. Such tail deviations are
more pronounced for the state prediction errors, which then seem
less Gaussian. This applies in particular to x̃2, which has no “direct”
measurement.

Table III shows the primary comparison results with two decimals
of precision (the normalized values in all tables are obtained using
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Fig. 1. Simulated states (blue) and measurements (red) for the Lorenz
system. The estimated states using the developed CD-UKF are also
included and are shown in green.
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Fig. 2. Whiteness test for residuals from the CD-UKF. Upper left and
lower right subplots show autocorrelations for ỹ1 and ỹ2, respectively
(the p values are from the Portmanteau [26] whiteness test). The upper
right plot shows the cross correlation between the two.
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Fig. 3. State prediction errors (residuals) including 95% confidence
limits from the CD-UKF, vs. time
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Fig. 4. Normal probability plots for output prediction errors (residuals)
from the CD-UKF.
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Fig. 5. Normal probability plots for state prediction errors (residuals)
from the CD-UKF.

precise values for the numerator and denominator). It provides the
mean and standard deviation based on 100 simulations of RMS errors,
and the computation time (see also the Appendix.) As explained
above, the accuracy values of the filters are made similar by tuning the
number of subsampling time steps. The RMS of the state estimates
using only the measurement would be 1, ∞ and 1 for x1, x2, x3,
respectively, due to the measurement (34d). This agrees well with
the results in Table III, as the RMS values are below 1, ∞ and
1, respectively. The only difference in the methods’ performances is
that CD-UKF and CD-EKF are at least 9 times faster than the version
reported in [9], denoted here by CD-UKFSS.

In many applications, the accuracy of the variance Cov(x̃i(t
+
k )) of

the state estimate error x̃i(t
+
k ) is as important as the state estimate

itself. Therefore, this accuracy is also accessed by calculating the
RMS of the normalized error

x̃n,i(t
+
k ) =

x̃i(t
+
k )√

P (t+k )ii

(35)

with the estimated standard deviation
√
P (t+k )ii being the square

root of the ith diagonal element of P (t+k ) = Cov
(
x̃i(t

+
k )
∣∣Y k0 ). If
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Mean
Method x̃+

1 x̃+
2 x̃+

3 ỹ−1 ỹ−1 Time
CD-UKFSS 0.59 1.39 0.61 1.24 1.27 2.89
CD-EKF 0.58 1.37 0.61 1.23 1.27 0.37
CD-UKF 0.58 1.37 0.61 1.23 1.27 0.31

Normalized
CD-EKF/CD-UKFSS 0.99 0.98 0.99 1 1 0.13
CD-UKF/CD-UKFSS 0.99 0.98 0.99 1 1 0.11
CD-UKF/CD-EKF 1 1 1 1 1 0.84

Standard Deviation
CD-UKFSS 0.03 0.12 0.03 0.03 0.03 0.02
CD-EKF 0.03 0.11 0.03 0.03 0.03 0.01
CD-UKF 0.03 0.11 0.03 0.03 0.03 0.01

Normalized
CD-EKF/CD-UKFSS 1 0.97 0.95 1 0.98 0.26
CD-UKF/CD-UKFSS 1 0.97 0.95 0.99 0.98 0.33
CD-UKF/CD-EKF 1 1 1 1 1 1.3

TABLE III
COMPARING THE PERFORMANCE OF ESTIMATION METHODS FOR THE

LORENZ SYSTEM. THE MEANS AND STANDARD DEVIATIONS ARE BASED

ON 100 SIMULATIONS. THE FIRST FIVE COLUMNS (IN BLOCKS ONE AND

THREE) SHOW RMS OF STATE ESTIMATION ERRORS AND OUTPUT

PREDICTION ERRORS, AND THE SIXTH COLUMN SHOWS THE

COMPUTATION TIME.

the estimated standard deviation matches the actual standard deviation
of the state estimation error, the normalized error x̃n,i(tk) will have a
standard deviation of one. Based on the 100 simulations used above,
the estimated means and standard deviations of the RMS of x̃n,i(tk)
are shown in Table IV.

Mean
Method x̃+

n,1 x̃+
n,2 x̃+

n,3

CD-UKFSS 1.24 1.06 0.89
CD-EKF 0.99 1 1
CD-UKF 0.99 1 1

Standard Deviation
CD-UKFSS 0.06 0.08 0.04
CD-EKF 0.04 0.08 0.04
CD-UKF 0.04 0.08 0.04

TABLE IV
MEANS AND STANDARD DEVIATIONS OF RMS VALUES FOR

NORMALIZED STATE ESTIMATION ERRORS. THE IDEAL VALUE OF THE

MEAN IS ONE.

The values are close to one, especially for CD-EKF and CD-UKF,
while the method of [9] shows a larger deviation, as the error variance
is underestimated for the first component and overestimated for the
third component.

As mentioned above, the values in the tables of this section are
based on 100 simulations. Moreover, many other random simulation
re-runs have been performed. The observed tendencies hold in general
for the system (34) used for the test. It should, however, be noted
that none of the algorithms have been optimized for speed.

VII. CONCLUSION

It is well known that the unscented Kalman filter performs at least
as well as the extended Kalman filter for systems modeled by discrete
time dynamic models and using discrete time measurements. A furt-
her advantage is that no linearization of state dynamics or measure-
ment equations is needed. In many applications, it is preferable to use
a dynamic model formulated in continuous time, while still having
discrete time measurements. For this problem, [9] initially developed
a method based on the unscented idea, where solving numerically
the so-called Moment Differential Equations (MDEs) is necessary.

The numerical solution of the MDEs has been extensively studied
by others [12], [15], [16]. Compared to [9], this paper develops a
more straightforward unscented method for the continuous-discrete
estimation problem. Based on simulations, the proposed method is
shown to result in the same RMS of state estimations errors as the
present one while providing better covariance estimates; additionally,
it runs approximately 9 times as fast.

APPENDIX

Minimum
Method x̃+

1 x̃+
2 x̃+

3 ỹ−1 ỹ−1 Time
CD-UKFSS 0.53 1.08 0.56 1.17 1.18 2.86
CD-EKF 0.53 1.06 0.56 1.16 1.16 0.36
CD-UKF 0.53 1.06 0.56 1.16 1.16 0.3

Normalized
CD-EKF/CD-UKFSS 1 0.98 1 1 0.98 0.13
CD-UKF/CD-UKFSS 1 0.98 1 1 0.98 0.11
CD-UKF/CD-EKF 1 1 1 1 1 0.84

Maximum
Method x̃+

1 x̃+
2 x̃+

3 ỹ−1 ỹ−1 Time
CD-UKFSS 0.65 1.67 0.67 1.32 1.35 2.98
CD-EKF 0.64 1.64 0.67 1.32 1.34 0.39
CD-UKF 0.64 1.63 0.67 1.32 1.34 0.34

Normalized
CD-EKF/CD-UKFSS 0.99 0.98 0.99 0.99 1 0.13
CD-UKF/CD-UKFSS 0.99 0.98 0.99 0.99 1 0.12
CD-UKF/CD-EKF 1 1 1 1 1 0.89

TABLE V
COMPARING THE PERFORMANCE OF ESTIMATION METHODS FOR THE

LORENZ SYSTEM. THE MINIMUM AND MAXIMUM ARE BASED ON 100
SIMULATIONS. THE FIRST FIVE COLUMNS (IN BLOCKS ONE AND THREE)
SHOW RMS OF STATE ESTIMATION ERRORS AND OUTPUT PREDICTION

ERRORS, WHILE THE SIXTH COLUMN SHOWS THE COMPUTATION TIME.

Minimum
Method x̃+

n,1 x̃+
n,2 x̃+

n,3

CD-UKFSS 1.12 0.84 0.78
CD-EKF 0.9 0.8 0.91
CD-UKF 0.9 0.8 0.91

Maximum
CD-UKFSS 1.38 1.26 0.99
CD-EKF 1.1 1.17 1.1
CD-UKF 1.1 1.17 1.1

TABLE VI
RMS VALUES OF NORMALIZED STATE ESTIMATION ERRORS. THE

MINIMUM AND MAXIMUM ARE BASED ON 100 SIMULATIONS.
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