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An Empirical Air-to-Ground Channel Model Based
on Passive Measurements in LTE

Xuesong Cai, José Rodríguez-Piñeiro, Xuefeng Yin, Nanxin Wang, Bo Ai, Gert Frølund Pedersen,
Antonio Pérez Yuste, and Li Tian

Abstract—In this paper, a recently conducted measurement
campaign for unmanned-aerial-vehicle (UAV) channels is intro-
duced. The downlink signals of an in-service long-time-evolution
(LTE) network which is deployed in a suburban scenario were
acquired. Five horizontal and five vertical flight routes were
considered. The channel impulse responses (CIRs) are extracted
from the received data by exploiting the cell specific signals
(CRSs), and the underlying physical propagation mechanisms
are interpreted by exploiting the propagation graph modeling
(GM) approach. Based on the CIRs, the parameters of multipath
components (MPCs) are estimated by using a high-resolution
algorithm derived according to the space-alternating generalized
expectation-maximization (SAGE) principle. Based on the SAGE
results, channel characteristics including the path loss, shadow
fading, fast fading, delay spread and Doppler frequency spread
are thoroughly investigated for different heights and horizontal
distances, which constitute a stochastic model.

Index terms— Unmanned aerial vehicle, air-to-ground chan-
nel, propagation graph, fading behaviours, and channel disper-
sions.

I. I NTRODUCTION

Historically, unmanned aerial vehicles (UAVs) were mainly
used for military operations in hostile environments for safety
reasons [1], [2]. Due to the decrease in the cost and size,
UAVs are being more accessible for general-purpose civil and
commercial applications, such as video surveillance, weather
monitoring, search and rescue operations, precision farming,
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wildlife monitoring, and transportation, among others [3].
The network service restoration after infrastructure damage
in natural disasters or base station (BS) relaying in crowded
areas (one of the key scenarios addressed by fifth generation
(5G) communication systems [1], [4]) also fit well [5], [6].

Different communication links can be involved in the afore-
mentioned applications of UAVs, such as:

• Air-to-ground (A2G) communication channel between a
ground BS and the UAV. This communication channel can
serve to many different purposes, such as to give support
to control and non-payload communications (CNPC) or
communication and control link (C2) (see [7]–[10]), to
serve data traffic for UAV-based applications (e.g., trans-
mitting video surveillance data from UAVs to ground)
or to relay traffic of a BS. Hence, the requirements
in terms of availability, quality of service, latency or
throughput can be very different. Moreover, the nature
of the propagation channel is very different from that of
historically considered A2G links, e.g., the ones for civil
aviation, with elevated ground site antennas in open areas
and narrowband signals with very high transmit signal
power and short duty cycles with no continuous reception
required [11].

• A2G communication channel between a mobile terminal
at ground and the UAV. This communication channel
would serve mainly for station relaying in crowded ar-
eas or service restoration after infrastructure damage in
natural disasters.

• Air-to-air (A2A) communication channel between fly-
ing UAVs. Communications between flying UAVs make
sense under the scenarios of relaying communica-
tions, cooperative air control strategies between UAVs,
collision-avoidance systems, etc.

It is noteworthy that many potential future applications for
UAVs would simultaneously rely on several of the aforemen-
tioned communication channels. As an example, in [6], an
aerial-ground cooperative vehicular networking architecture is
proposed, considering both A2A and A2G communications.

A. Related work

Efforts have been taken in the literature to understand the
A2G channel characteristics, which can be categorized into
simulation-based ones and measurement-based ones, respec-
tively. In the following paragraphs related papers are consid-
ered, indicating which studies are based on simulations or
measurements. The main aspects of the considered research
are specified.
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A2G channel characterization by simulations

In [12], the authors studied the LTE connectivity for small and
low altitude UAVs at different heights through simulations.
In [13] new path loss models for A2G channels in an urban
environment were proposed for frequencies between200MHz
and 5GHz. The investigations in [14], [15] exploited the
ray-tracing tools for characterizing the large-scale channel
parameters. The geometry-based stochastic channel modeling
approach was also applied in [16], [17].

A2G channel characterization by measurements

Low altitude (below 300 m) A2G channels have been inves-
tigated based on measurements in [18]–[21]. The researches
in [18], [19] exploited the cellular networks at the frequency
bands at around 800 MHz. Narrowband characteristics, i.e.,
path loss and shadow fading were considered. It is noteworthy
that the authors in [19] characterized the path loss for the UAV
links as an excess value to the path loss that would correspond
to a terrestrial user. The proposed path loss expression depends
on the angle of the UAV with respect to the BS, which
is a composite effect of the propagation channel and the
empirical configuration of BS antenna. In [20], statistical
models characterizing large-scale fading, small-scale fading
and multipath propagation were proposed at the frequency
range between3.1GHz and5.3GHz. The blockage of tree
foliage was also investigated. In [21], modeling of path loss
exponents for A2G links in open field and campus scenarios
was conducted. The effects of the UAV orientations were also
observed. Regarding the high altitude (above 300 m) A2G
channel characterization, the richest set of recent measure-
ments can be found in [11], [22]–[29], where the L and C
bands were considered. Channel parameters such as path loss,
delay spread, stationarity distance, K-factor and interband and
spatial correlation were evaluated for different environments.
Different from the low altitude investigations, the aircraft used
in these measurements was large in size and flied up to
50 km of altitude with high speeds from70m/s to112m/s. In
addition, the interest in characterizing multiple-input-multiple-
output (MIMO) A2G channels was also appreciated in [30]–
[32].

B. Motivation

In many countries, the UAVs are limited in visual line-of-
sight (LoS) with maximum heights at about100m and150m
[7], [18]. Under these constraints, cellular networks pose
themselves as natural candidates to give support to CNPC or
C2 communications as well as to serve data traffic for UAV-
based applications, which has attracted significant research
attentions. It makes sense to ask whether an off-the-shelf
commercial cellular network could be applied in this scenario.
The 3rd Generation Partnership Project (3GPP) has approved
corresponding study item [34] and working item [35] to
investigate the feasibility of serving aerial vehicles using long-
time-evolution (LTE) network deployments with BS antennas
targeting terrestrial coverage.

The A2G communication channel between a ground BS and

the UAV is very different from the ones conventionally con-
sidered for terrestrial communication systems. Intuitively, the
channel exhibits more clearance (more LoS-like) compared
to that for ground users [36] (which could give special
attention to millimeter wave (mmWave) bands for future high
throughput UAV-based applications [15], [37]). However, the
channel clearance implies a higher level of interference from
neighboring BSs [38], and the uplink communications from
the UAV also affect neighboring BSs, distorting ground mobile
users [12] and other UAVs nearby in the UAV-swarming cases.
Moreover, the BS antennas of commercial cellular networks
are usually with directional beams and tilted downwards tar-
geting terrestrial coverage, which has significant influence on
the A2G channel characterization in reality. A comprehensive
understanding of the A2G channel is essential for facilitating
the design and performance evaluation of wireless techniques
for UAV applications, e.g., power control [39], interference
cancellation [40], etc. Different channel modeling approaches
are required, e.g., considering the influence of higher user-
equipment heights that are not typical in terrestrial communi-
cations.

Table I summarizes important measurement campaigns for
UAV A2G channels. It can be concluded that although there
is an increasing interest on the use of UAVs for civil and
commercial applications, not many researches focus on the
characterization for the A2G channel in scenarios similar to
those being expected in most practical applications and UAV
regulations, i.e., with small UAVs and low heights. Most
of the research activities are related to high altitude A2G
channels with large UAVs (e.g., aircrafts) and high speeds.
For low altitude A2G channel investigations, it is deficient
in characterizing the wideband characteristics. Comprehen-
sive investigation for the low altitude A2G channel between
individual BSs of an, e.g., LTE network and an UAV with
typical size is still in necessity. Therefore, in this contribution
by exploiting a commercial LTE system in operation, the
characteristics of the A2G channel in a realistic LTE network
are thoroughly investigated in a suburban environment in
Shanghai, China.

C. Main Contribution and Novelties

Motivated by the above background and research gaps, a com-
prehensive modeling work for the low altitude A2G channel is
conducted in this paper. The main contributions and novelties
are:

• A passive channel sounding approach was applied. The
downlink signals of a commercial LTE network1 were
collected and used for extracting the channel impulse
responses (CIRs). The measurements can be conducted
conveniently by using the passive sounding approach.
The channel characteristics own rigid fidelity to those
experienced by the user equipments on board UAV,
since the configurations including the carrier frequency,
bandwidth, antenna, UAV type, etc. are exactly the ones

1Investigations that exploit the downlink signals of Universal Mobile
Telecommunications Systems for passive sounding can be found in [41], [42].
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Measurements
Carrier

frequency
UAV
type Altitude [m] Antenna

Frequency
selectivity Environment

Channel
characterisitics

Ref. [18] 800 MHz small UAV < 120 SISO narrowband LTE network path loss, shadowing
Ref. [19] 850 MHz small UAV < 120 SISO narrowband suburban path loss

Ref. [20] 3.1 GHz - 5.3 GHz small UAV < 16 SISO wideband open, suburban
large-scale fading, small-scale fading,

multipath, foliage blockage
Ref. [21] 2.4 GHz small UAV < 120 SISO narrowband open, campus path loss, antenna orientation

Refs. [11], [22]–[29] 965 MHz, 5 GHz aircraft 500 - 2000 SISO wideband
over-water, hilly,

mountain, suburban
path loss, delay spread,

stationarity, K-factor, spatial correlation

Ref. [33] 970 MHz aircraft 3000 - 9000 SISO wideband
en-route cruise,

climb-and-descending,
takeoff-and-landing

power delay profile,
Doppler delay profile

Ref. [30] 915 MHz small UAV 200 MIMO wideband suburban
delay spread,

spatial correlation

Ref. [31] 2.4 GHz small UAV 75 MIMO narrowband -
diversity,

antenna correlation

Table I: Important A2G UAV channel measurement campaigns.

applied in a commercial LTE network. Moreover, the
18 MHz bandwidth of the LTE downlink signals allows
analyzing not only the narrowband characteristics, but
also the wideband behaviours of the A2G channels,
e.g., the joint channel dispersions in delay and Doppler
frequency domains.

• The measurement campaign included five horizontal
flights at different heights and five vertical flights with
different horizontal distances, in a suburban scenario in
Shanghai, China. Delays, Doppler frequencies, and com-
plex attenuations of multipath components (MPCs) were
estimated. The channel behaviours and corresponding
physical mechanisms were investigated carefully at MPC
level. Characteristics including path loss, shadow fading,
fast fading, delay spread and Doppler frequency spread
are comprehensively investigated for different flights. The
dependencies of the channel characteristics on the height
and the horizontal distance are studied in a systematical
way. The resulted channel model would be useful to
investigate the inter-A2G channel interference among
BSs.

II. M EASUREMENTS AND RAW DATA PROCESSING

In this section, the measurement equipment, scenario and the
experiment specifications, including the flight routes, carrier
frequency and bandwidth of sounding signals, receiver antenna
etc. are described. Furthermore, the procedures for extracting
CIRs from the received raw data and then estimating the
parameters of MPCs based on the CIRs are elaborated.

A. Measurement equipment

Fig. 1 illustrates a diagram of the equipment for recording
the LTE downlink signals in the measurement campaign. It
consists of two parts, i.e., the air part and the ground part.
The air part was loaded on the UAV as illustrated in Fig. 2.
It contains the following components: a quasi-omnidirectional
packaged discone antenna that works in 1-8 GHz frequency
band, a Universal Software Radio Peripheral (USRP) device
of type N210 [43] which can be programmed to receive real-
time signals at specific carrier frequency and with specific
sampling rate (or bandwidth), an accurate 10 MHz reference

GPS disciplined oscillator

Ref in
USRP Small computer Router

Discone antenna

GPS antenna

Computer Router

Air part, loaded on the UAV

Ground part
on the ground

Transmission cable
Ethernet cable

connect through local area network

Controlling part

Receiver part

Ref out

Fig. 1: A diagram of the equipment used in the measurement
campaign.

generated by a Global Positioning System (GPS) disciplined
oscillator and then provided to the USRP device, a small
computer base unit that controls the USRP device and stores
the received data, and a commercial wireless fidelity (WiFi)
router. The radiation pattern of the receiver antenna, i.e., the
quasi-omnidirectional discone antenna onboard the UAV was
measured at the 2.585 GHz and is illustrated in Fig. 3. It can be
observed from Fig. 3 that the antenna gain changes slightly
in the whole azimuth and the elevation between−60◦ and
60◦. The ground part contains a laptop computer and another
commercial WiFi router. By establishing a local area network
using the two commercial routers, it is easy and prompt using
the ground laptop to control the equipment onboard UAV to
receive LTE signals. In addition, the routers worked at the
frequency band of 2.4 GHz causing no interference to the
LTE signals.

B. Scenario and specifications

The measurement was conducted in a suburban scenario in
Jiading Campus, Tongji University, Shanghai. Figs. 4 and
5 illustrate the satellite view of the measurement scenario
and a photo taken during the measurement, respectively. The
scenario is characterized by trees, rivers, buildings with four to
seven stories etc. The LTE BS is located at the asterisk in Fig.

3
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4
8

cm
95 cm

Packaged discone antenna

Fig. 2: The six-wings UAV used in the measurement campaign.
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Fig. 3: The radiation pattern of the discone antenna measured
at 2.585 GHz.

4 with a height about 20 meters. Five horizontal round-trip
flights at the heights of 15, 30, 50, 75, and 100 meters were
conducted respectively as indicated by the horizontal lines in
Fig. 4. The round-trip distance was 1000 meters (500 × 2)
and the flying speed was about 5.6 m/s2. We also conducted
five vertical flights as indicated by the vertical lines in Fig.
4. The UAV ascended from the ground to the height of 300
meters at positions 1 to 5, respectively, with a speed of 2.5
m/s. Furthermore, the horizontal distances from these positions
to the BS antenna were 100, 200, 300, 400, and 500 meters,
respectively. The downlink signals transmitted by the LTE BS
were acquired at the carrier frequency of 2.585 GHz and with a
complex sampling rate of 25 MHz, and the signal bandwidth
was 18 MHz. It is noteworthy that the receiver antenna as
illustrated in Fig. 3 is chosen to minimize the effect of its
radiation pattern to the channel characteristics.

C. Raw data processing

In the LTE standard, there are two types of frame structure,
i.e., frequency division duplex (FDD) and time division duplex
(TDD) frame structures. Generally, time duration of one frame
is 10 ms which consists of 20 time slots. One slot contains

2The flying speed has a constant value of about 6 m/s except for the phases
of starting the movement, braking or changing the direction that occur at the
edges of the horizontal lines. Taking into account all the phases, the average
speed value is 5.6 m/s.

1

2

3

4

5

BS

Building A

Building B

Fig. 4: Satellite view of the measurement scenario and flight
routes.

UAV

BS

Fig. 5: A photo taken during the measurement.

6 or 7 symbols, and the number depends on the cyclic
prefix (CP) length. For example, in the suburban scenario
where the delay spread is not so large, short CP is more
likely to be applied to mitigate the inter symbol interference,
which results in 7 symbols per-slot. Primary synchronization
signal (PSS), secondary synchronization signal (SSS) and cell-
specific reference signal (CRS) are transmitted on specific
symbols in every downlink frame. The exact symbols on which
the three signals are transmitted are different, however fixed
in FDD and TDD frame structures, respectively. Readers may
refer to [44] for details. In the post processing of the acquired
data (done offline), we exploit the PSS and SSS to accomplish
the time synchronization, i.e., to determine the beginning time
of a frame in the received raw data and exploit the CRS to
extract the CIRs. The considered procedures are detailed as
follows.

Step 1. Filtering:The raw data received with 25 MHz effective
bandwidth at the carrier frequency is firstly low-pass filtered
to obtain the 18 MHz baseband signalsr(t).

4
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Step 2. Primary synchronization:PSS symbol repeats with
time interval of half a frame. The location of it in the raw
data can be detected by solving the maximization problem:

(t̂0, î) = argmax
t0,i

∣

∣

∣

∣

∫ T

0

r(t)p∗i (t− t0)dt

∣

∣

∣

∣

2

, i = 0, 1, 2, (1)

where pi(t), i ∈ [0, 1, 2] consists of the three kinds of
PSS symbol without CP that are generated by the inverse
Fourier transform of the corresponding orthogonal frequency
division modulation (OFDM) resource elements as specified
in [44], T = 5 ms is the half frame duration, and(·)∗

denotes the complex conjugate of given argument. Moreover,
for realistic channels with noise, multipath fading, shadow
fading etc. that may cause the temporarily loss of signals,
multiple neighboring half-frames can be exploited as

(t̂0, î) = argmax
t0,i

1

N

N−1
∑

n=0

∣

∣

∣

∣

∫ T

0

r(t+ nT )p∗i (t− t0)dt

∣

∣

∣

∣

2

(2)

to improve the robustness of the detection for(t̂0, î), where
N denotes the the number of considered half-frames. Multiple
cells with different PSSs transmitted can be identified by
considering the dominant peaks.

Step 3. Secondary synchronization:One frame contains two
SSS symbols with time interval of a half frame. However,
they are different with an index difference of 168, i.e., the
index of the SSS symbol in the second half frame is that in
the first half frame plus 168. SSS symbol and CP mode can be
determined by solving the following maximization problem

(ĵ, k̂) = argmax
j,k

1

N

N−1
∑

n=0

∣

∣

∣

∣

∫ t̂0+tj+Ts

t̂0+tj

r(t+ 2nT )s∗k(t− t̂0 − tj)dt

∣

∣

∣

∣

2

(3)

where Ts = 1/15 ms is the duration of one SSS symbol
without CP, tj , j = [0, 1] correspond to the time intervals
between neighboring SSS symbol and PSS symbol in the same
half frame for normal and extended CPs respectively, and
sk, k ∈ [0, 1, . . . , 335] represent the 336 kinds of SSS symbols
corresponding to the detected PSS indexî. The physical cell
identity (PCI)N cell

id can be calculated as

N cell
id = î+ 3× (k̂ mod 168) (4)

where (· mod ·) denotes the remainder of the former ar-
gument divided by the latter argument. Moreover,k̂ ∈
[0, 1, . . . , 167] means that the detected SSS is in the first half
frame, otherwise the second half frame.

Step 4. CIR extraction:The CRS symbols that span the whole
baseband bandwidth in frequency domain are exploited to
extract CIRs as

h(τ, tc) = F
−1

(cr(f, tc)

cs(f, tc)

)

(5)

where cr(f, tc) is the representation in frequency domain
of the received CRS symbol at timetc, cs(f, tc) is the
representation of the correspondingly sent CRS symbol that
is generated referring to [44] with the information obtained
in previous steps, such as the beginning location of a frame,
PCI and CP mode, andF−1(·) denotes the inverse Fourier
transform of given argument. The CIR output rate is 200 per
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Fig. 6: An example PDP and the corresponding SAGE esti-
mation results.

second, i.e., the time interval between neighboring CIRs is 5
ms. Furthermore, we denoteh(τ, tc) ash(τ, t) in the sequel
for notation convenience.

By exploiting the CIR results, a high resolution algorithm is
derived based on the SAGE principle to estimate parameters,
i.e., delays, Doppler frequencies and complex amplitudes of
MPCs. In the underlying SAGE algorithm, the generic model
of the CIR is formulated as

h(τ, t) =

L(t)
∑

ℓ=1

αℓ(t)δ(τ − τℓ(t)) exp

{

j2π

∫ t

0

νℓ(t)t

}

+ n(τ, t)

(6)

where L(t) is the total number of paths that exist in the
channel snapshot at timet, αℓ(t), τℓ(t), and νℓ(t) represent
the complex amplitude, delay and Doppler frequency of the
ℓth path respectively,δ(·) denotes the Dirac delta function, and
n(τ, t) represents the noise. Readers are referred to [45] for
the details of the SAGE algorithm. It has been practically con-
cluded in [51] that the SAGE algorithm can resolve two paths
with ∆τ ' 1

5B , where∆τ andB denote the relative delay
between two paths and the signal bandwidth, respectively. In
our implementation, we consider10 consecutive CIRs, i.e., a
time duration of 50 ms as one snapshot for the channel during
which the multipath parameters are observed to be constant.
The SAGE algorithm is firstly applied with 30 paths to pre-
estimate the MPC parameters, andL(t) is then chosen as
the index of the path whose amplitude falls below the noise
level. Then the SAGE algorithm is applied again with path
numberL(t) and 15 iterations to fully extract the components.
The parameters estimated areΘ = [αℓ(t), τℓ(t), νℓ(t); ℓ =
1, . . . , L(t), t = t1, . . . , tM ] with M being the number of
snapshots. As an example, Fig. 6 illustrates a power delay
profile (PDP) for the horizontal flight at the height of 75
meters (see the concatenated PDPs (CPDPs) in Fig. 7(a) ). The
noise floor is estimated by adding 3 dB to the mean power
of tail samples in the PDP. It can be observed that the SAGE
algorithm is capable to estimate the MPCs.

5
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III. C HANNEL CHARACTERIZATION

In this section, we present the measurement results for the hor-
izontal flights and the vertical flights, which include the CPDPs
and the corresponding MPC parameters estimated by using
the SAGE algorithm. Furthermore, physical interpretation of
the UAV channels is achieved by exploiting the propagation
graph modeling (GM) approach proposed in [46], [47]. These
results shed lights on the propagation mechanisms of the UAV
channels.

A. Horizontal flights

Fig. 7(a) illustrates the CPDPs of a horizontal round-trip flight
at the height of 75 meters. The horizontal and vertical axes
represent the propagation delay and the measurement time,
respectively, and the color denotes the received power. It is
noteworthy that we cannot obtain the absolute propagation
delay in the passive sounding measurement, since the time (or
delay) synchronization elaborated in Sect. II-C is obtained rel-
ative to the path with the highest power. Thus we use the term
“relative propagation delay”. Nevertheless, the link distance is
easily calculated by exploiting the geometry information so
that the absolute propagation distances of multiple paths can
be retrieved. Similarly, we use “relative power” because the
transmitted power of BS antenna is unknown.

It can be observed from Fig. 7(a) that the variation of the
path trajectory is consistent with the flight route, i.e., the
propagation distance increased first and then decreased. It took
about 90 seconds for the UAV to fly a single journey of 500
meters. The symmetry of the channel is observed as expected.
In order to obtain further insights into the channel, the SAGE
estimation results in delay and Doppler frequency domains are
illustrated respectively in Figs. 7(b) and 7(c) for the CPDPs in
Fig. 7(a). It is obvious that the Doppler frequency trajectory is
also in accordance with the flight route. The absolute Doppler
frequency of the LoS path firstly increased as the UAV speed
increased from 0. When the UAV speed reached its maximum
and the angle between the speed and the LoS path was almost
-180◦ with the horizontal distance increasing, the absolute LoS
Doppler frequency remained almost constant for a certain time.
Then the UAV decreased its speed for turning around, which
results in decreasing absolute LoS Doppler frequency to 0 Hz.
Furthermore, rich MPCs that spread in delay and Doppler
frequency domains can be observed from 0 to 35 seconds. We
postulate that it is due to the signals interacting with the local
scatterers such as buildings A and B, trees, and the ground
(see Fig. 4). For example, by examining the orientations of
the facades of buildings A and B and the BS location, it can
be inferred that the signals interacting with the two buildings
can be effectively received by the UAV in the first 200 meters
of the horizontal route. After the UAV passed by this area, the
number of MPCs decreases due to the disappearance of these
contributions. Basically, the received signal power decreases
with the UAV flying away from the BS antenna in the whole
journey. In addition, some dark segments exist on the red
trajectory in Fig. 7(a), which means that deep fading existed
intermittently during the flight. This could be caused by the

destructive addition of MPCs, e.g., the LoS path component
and the ground reflection path component.

B. Vertical flights

Fig. 8(a) illustrates an example of CPDPs for the vertical
flights. The UAV flew up to 300 meters height in 120 seconds.
The descending data was not recorded in order to save the
storage since the descending speed was very slow for safety.
The SAGE estimation results in delay and Doppler frequency
domains are also illustrated in Figs. 8(b) and 8(c), respectively.
It can be observed from Fig. 8(c) that the LoS Doppler
frequency varied from positive values to negative ones, which
is because of the BS antenna height, i.e., the UAV approached
and then left away from the BS in the ascending process.
Afterwards, the absolute LoS Doppler frequency approached
to the maximum value with the height increasing. The chan-
nel in low heights exhibited much more MPCs, and less
MPCs were observed with increasing height. We postulate
the reasons are as follows. One is that the power of non-
LoS (NLoS) MPCs caused by the ground scatterers decayed
more significantly, because the propagation distances of them
changed more than that of the LoS path with the height
increasing. The other one is that some scatterers, e.g., buildings
A and B, contributed less to the received signal at the higher
height due to the orientations of their facades. Furthermore,
it is interesting to observe in Fig. 8(c) that almost all the
NLoS Doppler frequencies locate in the left side of that of
LoS path, and negative Doppler frequencies exist near the
ground. It can be inferred that the channel includes multiple
types of propagation routes, e.g., from Tx to UAV (Tx-UAV),
Tx-ground-UAV, Tx-building-UAV, Tx-building-ground-UAV,
etc. Similar explanations can be applied to the NLoS path
distributions for the horizontal flight as illustrated in Fig. 7(c).
Moreover, intermittent deep fading can also be observed in the
vertical flights due to, e.g., the destructive addition of MPCs.

C. Physical interpretation based on GM

To further gain insights into the UAV channels in terms of
physical interactions, we exploit GM to simulate the CPDPs
and power variations for the five horizontal flights in this
section. GM was firstly proposed in [46] and further im-
proved in [47] to semi-deterministically simulate the prop-
agation channels. The propagation environment is modelled
as vertexes (representing scatterers) in GM, and edges that
connect the vertexes represent propagation paths among these
scatterers. GM allows to simulate multiple-bounce scattering
up to an arbitrary number of interactions in a very efficient
way [47] compared to the other tools such as ray-tracing [15],
[48]. Specifically, channel with infinite order of bounces can
be calculated in a closed form. Readers can refer to [46],
[47] for details. Note that since GM is exploited herein to
understand the main propagation mechanisms rather than to
accurately reproduce the UAV channels, several simplifications
are implemented for the suburban environment with buildings,
river, grassland, road and trees.i) Both grassland and roads are
modeled as a horizontal plane, i.e. ground.ii) All the external
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Fig. 7: CPDPs of a horizontal round-trip flight at the height
of 75 meters and corresponding SAGE estimation results.
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Fig. 8: CPDPs of a vertical flight ascending at ascending
position 2 and corresponding SAGE estimation results.
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Fig. 9: Digital map applied in the GM.

walls of the buildings are considered constituted with the same
material.iii) Trees and unimportant buildings are ignored. The
GM is then conducted mainly according to four steps, i.e.,
setting up the 3-dimensional (3-D) digital map, evaluating the
visibility between every pair of two vetexes, embedding the
antenna radiation pattern and finally calculating the channel
transfer function (CTF). Via inverse Fourier transform, CIR
can be obtained from CTF.

Fig. 9 illustrates the 3-D digital map established for the envi-
ronment which includes the main objects, e.g. buildings A and
B, and an example horizontal flight route at 75 m. Fig. 10(a)
illustrates the simulated CPDPs3 for the horizontal flight
at 75 m with its corresponding measured CPDPs illustrated
in Fig. 7(a). The consistency of patterns between Fig. 10(a)
and Fig. 7(a) indicates that the GM is able to capture the
main clusters observed in the channel. Moreover, Figs. 10(b)-
(d) illustrate the CPDPs contributed by individual objects
in the environment. The separated CPDPs as illustrated in
Figs. 10(b)-(d) demonstrate clearly how the physical environ-
ment interacts with the transmitted signal and contributes to
the measured channel.

To understand the impact of the BS antenna radiation pattern
on the received signal, an omnidirectional elevation pattern
and a directive elevation pattern as illustrated in Fig. 11, are
generated and embedded in the GM, respectively. Fig. 12 (a)
and Fig. 12 (b) illustrate the power variations along distance in
the five horizontal flights for the two BS patterns, respectively.
It can be observed from Fig. 12 that when omnidirectional
antenna pattern is applied in the BS, the power variations for
the five flights are similar. However, when a directive antenna
pattern is applied, the power variations differ at different
heights. Furthermore, shadow fading can also be created when
UAV flies across the sidelobes of the directive radiation pattern
at higher heights.

Based on the above analysis, we can conclude that the scatter-
ers in the environment can create rich MPCs in the low altitude
flights, and that the BS antenna radiation pattern has significant
impact on the measured channels. The UAV channels in a
typical LTE network are the composite of the environment
and the BS antenna radiation pattern. It is of importance and
necessity to thoroughly understand the UAV channels based

3An overall shift is applied to the simulated power for a better comparison
between the simulated data and the measured data. The same operation is
applied as well for the other comparisons in this section.
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Fig. 10: Simulated CPDPs. (a) Overall. (b) LoS and ground.
(c) Building A. (d) Building B.
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Fig. 11: Generated BS antenna radiation patterns embedded in
the GM. Note that the backwards patterns are not illustrated.
(a) Omnidirectional elevation pattern. (b) Directive elevation
pattern with half power beamwidth of 10◦ and downtilt of 10◦.
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Fig. 12: Simulated power variations in the five horizontal
flights. (a) Omnidirectional BS pattern embedded. (b) Direc-
tive BS pattern embedded.
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Fig. 13: Received signal power for five horizontal and five
vertical flights in the satellite map.

on the realistic measurement data, which is discussed in the
sequel.

IV. UAV C HANNEL MODEL

One of the most important statistics of the channel in order
to design a communication system is the attenuation or,
conversely, the channel power. It will affect the most basic
aspects of design, such as the required transmit power (for
a desired link range) or the modulation and coding scheme,
hence the achievable rate. Based on the SAGE estimation
results, the power of the channel is calculated as

P (t) =

L(t)
∑

ℓ=1

|αℓ(t)|
2 (7)

where|·| denotes the absolute value of the argument.

Fig. 13 illustrates the relative power of received signals for
the five horizontal and five vertical flights in the satellite
map. It can be clearly observed that the channels for different
horizontal or vertical flights are distinctive. Especially the
channel power of the horizontal flight at the height of 15
meters is obviously higher than that for all the other flights.
Based on the analysis in Sect. III-C, it can be inferred that it
is mainly because the BS antenna radiation pattern is adjusted
to cover the ground. To gain further insights into the channel
characteristics, path loss, shadow fading, fast fading, root
mean square (RMS) delay spread and RMS Doppler frequency
spread are analyzed for horizontal flights and vertical flights.

A. Horizontal flights

Fig. 14 illustrates the received power for the five horizontal
flights at the heights of 15, 30, 50, 75 and 100 meters,
respectively. We have the following preliminary observations
from Fig. 14:i) In general, the received power decreases with
the horizontal distance increasing for one horizontal fight. It
is straightforward since the link distance gets larger;ii) In
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Fig. 14: Received power for the five horizontal round-trip
flights at the heights of 15 m, 30 m, 50 m, 75 m and 100
m.

general, the power decay slope with respect to horizontal
distance becomes lower at a higher height;iii) Fast fading
observed is noticeably less severe for 15 m height than for the
other cases.

1) Path loss: We propose a modified close-in free path loss
model by exploiting the horizontal flights as

PL[dB] = 10γh · log10(d) +Xh + bh (8)

where d is the horizontal distance,γh represents the path
loss exponent which is related to the heighth, Xh denotes
the shadow fading, andbh represents the intercept.4 Fig.
15 illustrates the power curve fitting for the five horizontal
flights. A sliding/overlapped window of 20 wavelengths [49] is
applied to removing the fast fading before the fittings, and the
smoothed power is also illustrated in Fig. 15. Table II presents
the path loss exponents obtained for the five horizontal flights.
It can be observed that generallyγh is negatively correlated
with height h. We postulate the reasons are as follows.i)
At a higher height, the link distance is less sensitive to the
horizontal distance. However, since the height is not so large
when compared to the horizontal distance in log-scale, this
effect can be almost negligible.ii) Usually, the beam of the
LTE BS antenna is empirically downward covering a certain
range on the ground. The UAV at low heights is more likely
to experience significant power change when it flies from
the main beam towards non-dominant radiation area of BS
antenna. We use the generic model

γh = a · h+ b+ c (9)

with a andb being constants andc being a zero-mean normally
distributed variable to model the path loss exponents.a andb
are calculated as -0.02 and 3.42, respectively, and the standard
deviation ofc is calculated as 0.48.

4In our case,bh are relative values, thus we do not present them in the
analysis in the sequel.
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Fig. 15: Power fittings for the five horizontal flights.

Table II: Path loss exponents for horizontal flights

Height [m] 15 30 50 75 100
Outboundγh 3.50 2.04 2.12 1.34 1.62
Inboundγh 3.78 2.56 2.42 1.27 1.73
Meanγh 3.64 2.30 2.28 1.31 1.67

2) Shadow fading:Shadow fadingXh for the horizontal
flights is calculated by subtracting path loss from the smoothed
power. Fig. 16(a) illustrates the shadow fading variation for the
five horizontal flights at different heights. It can be observed
that generally the shadow fading deviation increases when
either the height or horizontal distance increases. It is rea-
sonable since the randomly addition of LoS path and ground-
surface scattered paths dominates the channel with ground
objects contributing less. The BS antenna pattern may also
affect the shadow fading as discussed in Sect. III-C. Moreover,
calculations show that the maximum difference among their
standard deviations is less than 0.5 dB. For model simplicity,
we use one CDF to model them. Note that in the sequel,
similar CDFs of the same parameters will also be combined
for simplicity. Fig. 16(b) illustrates the cumulative distribution
function (CDF) of the shadow fading for the five horizontal
flights. Normal distribution5 N (0, 2.7) is found to best fit the
empirical distribution. Furthermore, the correlation coefficient
between the absolute shadow fading and the horizontal dis-
tance is calculated as 0.36. The dependency of shadow fading
on horizontal distance can be modeled by considering the
horizontal distance as a uniform distributed random variable
and the shadow fading as a log-normal distributed random
variable with the correlation coefficient applied. In addition,
the correlation coefficientρ between two random variablesx
andy is calculated as

ρ(x, y) =
Cov(x, y)

√

Var(x)Var(y)
(10)

where Cov(·, ·) and Var(·) denotes the covariance and variance
of the argument(s), respectively.

5In the representationN (µ, σ), µ andσ represent respectively the expec-
tation and standard deviation of target variable.
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Fig. 16: (a) Shadow fading variation for the five horizontal
flights. (b) CDF of shadow fading for the five horizontal
flights.

3) Ricean K factor: The Ricean K-factor characterizes the
statistical distribution of the received signal amplitude. It is
the ratio of the power in the LoS component or dominant
component to the power in the NLoS or the other multipath
components [42]. Based on the powerP , we use the classi-
cal moment-based method proposed in [50] to calculate the
K factors. Fig. 17(a) illustrates the K factor vs. horizontal
distance at different heights. It can be observed from Fig.
17(a) that generally the K factor becomes smaller with the
horizontal distance increasing, although the channel is more
LoS-alike with less NLoS paths, as illustrated in Fig. 7(b).
Our conjecture is that with horizontal distance increasing the
power of LoS path decays more rapidly due to the fact that
the UAV flies outwards the main beam of BS antenna, while
the NLoS paths are almost always caused by the interactions
between the main beam of BS and the ground objects and
surface. It is interesting to observe in Fig. 17(a) that the K-
factor at the height of 15 meters is larger than that of the
other four heights. We postulate that it is mainly due to the
fact that the main beam of BS antenna can cover the most
of the flight route at the height of 15 meters, while for the
other four heights, the UAV is out of the main beam most
of the time. Fig. 17(b) illustrates the CDFs for the K factors
at different heights. The CDFs of K factors at the heights
from 30 to 100 meters are combined as one, since they are
very similar.N (12.6, 5.1) andN (7.6, 5.6) are found to best
fit the empirical ones. Moreover, the correlation coefficients
for the height of 15 meters and for the other four heights are
calculated as -0.64 and -0.65, respectively.
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Fig. 17: (a) K factor vs. horizontal distance for the five
horizontal flights. (b) CDFs of K factors for the five horizontal
flights.

4) RMS delay spreads and Doppler frequency spreads:
Delay spread and Doppler frequency spread are very important
features for the design of higher layers of communication
systems. The delay spread is inversely related with the channel
coherence bandwidth, hence a high delay spread will affect
the cyclic prefix length. High delay spread will lead to inter-
symbol interference, requiring the use of more advanced equal-
ization architectures at the receiver. Regarding the Doppler
frequency spread, it is inversely related with the channel
coherence time. A higher spread will limit the maximum frame
size and could be crucial to decide the duplexing method
to be used for the communications. It can also limit the
maximum bandwidth per subcarrier, since it leads to inter-
carrier interference (ICI), hence making it necessary to include
ICI cancellation methods at the receiver or more advanced
channel equalization techniques.

The RMS delay spread and Doppler frequency spread are
calculated as the second-order central moments of the power
delay profile and power Doppler frequency profile, respec-
tively. Specifically, by using the SAGE estimation results, the
RMS delay spread is calculated as specified in [42], [51]

στ (t) =

√

τ2(t)− τ̄2(t) (11)

with

τ2(t) =

L(t)
∑

ℓ=1

|αℓ|2τ2ℓ

L(t)
∑

ℓ=1

|αℓ|2
, τ̄ (t) =

L(t)
∑

ℓ=1

|αℓ|2τℓ

L(t)
∑

ℓ=1

|αℓ|2
. (12)
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Fig. 18: (a) RMS delay spreads denoted in logarithm vs.
horizontal distance for the five horizontal flights. (b) CDFs
of delay spreads denoted in logarithm for the five horizontal
flights.

The RMS Doppler frequency spread is calculated similarly by
using (11) and (12) withτ replaced byν.

Fig. 18(a) illustrates the delay spreads in logarithm scale
vs. horizontal distance for the five horizontal flights. It can
be observed that the characteristics of the delay spreads are
similar to that of the K factors. For example, the delay
spread at the height of 15 meters is obviously lower than
that of the other four flights. We postulate that this is due
to the downward BS antenna radiation pattern. Moreover, the
delay spread at the height of 15 meters becomes lower with
increasing horizontal distance. This is because the channel
far away from the BS is more LoS-alike with less MPCs
as illustrated in Fig. 7(b). However, for the heights above
15 meters, the delay spreads can be larger when the UAV
is at the far end of the route due to the NLoS paths with
larger delay and the weakness of the LoS path. Fig. 18(b)
illustrates the CDFs of the delay spreads in logarithm scale for
the horizontal flights.N (−7.4, 0.2) is found to roughly fit the
empirical CDF at the height of 15 meters, and the CDF for the
other four heights is best fitted byN (−7.1, 0.3). In addition,
the correlation coefficients between the logarithm delay spread
and the horizontal distance are calculated as -0.76 and -0.38,
respectively.

Fig. 19(a) illustrates the RMS Doppler frequency spreads for
the five horizontal flights. Due to the fact that the speed of
the UAV is not so large, the Doppler frequency spreads for
the five horizontal flights are similar. The CDF for all the
Doppler frequency spreads is illustrated in Fig. 19(b) and is
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Fig. 19: (a) Logarithm Doppler spreads variation for the five
horizontal flights. (b) CDF of Doppler frequency spreads
denoted in logarithm for the five horizontal flights.

fitted with extreme value distribution6 EV(0.9, 0.4). Moreover,
the correlation coefficient with respect to horizontal distance
is calculates as -0.55.

B. Vertical flights

Fig. 20 illustrates the received power for the five vertical
flights at the five ascending positions, respectively. We have the
following preliminary findings:i) In general trend, the received
power decreases with the height increasing for one vertical
flight. It is straightforward since the link distance gets larger;
ii) In general trend, the power decay slope with respect to the
height becomes lower at a further ascending point;iii) Fast
fading becomes severer when the horizontal distance is larger.
The investigations and explanations for the characteristics are
as follows.

1) Path loss: Similarly to the case of horizontal flights, we
propose a modified close-in free path loss model

PL[dB] = 10γd · log10(h) +Xd + bd (13)

whereh is the height,γd denotes the path loss exponent which
is related to the horizontal distanced, andXd represents the
shadow fading. Fig. 21 illustrates the smoothed power and
the fittings for the five vertical flights. It is noteworthy that
the onboard antenna pattern could affect the results for the
position 1 at large height values. In this case, the power would
be reduced not only due to the distance, but also due to the

6The probability density function of EV(µ, σ) is formatted asf(x) =
σ
−1 exp(x−µ

σ
) exp(− exp(x−µ

σ
)).
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Fig. 20: Received power for the five vertical flights at markers
1 to 5.
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Fig. 21: Power curve fitting for the five vertical flights.

Rx radiation pattern. For the other flights, the effect of the RX
antenna pattern should be almost negligible. Table III presents
the five path loss exponents obtained. Mainly two factors have
effects on the path loss exponent when the UAV flies up. One
is that the link distance becomes larger, the other is that the
UAV experiences different parts of the BS antenna radiation
pattern. For example at position 5, the height increasing has
little influence on the link distance and the crossing of BS
antenna pattern, which results in a path loss exponent close to
0.

2) Shadow fading:Fig. 22(a) illustrates the shadow fading for
the five vertical flights. It can be observed that at positions 1
and 2, the shadow fading deviation at lower heights is larger.
This is probably due to the blockage of UAV itself since
the receiver antenna was fixed below the UAV. Generally,
the shadow fading for the five vertical flights is similar. For
simplicity, we use the same statistical model for all of them.

Table III: Path loss exponents for vertical flights

Horizontal distance [m] 100 200 300 400 500
γd 1.17 1.58 1.35 0.92 0.07
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Fig. 22: (a) Shadow fading vs. height for the five vertical
flights. (b) CDF of shadow fading for the five vertical flights.

Fig. 22(b) illustrates the empirical CDF and fitted CDF of
N (0, 3.0) for the shadow fading. Moreover, the correlation
coefficient between the absolute shadow fading and the height
is calculated to be 0.16.

3) K factors: Fig. 23(a) illustrates the K factors for the five
vertical flights. Observations and calculations show that the
K factors for positions 1 and 2 are similar, while the K
factors for positions 3 to 5 are also similar and lower than
the previous ones. This is probably due to the fact when
the ascending position is far away from the BS, the UAV is
out of the main beam of BS for most of time. Fig. 23(b)
illustrates the empirical CDFs for the K factors and analytical
CDFs ofN (15.2, 4.7) andN (8.4, 3.8) which are found to fit
the empirical ones, respectively. In addition, the correlation
coefficients with respect to the height are calculated as 0.29
and 0.20, which demonstrates that the K factor is likely to be
larger with increasing height. This is reasonable and intuitive
as the channel above the sky is more LoS-alike.

4) RMS delay spread and Doppler frequency spread:Fig.
24(a) illustrates the delay spreads in logarithm scale for the
vertical flights. It can be observed that the delay spread for
position 5 is obviously different from that for the other four
positions. We postulate that it is mainly due to the scarcity
of the scatterers, since the observed delay spread is also low
in Fig. 18(a) at the horizontal distance of 500 meters. For
the other four positions, the delay spread values are larger.
Moreover, basically the delay spreads for positions 1 to 4
decrease with the height increasing. This is due to the fact
the channel above the sky is more LoS-alike with less MPCs.
However, the NLoS path is further from the LoS path as
illustrated in Fig. 8(b), and the LoS path power can sometimes
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Fig. 23: (a) K factor vs. height for the five vertical flights. (b)
CDFs of K factors for the five vertical flights.

decay significantly since the UAV is out of the main beam,
which can also result in large delay spreads in some high-
height cases. Fig. 24(b) illustrates the empirical CDFs and
fitted analytical CDFs of and for the delay spreads in logarithm
scale at positions 1 to 4 and position 5, respectively. In
addition, the correlation coefficients between the logarithm
delay spread and the height are calculated as -0.38 and -0.12,
respectively.

Fig. 25(a) illustrates the Doppler frequency spreads in log-
arithm scale for the five vertical flights. It can be observed
that the Doppler frequency spreads are similar for different
positions because the UAV speed is low. However, it is
obvious that the Doppler frequency spreads become lower
with increasing height. This is reasonable since the Doppler
frequencies of all paths converge to the mimimum Doppler
frequency with height increasing. For model simplicity, we
use a common statistical model for all of them. Fig. 25(b)
illustrates the empirical CDF and the fitted analytical CDF
of N (−0.32, 0.32). In addition, the correlation coefficient
between the logarithm Doppler frequency spread and the
height is calculated as -0.7. The statistics extracted for all the
horizontal flights and vertical flights are summarized in Table
IV and Table V, respectively.

V. CONCLUSIONS

In this contribution, the air-to-ground channel characteristics
were investigated in a commercial long-time-evolution (LTE)
network at the frequency band of 2.585 GHz. Five horizontal
flights at different heights and five ascending flights with
different horizontal distances to the base station (BS) were

13



0018-9545 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2018.2886961, IEEE
Transactions on Vehicular Technology

0  50 100 150 200 250 300
-8

-7.5

-7

-6.5

-6

Height [m]

Position 1
Position 2

Position 3
Position 4
Position 5

lo
g
1
0
(σ

τ
,d
)[

s]

(a)

-7.6 -7.4 -7.2 -7 -6.8 -6.6 -6.4 -6.2
0

0.2

0.4

0.6

0.8

1

Empirical, position 5

Empirical, positions 1 to 4

N (−7.33, 0.13)

N (−6.97, 0.25)

C
D

F
P
(l
o
g
1
0
(σ

τ
,d
[s
])
<

a
bs
ci
ss
a
)

log10(στ,d[s])

(b)

Fig. 24: (a) Delay spreads denoted in logarithm for the five
vertical flights. (b) CDFs of delay spreads denoted in logarithm
for the five vertical flights.

0  50 100 150 200 250 300
-1

-0.5

0

0.5

1

1.5

2

Height [m]

Position 1
Position 2

Position 3
Position 4
Position 5

lo
g
1
0
(σ

ν
,d
[H

z]
)

(a)

-0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

C
D

F
P
(l
o
g
1
0
(σ

ν
,d
[H

z]
)
<

a
bs
ci
ss
a
)

log10(σν,d[Hz])

Empirical, positions 1 to 5
N (−0.32, 0.32)

(b)

Fig. 25: Doppler spreads denoted in logarithm for the five
horizontal flights. (b) CDF of Doppler frequency spreads in
logarithm for the five vertical flights.

Table IV: Statistics extracted for the five horizontal flights.

ρd : correlation coefficient between parameter and horizontal distance

Parameter (Mean, Std.);ρd at different heights [m]
15 30 50 75 100

γh 3.64 2.30 2.28 1.31 1.67
Xh [dB] (0, 2.7); 0.36
Kh [dB] (12.6, 5.1); -0.64 (7.6, 5.6); -0.65

log10(στ,h[s]) (-7.41, 0.22); -0.76 (-7.12, 0.33); -0.38
log10(σν,h[Hz]) (0.9, 0.4); -0.55

Table V: Statistics extracted for the five vertical flights.

ρh: correlation coefficient between parameter and height

Parameter
(Mean, Std.);ρh at different ascending positions

with different horizontal distances [m]
100 200 300 400 500

γd 1.17 1.58 1.35 0.92 0.07
Xd [dB] (0, 3.0); 0.16
Kd [dB] (15.2, 4.7); 0.29 (8.4, 3.8); 0.20

log10(στ,d[s]) (-6.97, 0.25); -0.38 (-7.33, 0.13); -0.12
log10(σν,d[Hz]) (-0.3, 0.3); -0.7

applied. The height of the BS was 20 meters. In the vertical
flights, it is found that the channel is more line of sight
(LoS) alike at a higher height with less multipath components
(MPCs). Generally, K factors are positively correlated with
the height, and delay spreads and Doppler frequency spreads
are negatively correlated with the height. However, due to the
downward radiation pattern of the LTE BS antenna, some
opposite cases can be observed. Furthermore, the horizontal
distance of the ascending points also has impacts on the
channel characteristics, e.g., the path loss exponent generally
decreases with the horizontal distance increasing.

For the horizonal flights, it is found that the channel at the
height of 15 meters is much different from the channels at the
other heights above, which is due to the variation of MPCs
and the empirical radiation pattern of the LTE BS antenna.
Specifically, the path loss exponent is 3.64 at the height of 15
meters however decreases to less than 2 at the heights of 75
meters or 100 meters, the K factor at the height of 15 meters
is 5 dB larger than that for the other above heights, and the
delay spread at the height of 15 meters can be half of that for
the other above heights. The channel statistics extracted in the
model provide authentic and valuable reference to design and
evaluate the future UAV applications integrated in the current
LTE networks, as well as give insights on how to optimize an
LTE network for supporting UAV-based applications.
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