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Adaptive TS Fuzzy-Based MPC for DC Microgrids
With Dynamic CPLs: Nonlinear Power

Observer Approach
Navid Vafamand , Shirin Yousefizadeh, Mohammad Hassan Khooban , Senior Member, IEEE,

Jan Dimon Bendtsen, Member, IEEE, and Tomislav Dragičević , Senior Member, IEEE

Abstract—The performance of a DC microgrid (MG) might de-
grade because of the dynamics of constant power loads (CPLs).
In this paper, a novel adaptive controller is proposed to mitigate
the destructive effect of time-varying uncertain CPLs. A nonlinear
disturbance observer is developed to estimate the instantaneous
power of the CPLs. The estimated CPLs powers are then em-
ployed in a Takagi–Sugeno fuzzy-based model predictive control
strategy, aiming to adaptively modify the injecting current of the
energy storage system. The proposed approach is applied to a dc
MG testbed that feeds one CPL. Experimental results show that
the proposed adaptive controller is able to increase the stability
margin and improve the transient response of the dc MG.

Index Terms—DC microgrid (MG), model predictive controller
(MPC), non-ideal constant power load (CPL), nonlinear power
observer, Takagi–Sugeno (TS) fuzzy model.

NOMENCLATURE

CPL Constant power load.
ESS Energy storage system.
MG Microgrid.
MPC Model predictive control.
NDOB Nonlinear disturbance observer.
TS Takagi–Sugeno.
iL,j Current of the inductor in the jth CPL.
vC,j Voltage of the capacitor in the jth CPL.
Pj The power of the jth CPL.
rj Resistance of the jth filter connected to the

jth CPL.
Lj Inductance of the jth filter connected to the

jth CPL.
Cj Capacitance of the jth filter connected to

the jth CPL.
rs Resistance of the filter connected to the dc

source.
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Ls Inductance of the filter connected to the dc
source.

Cs Capacitance of the filter connected to the
dc source.

Vdc Voltage of the dc source.
ies Injecting current of the ESS.
z Internal state vector.
P̂ Estimation of the power of the CPLs.
Lo Gain matrix.
s Auxiliary vector.
X Augmented state vector of the dc MG.
xk State vector in a discrete-time representa-

tion.
yk Output vector in a discrete-time represen-

tation.
hi The ith normalized membership function.
Ai, Bi, Ei, Ci Local TS fuzzy matrices.
Ah, Bh, Eh , Ch Nonlinear TS fuzzy matrices.
ŷk |j Output prediction at sampling instant k

based on the information up to the sam-
pling instant j.

J Cost function.
W Future reference of the system.
Θ, Δ Adaptive matrices of the MPC.
U Sequence of the future control input

vector.

I. INTRODUCTION

AN MG is an electrical grid unit that is able to generate
power, distribute it through a network, as well as control

and monitor the distributed power to connected loads. MGs can
operate in both grid-connected and islanded modes [1]–[3]. DC
MGs are more suitable than ac MGs when it comes to provid-
ing power to dc loads, as well as integrating renewable energy
sources and ESSs [4]. The advantages and challenges of dc MGs
are described in [5]. DC MGs usually include several converters
to ensure that the power requirements of the sources and loads
are met. However, experience shows that tightly regulated dc
converters connected to the loads make them behave as CPLs.
The negative incremental impedance characteristics of CPLs
may cause system instability and degradation. Therefore, mini-
mizing the destabilizing effect of the CPLs is a requirement to
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control the dc MG efficiently. The nonlinear nature of dc MGs
with CPLs necessitates using nonlinear control strategies to mit-
igate undesired effects of CPLs [6]–[8], and to determine stabil-
ity requirements [9]. In [6], a linear state-feedback controller is
designed to ensure system stability. Then, the injecting power is
tuned based on the obtained control law. In [7], a linear system
is first obtained by means of a linearizing state feedback. Then, a
proportional-derivative controller is utilized for pole placement.
In [8], a diffeomorphism change of variable is presented to facil-
itate applying a backstepping controller which depends on the
second time derivative of the desired reference. The main draw-
back of [5] and [6] is that derivative terms appear in their control
laws, which amplifies noises. Hence, these approaches are un-
able to completely cancel the CPL dynamics in the presence of
noise [9]. In [10], Lipchitz techniques are deployed to obtain
a quasi-linear system from the nonlinear CPL dynamics. Then,
the obtained system is controlled by a robust linear controller. A
common assumption in the aforementioned approaches is that
they all assume ideal CPLs. However, in practical applications,
the MGs feed uncertain and/or time-varying CPLs, which are
known as non-ideal CPLs. A few research works have studied
the non-ideal CPLs effect in the stability analysis [11]–[13]. In
[11], by constructing a linear fractional transformation of an
uncertain MG, a μ-synthesis is used to calculate the maximum
upper bound of system uncertainties to guarantee system stabil-
ity. In [12], sufficient stability conditions are derived in terms
of linear matrix inequalities (LMIs) under the assumption that
the unknown powers of CPLs are bounded by some pre-given
limits. Authors in [13] have proposed a sliding mode controller
to stabilize an MG containing uncertain CPLs by employing an
energy storage unit. Even though authors in [11]–[13] investi-
gate the stability analysis and provide robust controller designs,
they all assume that the uncertainty in the power load is bounded
by a known limit. In order to overcome the considered limit on
this uncertainty, instantaneous power estimation of the time-
varying uncertain CPLs is necessary. The two main approaches
for unknown parameter estimation are deterministic observers
(DOB) and stochastic estimators. Even though stochastic esti-
mators, such as Kalman filtering and its derivatives, are proved
to be tolerant against process and measurement noises, they do
not guarantee that state estimates actually converge to the true
values. In contrast, DOBs guarantee the convergence of state
estimations to the vicinity of actual states [14]. DOBs treat the
instantaneous power of the CPL as an unknown disturbance. It is
estimated by modifying the estimation using the difference be-
tween the estimated output and the output of a nominal model.
The extension of the DOB for nonlinear systems is a NDOB
[15]. A comprehensive review on DOBs and NDOBs can be
found in [16]. Thereafter, to compensate for the CPL undesired
effect, an online adaptive controller is needed to regulate the
injecting current of the ESS complying with the CPL estimated
power. MPC is an effective control strategy that predicts the
future behavior of a system over a specific prediction horizon
[17], [18]. The MPC’s control law is obtained by optimizing
a cost function over the prediction horizon at each time step.
The online calculation can be carried out by quadratic optimiza-
tion or other numerical techniques such as LMI solvers [19].

Fig. 1. Illustration of the used DC MG in electric aircraft, navy ships,
automotive, etc.

Nonlinear MPC techniques can be formulated in terms of LMIs
by considering TS fuzzy model representations [19]–[21].

In this paper, a novel adaptive controller is employed to stabi-
lize a dc MG connected to an uncertain time-varying CPL. The
proposed approach first utilizes an NDOB to estimate the instan-
taneous power of the CPL. The estimated power is then used
in a TS fuzzy model-based MPC to optimally modify the ESS
injection current. The proposed approach is robust against the
power variations in the non-ideal or time-varying CPLs and it
can effectively stabilize the dc MG within a wide range of varia-
tions of the power. Comparing with the state-of-the-art methods
in which a robust viewpoint to handle the non-ideal CPLs is
utilized, the proposed approach presents an adaptive scheme,
which yields a better transient performance and less battery
power consumption. The merits of the proposed approach are
verified by experiments.

This paper is organized as follows: in Section II, the overall
nonlinear state-space model of the studied dc MG is presented.
In Section II, the proposed nonlinear power observer along with
a proof of convergence is discussed. In Section III, the proposed
adaptive TS-based MPC is provided and the value of the inject-
ing current is systematically designed. Then, in Section IV, the
experimental results are given to illustrate the effectiveness of
the proposed approach in practice. Finally, Section V concludes
this paper.

II. DC MG DYNAMICS

The considered dc MG, which contains several CPLs, is
shown in Fig. 1, and its simplified illustration is shown in Fig. 4.
To derive the overall system dynamic, initially, one CPL and
one source are studied.

The jth CPL subsystem and the source subsystem in Fig. 1
are shown in Figs. 2 and 3, respectively.

The dynamic equation of the jth CPL subsystem is obtained
as [22]

⎧
⎪⎨

⎪⎩

i̇L,j = −rL,j

Lj
iL,j − 1

L
vC,j +

1
Lj

Vdc

v̇C,j =
1
Cj

iL,j − 1
Cj

Pj

vc,j

(1)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VAFAMAND et al.: ADAPTIVE TS FUZZY-BASED MPC FOR DC MICROGRIDS WITH DYNAMIC CPLs 3

Fig. 2. Simplification of the jth source and power converter load
as a CPL.

Fig. 3. Simplification of the ESS.

Fig. 4. Simplified illustration of the DC MG shown in Fig. 1 with
Q CPLs.

where Pj is the power of the jth CPL. Also, the source dynamics
can be written as [3]

⎧
⎪⎨

⎪⎩

i̇L,s = − rs

Ls
iL,s − 1

Ls
vC,s +

1
Ls

Vdc

v̇C,s =
1
Cs

iL,s − 1
Cs

vC,s − 1
Cs

ies

(2)

where ies is the ESS injection current. The dynamic equations of
the overall MG, which consist of multiple CPLs and energy stor-
ages connected to the source as shown in Fig. 4, can be obtained
by extending the dynamic equations calculation procedure for
the MG with one CPL and one source. As is evident from Fig. 4,
the overall MG system can be decoupled into Q + 1 subsystems
(i.e., Q CPLs and one source).

The state-space equations of the CPLs (1, . . . , Q) are of the
form [23]

{
ẋj = Ajxj + djPj + Ajsxs

yj = xj
(3)

where xj = [iL,j vC,j ]T is the CPL state vector and

Aj =

⎡

⎢
⎢
⎣

−rL,j

Lj
− 1

Lj

1
Cj

0

⎤

⎥
⎥
⎦ , dj =

⎡

⎢
⎣

0

−1
Cjvc,j

⎤

⎥
⎦ , Ajs =

⎡

⎣
0

1
Lj

0 0

⎤

⎦ .

(4)
The state-space equations of the source subsystem can be

written as
{

ẋs = Asxs + bsVdc + beies + ΣQ
j=1Acnxj

ys = xs
(5)

where xs = [iL,s vC,s ]T is the source state vector and

As =

⎡

⎢
⎣

− rs

Ls
− 1

Ls
1
Cs

0

⎤

⎥
⎦ , Acn =

⎡

⎣

0 0

−1
Cs

0

⎤

⎦ ,

bs =
[

1
Ls

0
]T

, bes =
[

0 − 1
Cs

]T

. (6)

By augmenting the CPLs and the sources state vectors, the
state-space equation of the overall dc MG is obtained [10]

Ẋ = ĀX + D̄P + Besies + BsVdc (7)

where X = [xT
1 xT

2 . . . xT
Q xT

s ]T , P = [P1 , . . . , PQ ]T ,
and

Ā =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1 0 . . . 0 A1s

0 A2 · · · 0 A2s

...
...

. . .
...

...
0 0 · · · AQ AQs

Acn Acn · · · Acn As

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

D̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

d1 0 . . . 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dQ

0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Bes =

⎡

⎢
⎢
⎢
⎣

0
...
0
bes

⎤

⎥
⎥
⎥
⎦

, Bs =

⎡

⎢
⎢
⎢
⎣

0
...
0
bs

⎤

⎥
⎥
⎥
⎦

.

(8)

In the following, the goal is to propose a systematic approach
to estimate the unknown power of the CPLs (i.e., P ).

III. NONLINEAR OBSERVER

In this section, the goal is to design a nonlinear observer to
estimate the instantaneous value of the CPLs powers. To achieve
this, the unknown CPL power vector is treated as a disturbance
and a NDOB for this vector is proposed. Generally, the ratio-
nale behind a disturbance observer is to calculate the unknown
disturbance by comparing the actual value of the system infor-
mation with that of the nominal system. The difference between
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these values is assumed to be caused by the effect of the distur-
bance on the actual system output. Particularly, for the dc MGs,
the variation of the CPLs powers affects the voltage and current
of the MG. Therefore, by evaluating the variations in the MG
states, one can estimate the variations and the exact value of the
CPLs powers.

Consider the dc MG system in (7), which contains the non-
linear term D̄. For such a system, the following power observer
structure is proposed:

ż = −Lo

(
D̄z + ĀX + Besies + BsVdc + D̄s

)

P̂ = z + s (9)

where z is the internal state vector of the power observer, P̂ is
the estimated power of the CPLs, Lo is the observer gain matrix,
and s is an auxiliary vector. The performance of the observer
and the convergence of the estimates to the true values are
highly dependent on the selection of Lo and s. The following
theorem shows how to choose these parameters to guarantee
convergence.

Theorem 1: The unknown power vector in (7) can be esti-
mated by the proposed nonlinear observer (9) with the following
parameters:

s = LoX (10)

Lo = −α
(
D̄T D̄

)−1
D̄T . (11)

Furthermore, these parameters guarantee the stability of the
estimation error.

Proof: Define the power estimation error as e = P̂ − P .
Taking the time derivative of the estimation error and using the
system and observer equations (7) and (9) provides

ė = ˙̂
P − Ṗ

= ż + ṡ − Ṗ

= −Lo

(
D̄z + ĀX + Besies + BsVdc + D̄s

)
+ ṡ − Ṗ .

(12)

Since s = P̂ − z, one has

ė = −Lo

(
D̄z + ĀX + Besies + BsVdc

+ D̄
(
P̂ − z

) )
+ ṡ − Ṗ

= −Lo

(
ĀX + Besies + BsVdc + D̄P̂

)
+ ṡ − Ṗ . (13)

On the other hand, from (7) one has

ĀX + Besies + BsVdc = Ẋ − D̄P. (14)

Consequently,

ė = −Lo

(
Ẋ − D̄P + D̄P̂

)
+ ṡ − Ṗ

= −LoD̄e − LoẊ + ṡ − Ṗ . (15)

Considering (10), (15) is continued as

ė = −LoD̄e − Ṗ . (16)

In the following, the goal is to select the gain matrix, Lo ,
so that the stability of (16) is assured. Consider the following
quadratic Lyapunov candidate:

V =
1
2
eT e. (17)

The time derivate of (17) along the trajectory (16) is

V̇ = ėT e

= −eT D̄T LT
o e − Ṗ T e. (18)

Using (11) then yields

V̇ = −αeT e − Ṗ T e

≤ −α‖e‖2 +
∥
∥
∥Ṗ

∥
∥
∥ ‖e‖

= −‖e‖
(
α ‖e‖ −

∥
∥
∥Ṗ

∥
∥
∥

)
. (19)

For the region Ω(e) = {e(t)| ‖e‖ > ‖Ṗ ‖
α }, one concludes that

V̇ < 0. Therefore, for a bounded ‖Ṗ‖, the trajectory of the error

will enter into the bounded region Ω̄(e) = {e(t)| ‖e‖ ≤ ‖Ṗ ‖
α }

as t → ∞ [24]. Therefore, the error will be bounded. Moreover,
(19) can be continued as

V̇ ≤ −α‖e‖2 +
∥
∥
∥Ṗ

∥
∥
∥ ‖e‖

= −2αV + Γ (t) (20)

where Γ(t) is bounded, because ‖Ṗ‖ and ‖e‖ are bounded.
Solving the dynamic equation (20) provides [25]

V (t) ≤ e−2αtV (0) +
∫ t

0
e−2ατ Γ (t − τ) dτ. (21)

Considering the fact that the estimation error is bounded, (21)
is continued as

V (t) ≤ e−2αtV (0) + ‖Γ (t)‖
∫ t

0
e−2ατ dτ

= e−2αtV (0) +
1
2α

‖Γ (t)‖ (
1 − e−2αt

)

≤ e−2αtV (0) +
1
2α

‖Γ (t)‖ . (22)

Substituting (17) into (22) results in

‖e (t)‖2 ≤ e−2αt‖e (0)‖2 +
1
α
‖Γ (t)‖ (23)

therefore,

‖e (t)‖ ≤ e−αt ‖e (0)‖ +

√
1
α
‖Γ (t)‖. (24)

As can be seen from (24), when t → ∞, the ultimate bound
of the error will be

lim
t→∞‖e (t)‖ ≤ max

0<t<∞

√
1
α
‖Γ (t)‖. (25)

Consequently, the estimation error is bounded. Note that the
term Γ(t) is dependent on Ṗ . Thus, for the constant loads and
slowly varying load powers, the upper bound of the error is
small, and thereby, the proof is completed.
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IV. NONLINEAR TS-BASED MPC CONTROLLER

This section deals with the design of a nonlinear MPC scheme
based on the TS fuzzy model. The aggregation of the MPC
technique with fuzzy methods [26]–[29] brings about a simple
but effective control strategy. In this section, the designing of a
nonlinear MPC controller based on the TS fuzzy model of the
system is provided. Applying the so-called sector nonlinearity
approach [25] and Euler discretizing method [30], the dynamic
equation (7) can be represented by the following discrete-time
TS fuzzy system [2]:

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 =
∑r

i=1 hiAixk +
∑r

i=1 hiBiuk +
∑r

i=1 hiEi

= Ahxk + Bhuk + Eh

yk =
∑r

i=1 hiCixk = Chxk .
(26)

The considered cost function is a standard finite-horizon lin-
ear quadratic cost

J (Np,Nu ) =
Np∑

j=1

[
ŷk+j |k − wk+j

]2 +
Nu∑

j=1

u2
k+j−1 (27)

where Np and Nu are the prediction and control horizons,
respectively, ŷk+j |k is the maximum likelihood j-step ahead
prediction of the output, and w(k + j) is the future reference.
Output and input vectors are defined as

Y =
[
ŷk+1|k ŷk+2|k . . . ŷk+Np |k

]T

U = [uk uk+1 . . . uk+Nu −1 ] T . (28)

To obtain the control input, uk+j−1 , it is required to minimize
the cost function J given in (27) with respect to U . This can
be done by substituting the TS fuzzy model (26) in the cost
function. Then, the values of the predicted outputs, ŷk+j |k , are
calculated as a function of past values of the system charac-
teristics and future control signals. The computed predictions
are as

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ChAh

ChA2
h

...

ChA
Np

h

⎤

⎥
⎥
⎥
⎥
⎥
⎦

xk +

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ChEh

Ch (I + Ah) Eh

...
∑Np −1

i=0 ChAi
hEh

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ChBh . . . 0

ChAhBh . . . 0
...

. . .
...

ChA
Np −1
h Bh . . . ChA

Np −Nu

h Bh

⎤

⎥
⎥
⎥
⎥
⎥
⎦

U. (29)

Then, (29) can be rewritten in the vector form

Y = Ψ + ΘU (30)

where

Ψ =

⎡

⎢
⎢
⎢
⎣

ChAh

ChA2
h

...
ChA

Np

h

⎤

⎥
⎥
⎥
⎦

xk +

⎡

⎢
⎢
⎢
⎣

ChEh

Ch (I + Ah) Eh

...
∑Np −1

i=0 ChAi
hEh

⎤

⎥
⎥
⎥
⎦

Θ =

⎡

⎢
⎢
⎢
⎣

ChBh . . . 0
ChAhBh . . . 0

...
. . .

...
ChA

Np −1
h Bh . . . ChA

Np −Nu

h Bh

⎤

⎥
⎥
⎥
⎦

.

The cost function (27) can similarly be presented in the vector
form as follows:

J (Np,Nu ) = (Y − W )T (Y − W ) + UT U (31)

where

W = [w (k + 1) w (k + 2) . . . w (k + Np)]
T . (32)

Substituting (30) into (31) yields the quadratic form

J (Np,Nu ) = UT HU + KU + UT KT + G (33)

where

H = ΘT Θ ≥ 0; K = (Ψ − W )T Θ;

G = (Ψ − W )T (Ψ − W ) .

Minimizing J with respect to U is a quadratic problem. Set-
ting the derivative of (33) with respect to the vector U equal to
zero, the analytical solution can be obtained as

U =
(
ΘT Θ

)−1
ΘT (Ψ − W ) . (34)

Remark 1. (Online implementation of the proposed ap-
proach): the proposed adaptive controller comprises two parts:
a nonlinear observer to estimate the instantaneous value of the
power of the uncertain CPLs and an adaptive MPC to optimally
design the value of the injecting current of the energy storage
unit. Although the mathematical derivations of these two parts
are derived independently, they must be performed simultane-
ously to implement the overall controller. In the following, the
detailed algorithm of the proposed controller is summarized.

1) Choose an initial guess for the CPLs powers P̂ (0).
2) Use P̂ = z + s in (9) and (10) to compute z(0).
3) Measure the currents and voltages (i.e., X) of the dc MG.
4) Update the CPL power estimation by (9).
5) Construct Θ, Δ, and Ψ based on the estimations.
6) Compute the injecting current based on (34).
7) Apply the value of the injecting current to the dc MG.
8) Go to line 3.
Steps 1 and 2 are performed offline in order to obtain ini-

tial values for the observer, while Steps 3–8 describe the online
execution of updating the observer and computation of the con-
trol signal.

Remark 2. (Advantages of the proposed approach): the
advantages of the proposed nonlinear controller to control the dc
MGs containing uncertain time-varying CPLs over the existing
controllers is as follows:
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TABLE I
PARAMETERS FOR DC MG WITH ONE CPL

Fig. 5. Actual and estimation of the power of the CPL.

1) Compared to the previously mentioned backstepping [8]
and sliding mode control designs [31], the proposed ap-
proach does not need any time derivatives of states, which
makes it more robust against noises. Also, compared to
the feedback linearization method [7], the proposed ap-
proach is more robust against the system uncertainties,
because no nonlinearity cancelation is needed. Moreover,
compared to the linear controllers [10], the proposed ap-
proach brings about a global stabilization.

2) Although some papers try to handle the non-ideal CPLs
as uncertainties with a pre-given upper bound and employ
a robust scheme [11]–[13], these approaches have some
drawbacks, as follows: a) the design procedure of these
approaches is dependent on priori bounds for the powers
of the CPLs. Therefore, if the upper bound changes, one
needs to redesign the controller; b) if the CPL power ex-
ceeds the upper limits, the existing robust controllers are
unable to stabilize the system, which means that to com-
ply with safety issues, one may need to choose very con-
servative upper limits. On the other hand, since a robust
controller is designed for the worst case, choosing higher
values for the bounds increases the energy consumption
and results in a higher injection current. However, the
proposed adaptive controller avoids the mentioned draw-
backs by estimating the instantaneous values of the powers
instead of considering priori upper bounds. Since the in-
jection current at each instant is designed based on the
estimated instantaneous power, a lower power will, in
general, be injected to the dc MG.

V. EXPERIMENTAL RESULTS

The MG parameters used in the experiments are listed in
Table I. The control algorithm is implemented in a DSpace Mi-
croLabBox with DS1202 Power PC Dual-Core 2 GHz processor

Fig. 6. DC MG states and control input.

board and DS1302 I/O board with the sampling time 100μs. To
investigate the robustness and fast transient performance of the
proposed approach, it is tested on an MG with parameters given
in Table I and the results are compared with [7], [8], and [10].

Scenario 1: consider an MG with only one CPL whose power
is within the stability range. Thereby, the value of the injection
current is set as zero. For such a system, the effectiveness of
the proposed nonlinear power observer is investigated. Also,
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the effect of the parameter α in the observer gain matrix (11) is
studied. The actual value of the CPL power and its estimation
obtained by the observer (9) with parameters (10) and (11) are
depicted in Fig. 5. Three observer gain matrices are considered
by selecting the three values α = 5, 8, 15 and the CPL power is
estimated based on each gain.

As can be seen in Fig. 5, the proposed nonlinear dynamic
observer can effectively estimate the unknown power of the
CPL. By selecting a higher value of α, the convergence speed is
increased by the expense of increasing overshoot in estimations.
For instance, at the starting time of the simulations, since the
initial condition for the observer is far away from the actual
value of the CPL power, an overshoot can be observed in the
estimation when α = 15. Meanwhile, the settling time (using
a 5% criterion) is about 0.35 s. Conversely, if α is chosen too
small, the convergence time may be large. For α = 8 and 5,
the settling time is about 0.57 and 0.73 s, respectively. Thus,
one needs to consider a trade-off between the overshoot and
convergence time.

Scenario 2: in this scenario, the proposed adaptive TS fuzzy-
based MPC is utilized to stabilize an MG with non-ideal CPL
with unknown and varying power. The designs presented in
[7], [8], and [10] cannot stabilize the system when the value
of the power is not known a priori. In addition, the mentioned
approaches cannot modify the value of the injecting current
even if the actual value of the time-varying power of the CPL
is available. Based on the transient performance analysis in
Scenario 1, the value of α in (11) is set as α = 8 and the power
of the CPLs is estimated. Then, the adaptive fuzzy MPC deploys
the information of the MG and the estimated power of the CPL
to optimally design the value of the injecting current to stabilize
the system. The voltages and currents of the CPL’s and source’s
filters are illustrated in Fig. 6. Fig. 6 illustrates the efficiency
of the presented approach in stabilizing the overall system and
compensating for the changes in load power demand.

VI. CONCLUSION

In this paper, a novel TS fuzzy-based adaptive controller is
proposed to modify the ESS current according to the changes in
a CPL power included in a dc MG. The unknown time-varying
CPLs powers are estimated by a modified NDOB. Experimental
results show that the proposed nonlinear observer can effectively
estimate the value of the CPL power with a low overshoot and
a high convergence speed. In addition, the proposed adaptive
controller is robust against CPL power variations; it can stabi-
lize the overall dc MG very fast and avoid oscillations in the
system states. In future work, one might consider modifying the
proposed power observer to simultaneously estimate the CPLs
powers demand and the other system parameters. Also, improv-
ing the convergence speed of the estimations is suggested to
enhance the transient performance of the closed-loop dc MG.
Furthermore, extending the results of this paper to other topolo-
gies of dc MGs with battery charging and discharging and in-
corporating with a droop control are considered to be of great
importance.
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