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Abstract—In modern power systems, the increasing penetration 
of renewables and power electronics, particularly inverter-based 
wind and solar power generation, is altering power system 
dynamics and bringing new stability concerns. One challenging 
issue that is attracting considerable attention is the wide range of 
power oscillations associated with multiple parallel 
grid-connected inverters. In such systems, the characteristics in 
terms of resonance and oscillation are significantly different from 
single-inverter systems. This paper investigates the mutual 
interaction and stability issues of multiple grid-interfacing 
inverters with LCL-filters in power electronics-based power 
systems under various grid conditions. The investigation reveals 
that such interactions between power inverters and the grid may 
excite multiple resonances at various frequencies under certain 
grid conditions. The nodal admittance matrix concept, which was 
originally from power systems engineering, is adopted here. 
Moreover, this paper further develops an Interaction-Admittance 
model that can effectively describe these mutual interactions in 
terms of a physical network admittance. We apply our model to 
various scenarios such as stiff grid conditions and inductive grids 
with/without Power Factor Correction (PFC) capacitors. The 
results with the proposed framework demonstrate an intuitive 
interpretation of multi-inverter system resonance and 
instabilities. Finally, simulations and experiments on a lab-scale 
system are provided to verify the theoretical analysis.  
 

Index Terms—Multi-inverter system, interaction admittance, 
resonance characteristics, stability analysis. 

I. INTRODUCTION 

OWER systems have historically been constructed with 
large fossil-fuel-based generators with significant rotating 

mass or mechanical inertia. The collective inertia enables 
systems to absorb fluctuations and oscillations in load and 
generation [1]. The increasing penetration of renewable energy 
generation into the modern power system, such as solar farms 
and wind power plants, efficiently reduces the total 
consumption of fossil fuels [2]-[5]. It is reported that, by the 
end of 2015, more than 40% of the energy supply in Denmark 
was from wind power, and this number is expected to exceed 50% 
in near future (by 2020). By 2050, the plan is to be 100% free of 
fossil fuels and the wind energy will share a major part of the 
sustainable energy mix in Denmark [6]. The rapid adoption of 
renewable energy systems is leading to a variety changes: i) 
Numerous power-electronics-based systems have been or are 
going to be installed into modern power generation and 
transmission system [7], ii) Compared to traditional power 

systems, power electronics-based power systems (PEPS) have 
lower mechanical and electrical inertia but more capacitive and 
inductive components in converter filters and cables, making 
the power network more likely to be resonant and/or oscillatory 
[8], iii) More volatile system dynamics may be observed on low 
system inertia. In this context, the potential for stability and 
power quality issues are drawing increasing attention. 

Grid-connected inverters act as the ubiquitous interfaces that 
are able to flexibly and efficiently connect the renewables to the 
grid. For instance, dozens or even hundreds of inverters are 
used in residential PV systems [9] and commercial wind power 
plant systems [10]. They may be connected in parallel to the 
Low-Voltage (LV) grid directly or in some applications via 
isolation transformers or to the Medium-Voltage (MV) grid via 
step-up transformers in large-scale renewable energy 
applications. In practice, to scale up the total generation 
capacity, grid-connected inverters usually operate in parallel. 
Recent works shows that parallel inverters exhibit networked 
interactions in weak grids due to larger impedances. Results in 
[11] show that the equivalent grid impedance seen from a single 
inverter will be amplified by a factor of N when N identical 
inverters are connected at the Point of Common Coupling 
(PCC). This analysis explains why the parallel system can still 
become unstable even if all the inverters meet the specifications 
at the individual level. The parallel operation significantly 
aggravates the overall network resonance and stability 
problems, which hinders the deployment of large-scale 
renewable plants.   

Some interesting research work have been focusing on the 
interaction and coupling between grid-connected inverters 
[8]-[9], [11]-[17]. Harmonic interactions have been observed [9] 
in a residential PV distributed network containing large 
numbers of inverters in close proximity. A simplified passive 
model was presented to investigate the resonances, including 
parallel resonance and series resonance without considering the 
contribution of inverter controllers. The method in [8] develops 
a useful resonance interaction model to analyze the 
multi-inverter system, where the current was divided to an 
interactive current that circulates among the converters and in a 
common current that flows to the grid. Based on this model, the 
interactions and stability properties of different types of 
grid-connected inverters are examined [12]. Furthermore, it has 
been demonstrated in [13] the interactive current can induce 
instability of multiple LCL-filtered inverters under the 
asynchronous Pulse Width Modulation (PWM) carriers. 
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Resonances at the LCL-filter resonance frequency are detected 
and observed in the individual inverter output current, but not in 
the grid current. Similarly, the harmonics from PWM are 
different from one inverter to another, which may trigger 
sideband harmonic resonances among the paralleled inverters. 
Under asynchronous carrier condition, the sideband resonances 
among parallel inverters will be triggered and then the 
interactive current becomes unstable [14]. Recently, the 
impedance-based stability analysis using the Nyquist criterion, 
firstly presented in [15], becomes an effective and popular 
alternative to study the stability and coupling of 
multiple-converter systems. For instance, the 
multiple-resonance problem in an inverter-based microgrid was 
investigated in [16], where the individual inverter was modeled 
as a Norton equivalent circuit: a current source in parallel with 
the output admittance. This method helps to design an adaptive 
active damper to improve the stability of grid-connected 
inverters under weak grid, the damper emulates a resistor to 
damp the resonance between the grid-connected inverter and 
the grid [17]. 

The concept of passivity, originated from control theory and 
engineering [18], has recently been gaining attention [19]-[21]. 
It was adopted to design the converter current controller to 
mitigate harmonic interactions between parallel inverter units 
[19]. This concept can deal with a large and complex control 
system by imposing specific requirements for each individual 
subsystem to guarantee the overall system stability. Its basic 
idea is a phase-angle based design for all connected subsystems, 
e.g. each subsystem should have a phase angle between [−90°, 
+90°]. Furthermore, the harmonic resonance for multiple 
grid-connected inverters based on the passivity theory was 
assessed in [20]. To guarantee the passivity of a renewable 
energy based power system, a method to cancel the negative 
real parts was proposed in [21]. In addition, component 
connection method (CCM) has been adopted in [22] to analyze 
the stability of inverter-fed power systems. 

In power engineering, the nodal admittance matrix (or just 
admittance matrix) or Y Matrix or Y bus is an N × N matrix 
describing a power system with N buses [23], [24]. It represents 
the nodal admittance of the buses in a power system. The Y 
Matrix is also one type of the required data to formulate a 
power flow study. In this paper, the nodal admittance matrix 
analysis is adopted to analyze the resonance and stability issues 
of multiple parallel grid inverters. Here, each inverter unit is 
regarded as an electrical node, and the MIMO matrix is regards 
as the nodal admittance matrix. As a consequence, an 
interaction admittance-based modeling method is proposed. 
Using this approach, the connection and interactions of these 
inverters can be directly identified by the characteristics of the 
interaction admittance. 

Detailed modeling and interaction analysis under both the 
open loop and closed-loop control are presented, beginning 
with an overall system description and modeling in Section II. 
Section III then introduces the nodal admittance matrix concept 
and the π-equivalent circuit. The concept of interaction 
admittance is also presented in Section III, which is evaluated 
under different grid conditions. Following, Section IV 

discusses the system stability considering the control scheme 
through the root locus analysis, where the contribution of 
controller is equivalent to a control impedance. Simulation and 
experimental results are provided in V and VI, respectively, 
before the conclusion. 

II. MODELING OF THE LCL-FILTERED GRID-INTERFACING 

INVERTERS 

In this study, the current control implementation in the 
stationary reference frame (the α-β frame) is assumed here. 
Therefore, the conclusions investigated are applicable not only 
to single-phase systems, but also to per-phase control of 
multiphase systems. In this section, a single inverter and 
multiple parallel inverters are described and modeled. 

A. System Description 

 
Fig. 1 shows a typical three-phase Voltage Source Inverter 

(VSI) connected to the power grid through an LCL-filter 
consisting of an inverter-side inductor L1, a filter capacitor C, 
and a grid-side inductor L2. No passive damping is considered 
as a worst-case undamped scenario [25], [26]. The VSI 
achieves energy conversion between renewables and power 
grid. As shown in the figure, grid condition varies with the 
passive component at the grid side: a) an inductive grid 
network: grid inductor in series with ideal grid voltage, b) grid 
network with Power Factor Corrector (PFC): a reactive 
compensation capacitor is taken into account, making the grid 
condition more complicated.  The current loop regulates the 
current injected into the grid to guarantee a satisfactory power 
quality. Either the inverter-side current i1 or the grid-side 
current i0 of the LCL-filter can be chosen as feedback variable. 
Phase Lock Loop (PLL) is adopted to synchronize the grid 
voltage, in this paper, PLL is designed to be decoupled with 
inner control loops. A Proportional Resonant (PR) controller 
[27] can be adopted to further eliminate the steady-state current 
tracking error at the fundamental frequency. The PR controller 
is given as 

2 2
0

( ) i
c p

K s
G s K

s


 


                           (1) 

where ω0 is the fundamental angular frequency, Kp is the 
proportional gain, and Ki is the resonant gain. 

The control system is digitally implemented as shown in Fig. 
2, where the sampling is synchronized with the converter 
switching carriers. The PWM process is assumed to operate 
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Fig. 1.  Hardware schematic and the general control structure of an 
LCL-filtered grid-connected inverter. 
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within the linear range limited by the dc-link voltage [28]. 
LCL-filter has been modelled in the s-domain and the digital 
controller has been notated in the z-domain. Between the 
LCL-filter and digital controller are the sampler and 
pulse-width modulator, which together with the non-zero 
computational time will introduce a total delay of 
approximately 1.5 times the sampling period Ts [29], [30]. A 
pure time delay in the digital controller can be expressed as 

1.5( ) ssT
dG s e                               (2) 

 
Next, the system plant can be obtained where the transfer 

function Gi(s) for relating the converter output voltage v0 to the 
grid current i0, as shown in Fig. 2, can be derived as 

   
 

0

2 2
0 1 2

1 1

( )i
g r

i s
G s

v s sL L L C s 
 

 
                 (3) 

where ωr  is the LCL-filter resonance frequency expressed as 

1 2

1 2( )
g
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g
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

 



                             (4) 

In (3), compared to the L-filtered system, a resonant part is 
undesirably introduced in the LCL-filtered system, which may 
make the system oscillatory, even unstable. Another 
observation from Fig. 1 is that there are two different grid 
conditions. One is the inductive grid network, where Lg 
represents the grid inductance including the transformer 
leakage inductance and transmission cable inductance, in some 
cases, varying within a large range. The situation is particularly 
critical in rural areas, where many distributed generation plants 
are connected [31]. The other grid condition considers a 
reactive power compensation unit at the PCC, helping to 
correct the entire system power factor such as the Static 
Compensator (STATCOM). An equivalent PFC capacitor CPFC 
is added at the PCC in Fig. 1. The impact of this capacitance on 
the system stability and resonance will be discussed later. 

B. Admittance Matrix Modeling and Analysis for Parallel 
Inverters 

Fig. 3 shows an overall diagram consisting of multiple 
(number: N) above-described grid-interfacing inverters 
connected to the PCC. Z1i and Z2i (i = 1···N) are inverter-side 
and grid-side inductor impedances, Z3i are the filter capacitor 
impedances, Zg is the grid impedance, and CPFC is the PFC 

capacitor. They can be expressed as 

1 1 2 2 3

1
, , ,i i i i i g g

i

Z sL Z sL Z Z sL
sC

                  (5) 

where L1i and L2i are inverter-side and grid-side inductors, Ci is 
the filter capacitor of the LCL-filter for #i inverter. 

 
As shown in Fig. 3, the inverter mid-points can be regarded 

as electrical nodes, the inverter output voltages 𝑣଴௜  are the 
voltages of these electrical nodes; 𝑖଴௜ are the grid-side inductor 
currents; the term eg is the ideal and balanced grid voltage. In a 
stiff grid network, the grid impedance Zg is considered to be 
zero. All the output currents 𝑖଴௜ flow to the grid. However, due 
to the existence of grid impedance, these parallel inverters are 
coupled with each other [11], meaning that one inverter’s 
output behavior may influence the other inverters’ performance. 
The dynamics of multiple parallel inverters in Fig. 3 can be 
expressed using the multivariable theory as 

    
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    (6) 

where the electrical node voltages [ 𝑣଴ଵ , 𝑣଴ଶ ,···, 𝑣଴ே ]T are 
regarded as the input vector and the output currents [𝑖଴ଵ, 𝑖଴ଶ,···, 
𝑖଴ே]T are the output vector [32]. 

The 𝑁 × 𝑁  transfer matrix Y(s) is a system admittance 
matrix describing the influence of each electrical node voltage 
𝑣଴௜ on the output current i0j, (i,j=1···N). S(s) characterizes the 
effect of the disturbance eg on the output current i0i. In this 
paper, only the current tracking reference is discussed. Noted 
that the influence analysis of the disturbance eg can be found in 
[33] and [34]. Assume that all the installed inverters have 
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Fig. 2.  Implementation of the digital controller in an LCL-filtered 
converter.  

 

Fig. 3.  Parallel operation of multiple grid-connected inverters to 
Medium Voltage (MV) network. 



U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2881139, IEEE
Transactions on Power Electronics

 

identical parameters, then Z1i = Z1=sL1, Z2i = Z2=sL2, Z3i = 
Z3=1/(sC). Each electrical node voltage 𝑣଴௜  has an identical 
impact on its own output current 𝑖଴௜. Thus, the diagonals Yii are 
equal, i.e., Yii = Y11; on the other hand, the non-diagonals Yij 

(i≠j) are also equal since each 𝑣0𝑖 has the same effect on the 
other𝑖଴௝, i.e., Yij = Y12. Therefore, the admittance matrix Y(s) is 
a symmetric matrix, and Y11 and Y12 are obtained according to 
the circuit superposition principle as 

 
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     

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            (8) 

The detailed derivation can be found in [35]. From (7) and 
(8), it is known that the element Y12 will be zero if the grid 
impedance Zg is zero, and the transfer matrix Y(s) will be a 
diagonal matrix. It means that no mutual interactions appear in 
these inverters under a stiff grid condition. On the contrary, in 
an inductive grid (short circuit ratio-SCR is not infinite), the 
interactions will appear in the multiple parallel inverters due to 
the non-zero grid impedance Zg. Notably, this situation is more 
realistic when the renewable penetration level increases. 

C. Nodal Admittance Matrix 

In power engineering, the nodal admittance matrix or Y 
Matrix is an N × N matrix describing a power system with N 
buses, for instance, Fig. 4 presents a three-bus power system. It 
represents the nodal admittance of the buses in a power system. 
The term yk (k=1,2,3) accounts for the admittance of linear 
loads connected to #k bus as well as the admittance-to-ground 
at #k bus, the term yki (k≠i) accounts for the admittance between 
two buses. The admittance matrix Y can be written as follows 
and typically a symmetric matrix as yki = yik. 

As the theory above, the inverter mid-points can be regarded 
as electrical nodes/buses presented in Fig. 3, and the Y(s) in 
equation (6) can be regarded as a typical nodal admittance 
matrix. According to the definition in [24], the diagonal 
elements Yii are called self-admittances at the nodes, illustrating 
the relationship between the node voltage 𝑣଴௜ and the 
corresponding output current with the same subscript i0i; while 
the non-diagonals Yij(i≠j) are called mutual-admittances, 
describing the influence of the electrical node voltage 𝑣଴௜ on 
other output currents i0j. This is applied to model and analyze 
the multiple inverters connected in parallel in this paper. The 
detailed analysis based on the nodal admittance matrix will be 
introduced to reveal the interactions and complex resonance 
characteristics of parallel inverters under different grid 

conditions in the following. 

 

III. DYNAMIC INTERACTION ANALYSIS BASED ON THE 

INTERACTION ADMITTANCE 

A. Analysis of Two-Inverter System 

 
The aim of this part is to analyze the dynamic interactions 

among these parallel inverters under different grid conditions 
using the nodal admittance matrix concept. For simplicity, this 
part begins with a two-inverter system, whose nodal admittance 
matrix is a second-order system and it can be written as 

     
      
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                        (9) 

   
    

01 11 01 12 02
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i Y v Y v

i Y v Y v
                      (10) 

which is an example of (6) with the inverter number N = 2. In 
(9), the diagonals Y11 and Y22 are the self-admittances and Y12 
and Y21 are mutual-admittances, Y11 = Y22 and Y12 = Y21 due to 
the symmetrical characteristics. Fig. 5 shows the equivalent 
circuit of the two-inverter system admittance matrix, which 
includes a Norton impedance Y11 in parallel with a 
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(b) 
Fig. 4.  Nodal admittance matrix: (a) the admittance diagram of a 
three-bus network and (b) the expression of admittance matrix Y. 

 

 
Fig. 5.  Equivalent circuit with voltage-controlled current sources for 
the two-inverter system. 
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voltage-controlled current source Y12·v02. The current source 
represents the interactive effect between the parallel inverters. 

 
In fact, the two voltage-controlled current sources Y12·v02 and 

Y21·v01 can be represented by a joint impedance. This can be 
achieved by transforming the circuit in Fig. 5 into a 
π-equivalent circuit for the two-inverter system, as shown in 
Fig. 6, in which the interactions among the inverters are 
replaced by a physical admittance -Y12. The inverter #1 (node 
#1) and the inverter #2 (node #2) are connected through the 
joint admittance, which characterizes the interactions between 
the two parallel inverters. According to the transformation, the 
connection admittance equals to the negative Y12, which is 
named interaction admittance Yint as 

intY Y 12                                           (11) 

 
The impedance between the electrical node #i to the ground 

is defined as Ysum_i. In fact, it describes the interactions between 
the inverter module and the grid, which can be written as 

sum_i i i ii iNY Y Y ... Y ... Y     1 2                    (12) 

Similarly, the same derivation can be done for the case where 
the inverter number N equals to 3, 4, 5, 6 and even more, as 
shown in Fig. 7. The interaction admittances indicate the 
connection of one inverter to all the remaining (n-1) inverters, 
in which every two-inverter interaction can be expressed by the 
interaction admittance Yint. Therefore, the interactions of the 
multi-parallel inverters system can be obtained by evaluating 
the characteristics of the interaction admittance Yint. 

 
To obtain a straightforward understanding on the interaction 

admittance Yint, the diagonal and non-diagonal elements Y11 and 
Y12 can be rewritten as the equivalent equations given below 
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                      (14) 

where MLCL is the impedance characteristic of the LCL filter 
and MLCL correlates neither with the inverter number nor with 
the grid conditions, and MGrid is the transfer function 
considering the grid impedance coupling effect. 

int LCL GridY Y M M
N N

   12

1 1                      (15) 

Obviously, the interaction admittance Yint is a function of the 
LCL-filter parameters, inverter number N, and the grid 
impedance Zg, meaning that the interactions between parallel 
inverters change with the power grid conditions. Based on the 
above analysis, the interactions under three different grid 
conditions are discussed. Other grid conditions can be analyzed 
in a similar way. 

 

B. Ideal Stiff Grid 

For a stiff grid condition, the grid impedance Zg approaches 
to zero. According to (14), if Zg ≈ 0, MLCL ≈ MGrid. Thus, the 
interaction admittance Yint ≈ 0, according to (15). There will be 
no mutual coupling effect among these inverters. These 
inverters are equivalently “disconnected” with each other, 
behaving like an individual inverter, as shown in Fig. 8. 
However, due to the complexity of the grid condition and 
existence of the grid impedance, one inverter can see not only 
the grid but also other inverters. Not all proportion of the 
inverter currents will be injected to the grid; instead, some 
portion of the currents will circulate in these parallel inverters 
through interactive admittances Yint. 

C. Inductive Grid Impedance 

If the grid impedance Zg is a non-zero value, an inductive 
grid condition is assumed in this paper. The magnitude and 
phase characteristics of the two-inverter interaction admittance 
Yint are shown in Fig. 9, from which two resonance peaks can be 
observed. Compared with the ideal grid condition, an additional 

 
Fig. 6.  The π-equivalent circuit of parallel inverters. 

(a) (b) (c)

(d) (e)

=

Yint

Ysum Ysum

= Ysum

= Yint

 

Fig. 7.  Equivalent circuit of the node network for the inverter number: 

(a) N = 2, (b) N = 3, (c) N = 4, (d) N = 5 and (e) N = 6. 

 
Fig. 8.  Parallel inverters are equivalently disconnected with each other 
in the ideal stiff grid condition. 
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resonance peak is introduced: one resonance frequency is equal 
to LCL filter resonance frequency while the other is aroused by 
the interaction in the multi-inverter system. At both two 
resonance peaks, the interactive admittance Yint is equal to an 
infinite value if without any damping. It implies that the current 
at these frequencies will be amplified. As a result, it is likely to 
excite the resonant currents at these two frequencies. 

 

 
It is clear that the parallel operation of multiple 

grid-connected inverters significantly alters the magnitude and 
phase under the inductive grid impedance condition, as seen in 
Fig. 9. It should be noted that these two resonance frequencies 
change with the inverter numbers. Fig. 10 shows the magnitude 
responses of different inverter numbers (N = 2, 4, 6, 8). 
According to (14), one of the resonance peaks is fixed and 
equal to the LCL-filter resonance frequency,  which is activated 
by the term MLCL. The other resonance peak is caused by the 
term MGrid, and its resonance frequency decreases with inverter 
numbers because of N·Zg in the denominator. If N is quite large, 
the frequency will decrease to the resonance frequency of L1 
and capacitor C as 

1 2
_ lim

1 2 1

1

( )
g

r r
g

L L N L

L L N L C L C
 

  
  

 
                  (16) 

As shown in Fig. 10, the lower resonant frequency decreases 
with the increase of the inverter number and approaches the 
limit frequency. The two resonance peaks situation complicates 
the controller design and stability analysis. 

D. Inductive Grid Impedance with PFC Capacitor 

 
In many grid-connected applications, passive PFC capacitors 

or active reactive power compensation units need to be installed 
and connected to the PCC for power factor correction, as stated 
in Section II. Their practical effects can be replaced by an 
equivalent passive capacitance CPFC. Its installation even 
complicates the resonance features of multiple inverters. Fig. 
11 presents the frequency response of parallel inverters under 
the inductive grid with the PFC capacitor. It can be observed 
that the PFC capacitor increases the system resonance 
complexity. In addition to the two resonant peaks for the 
inductive grid condition, one more resonance peak is 
introduced to the grid side current. That is, there are three 
resonant peaks: one resonance peak is fixed at the LCL-filter 
resonance frequency, another one locates above the LCL 
resonance frequency, and the last one is below the resonance 
frequency. In this case, the grid impedance Zg in (13) and (14) 
can be replaced by 

' / ( )g g g PFCZ Z L C s   2 1                      (17) 

It has been demonstrated that there is a limit for the lower 
resonance peak frequency under inductive grid condition. 
However, it is different in the case of the PFC capacitor, which 
can make the lower frequency even closer to the control 
bandwidth. The resonant feature may worsen the system 
stability and performance. 

This section discusses the passive resonance characteristics 
of parallel inverters under different grid conditions. However, 
the contribution of controller has not been taken into 
consideration. In Section IV, the impact of controller on the 
system stability of parallel inverters is discussed. 
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                (a)                                                     (b) 

Fig. 9.  Frequency characteristics of the interaction admittance of two 
inverters, (a) magnitude unit: dB; (b) absolute value. 

 
Fig. 10.  Frequency characteristics of the interaction admittance with 
different inverter numbers. 

 
Fig. 11.  Frequency characteristics of the parallel operation under the 
inductive grid with PFC capacitor. 
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IV. ANALYSIS OF CURRENT CONTROLLER CONTRIBUTION TO 

SYSTEM STABILITY 

 This part will discuss the performance and system stability 
when the inverter current control scheme is involved. As 
mentioned in the previous section, the dynamics of the studied 
inverters are coupled due to the grid impedance. In this paper, 
the grid side current is selected for the current control. 

 

A. Model of the Closed-Loop Current Control 

Stable operations of LCL-filtered inverters without any 
additional damping has been proved to be possible in [16], [26]. 
Without loss of generality, a simple and effective single-loop 
control with a typical PR controller is chosen. The implemented 
inner current control scheme is shown in Fig. 12, where Gc(s) is 
the controller transfer function, as shown in (1), Ginv(s) is the 
inverter transfer function including the calculation delay and 
PWM delay, and H(s) is the feedback coefficient. The total 
delay is considered as 1.5Ts, as expressed in (2), and the Padé 
approximation can be adopted to approximate the time delay. 
As shown in Fig. 12 (b), the feedback point is moved right after 
Ginv(s), the feedback term is ( ) ( )c invG s G s H  . 

As shown in Fig. 13, the grid current closed-loop control can 
be modeled as one voltage source in series with one control 
impedance Zc = . The inverter bridge output 

voltage can then be expressed as 

*
0 0 0( ) ( ) ( ) ( )i c inv i c inv iv G s G s i G s G s H i                 (18) 

Fig. 14 shows the bode diagram of the control impedance Zc, 
where three Padé approximation methods are compared. 
Different frequency responses are observed at the high 
frequency range above 1 kHz, whereas quite similar responses 
at lower frequencies. From the phase feature, it can be seen that 
the control impedance Zc is resistive-inductive in the range [0 
Hz, 50 Hz], and is resistive-capacitive beyond 50Hz. Therefore, 
the contribution of the current control to system stability can be 
replaced by the control impedance Zc. 

 
 

 

B. Mutual-Current and Self-Current 

As mentioned previously, the parallel inverters are 
connected to each other through the interaction admittance Yint 
as shown in Fig. 7. If the interactions exist in the parallel 
inverters, there will be currents flowing through these 
interaction admittance; otherwise, there will be no interactions 
among these inverters. In this paper, the current through the 
interaction admittance is defined as mutual-current. When 
considering a system with N inverters, the current can be 
divided into N parts: N-1 mutual currents flowing to other 
parallel inverters through interaction impedance; and the rest of 
the current flowing into the sum admittance Ysum_1 

=Y11+Y12+...+ Y1N. The current on the sum admittance Ysum is 
defined as self-current. 

C. Dynamics and Stability Analysis of Multiple Parallel 
Inverters 

As shown in Fig. 15, the mutual-current im_ij between the #i 
inverter and #j inverter and its self-current iself_i can be written 
as 

_ 0 0 int( )m ij i ji v v Y                            (19) 

( ) ( )c invG s G s H 

 
(a) 

 
(b) 

Fig. 12.   Current control system: (a) the control structure diagram and 
(b) the equivalent control diagram. 

*
0( ) ( )s c invv G s G s i  

( ) ( )c c invZ G s G s H  

sv
sv

 
Fig. 13.  Equivalent circuit of multi-parallel inverters considering the 
closed loop control. 

 
Fig. 14.  Bode diagram and impedance equivalence of Zc under 
different frequency ranges. 
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_ 0self i i sumi v Y                               (20) 

where v0i and v0j are the voltages at #i and #j node, respectively. 

 
The relationship among the mutual current im_ij and the 

self-current iself_i and the output current i0_i is expressed 
according to the Kirchhoff’s current law as 

0 _ _ _
1,

N

i m ij self i
j j i

i i i
 

                          (21) 

Combining (18), (19), (20), (21), the mutual-current and 
self-current can be derived as 

* *int
_ 0 0( ),

(1 )
c inv

m ij i j
LCL c

G G Y
i i i i j

M Z

 
   

 
                      (22) 

* * * *
_ 0 0 01 0

1,

1 1
( ) ( )

(1 ) (1 )

N
c inv sum c inv sum

self i i j n
j j i LCL c Grid c

G G Y G G Y
i i i i i

N M Z N M Z 

   
        

     (23) 

which indicates that im_ij is a function of the interaction 
admittance Yint and control impedance Zc, while iself_i is a 
function of the total admittance Ysum_i. The derivation process is 
written in Appendix I. Substituting (22) and (23) into (21) 
yields the output current as (24).  

Merging the different current references in (24), the inverter 
output current can then be divided into two major terms: 
reference tracking characteristic transfer function T(s) and 
other output current impact transfer function R(s). T(s) stands 
for the reference tracking characteristic while R(s) stands for 
the influences from other inverters. They correspond to the 
concepts in the classical control theory: T(s) resembles the 
complementary sensitivity function whereas R(s) resembles 
sensitivity function [32]. T(s) - R(s) =1. It implies that the #i 
output current i0_i not only depends on its own current reference 
i* 

0_i, but also it is affected by other output current references i* 
0_j. 

Those can be expressed as 

1 1
( )

(1 ) (1 )
LCL c Grid c

LCL c Grid c

M Z M Zn
T s

n M Z n M Z

 
   

   
                    (25) 

1 1
( )

(1 ) (1 )
LCL c Grid c

LCL c Grid c

M Z M Z
R s

n M Z n M Z

 
    

   
                    (26) 

Both T(s) and R(s) contains the inverter number n, control 
impedance Zc, and transfer functions MLCL and Mgrid. n is a 
symbol to replace the inverter number N in (24), (25) and (26). 
They are the linear combinations of J1(s) and J2(s) that are 
written as 

1( )
(1 )

LCL c

LCL c

M Z
J s

M Z




 
  and   

2 ( )
(1 )

Grid c

Grid c

M Z
J s

M Z




 
         (27) 

where J1(s) and J2(s) are the closed-loop transfer functions of 
two Single-Input Single-Output (SISO) feedback systems, as 
shown in Fig. 16. In fact, J1(s) describes the closed-loop model 
of the LCL-filtered inverter connected to the stiff grid. It is the 
function of MLCL and control impedance Zc. In contrast, J2(s) 
describes the closed-loop model of the inverter connected to the 
grid with n·Zg grid impedance. 

 

 
Fig. 17 plots the step responses of J1(s) and J2(s), which 

shows that they have quite different dynamics due to the 
difference between MLCL and Mgrid (see(14)). Compared to 
MLCL, Mgrid has an additional term n·Zg in the denominator. It 
means that the dynamic difference of J1(s) and J2(s) depends on 
the inverter number n and the grid impedance Zg. In steady-state, 
both J1(s) and J2(s) are approaching unity. 

Moreover, the step responses of T(s) and R(s) are plotted in 
Fig. 18. Due to the impact of J2(s), the reference tracking 
transfer function T(s) is equal to neither J1(s) nor J2(s), but their 
linear combinations. From the mathematic perspective, T(s) 
will approach J1(s) when the inverter number n increases. It 
indicates that the influence of other modules on the inverter is 
the largest when the inverter number is 2. The other inverter 
impact transfer function R(s) is approaching zero in 
steady-state according to (26) because both J1(s) and J2(s) are 
approaching unity. It means that the other inverters have 
negligible impact on the steady-state behaviors, and they only 
affect the dynamic responses. 

*
0( ) ( )s c invv G s G s i  

( ) ( )c c invZ G s G s H  

sv
sv

 
Fig. 15.  Equivalent circuit of multi-parallel inverters considering the 
closed-loop control. 

 
Fig. 16.  Equivalent control block diagram of J1(s) and J2(s). 

 
Fig. 17.  Step responses of J1(s) and J2(s). 
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In order to explore the stability of multiple parallel inverters 

with LCL-filters, the entire system stability is classified as 
Reference Tracking T(s) stability and Impact Transfer Function 
R(s) stability. T(s) and R(s) are linear combinations of J1(s) and 
J2(s), and consequently, the whole system stability is 
transformed into the stability of J1(s) and J2(s). If any of J1(s) 
and J2(s) is unstable, the impact transfer function R(s) will 
diverge, and the system becomes unstable. The detailed 
example and application will be discussed in the following. 

 

V. SIMULATION ANALYSIS AND RESULTS 

Simulations are performed on the co-simulation platform of 
Matlab/Simulink and PLECS, where the main circuit topology 
is built in PLECS and the control scheme is executed in Matlab. 

The controller is constructed in the discrete domain. The 
simulation model includes three-phase grid-connected inverters 
with LCL-filters, as well as the grid impedance/inductance and 
PFC capacitors describing the grid conditions. The inverter 
number is three. Table I lists the system parameters of 
simulation model. 

A. Ideal Stiff Grid Condition 

In the stiff grid case, the grid inductance Lg is equal to zero, 
Lg = 0 mH. According to (14) and (15), MLCL = Mgrid, the 
interaction admittance Yint = 0, meaning that there will be no 
admittance allowing the mutual-current to pass through. 
Furthermore, as (25)-(27), J1(s) = J2(s), the reference tracking 
T(s) = J1(s), while the impacts from remaining inverters R(s) = 
0. It means that other inverters have no impact on the output 
characteristic of the inverter output current. The parallel units 
are operating individually as a single inverter in an ideal grid 
condition, which has been well known. Fig. 19 shows the 
performance of three parallel inverters in the ideal stiff grid. It 
shows the individual inverter system bandwidth is designed at 
820 Hz, and all the system poles are located inside the unit 
circle. At t=0.165s, a step change from 10A to 15A in the #1 
inverter current reference is set to observe the dynamics, the 
result verifies the system stable operation during transient 
process. Three inverters are operating in good condition to 
inject power to the power grid. 

 

 

 
Fig. 18.  Step responses of T(s) and R(s). 
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(a) 

 
 (b) 

Fig. 19. Grid-connected inverters operating in the ideal stiff grid 
condition: (a) the stable operating point of inverters with bandwidth 
820Hz and control gain 13 and (b) simulation results of multiple 
inverters system for a stable case. 

 
Fig. 20. Simulation results of multiple inverters, where the #1 inverter 
is unstable and the other two inverters are stable. 

 
Fig. 21. Root locus of J2(s) under an inductive grid condition. 
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Fig. 20 shows the simulation results of another case. As 
analyzed, the inverters will have no impact on other inverters 
due to the zero interaction admittance. Here, the #1 inverter 
becomes unstable through adjusting the control gain out of the 
stable boundary, it can be observed that other inverters are still 
stable. The unstable operation of #1 inverter does not influence 
other inverters. 

B. Inductive Grid Condition 

In the real grid condition, the grid impedance exists in the 
grid networks in a big or little number due to the physical 
elements, such as long transmission cables and transformers. 
The grid strength is numerically reflected by a term Short 
Circuit Ratio (SCR), a ratio between the grid short circuit 
power and inverter nominal power. A larger SCR means a 
stronger AC grid while as a smaller SCR leads to a weak grid. 
Due to the grid impedance, the increasing total inductance L 
results in a larger control gain limit (the stable boundary 
changes from 19 to 22.8) and a smaller bandwidth 520 Hz (830 
Hz to 520 Hz). The stability of multiple-inverter system is 
divided into J1(s) stability and J2(s) stability. For J1(s) stability, 
it only depends on the filter parameters and controller 
parameters, it has been shown in Fig. 19(a). Compared to J1(s), 
J2(s) is different due to the additional impedance n·Zg. Hence, 
the stability status of J2(s) also varies from J1(s). For instance, 

Fig. 21 presents the stable operating point of J2(s) with three 
parallel inverters (n=3) and grid impedance Zg = 0.5 mH 
provided that the inverter controller and filter parameters are 
kept the same. It can be observed that stable boundary is larger 
and the bandwidth of J2(s) changes from 820 Hz (the bandwidth 
of J1(s)) to 520 Hz. 

As for the different stable boundaries and bandwidths for J1(s) 
and J2(s), if the bandwidth and control gain are within the 
boundaries of J1(s) and J2(s), then the entire system is stable. 
On the other hand, if the control gain exceeds the boundaries of 
J1(s) and J2(s), the entire system will become unstable. In 
addition, it is still likely to have the case that J2(s) is stable 
while J1(s) is unstable because J2(s) has a wider stable 
boundary than J1(s) due to the larger inductor for J2(s). Fig. 22 
presents the case that the #1 inverter and #2 inverter are 
unstable while the #3 inverter is stable. The control gain for 
these inverters are: #1, Kp1 = 21; #2, Kp2 = 21; #3, Kp3 = 13. 
There are resonant currents circulating between #1 inverter and 
#2 inverter, and the mutual current is unstable. The resonance 
frequency can be identified on the root locus plot, which is 
around 1.67 kHz. This analysis above is in agreement with the 
outcome presented in [8]. 

          
Fig. 22. Simulation results of three inverters operating in an inductive grid, two inverters are unstable: (a) PCC voltage and output currents; (b) 
zoom in 1# and 2# currents; (c) magnitude response. 

          
Fig. 23. Simulation results of three inverters operating in an inductive grid, three inverters are unstable: (a) PCC voltage and output currents; (b) 
zoom in 1#, 2# and 3# currents; (c) magnitude response. 
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Fig. 23 shows the case where the control gains of all the three 

inverters are equal to 21. It can be observed that the currents are 
circulating among these three inverters. However, the sum of 
the three currents is still sinusoidal. Different from the 
traditional concept of circulating current, the resonant mutual 
currents only circulate among the AC side, and the DC-link 
voltage remains stable during the operation. Fig. 24 shows the 
simulation results of the DC-link voltage. 

C. Inductive Grid Condition with Power Factor Correction 
Capacitor 

If the PFC capacitor CPFC is taken into consideration in 
parallel-inverter system, the analysis will be more complicated 
because the additional capacitor increases the system order. 
Notably, through the theory proposed in this paper, system 
stability in such situation still can be classified into two stability 
conditions: J1(s) stability and J2(s) stability. For J1(s) stability, 
it is the same with previous analysis. For J2(s) under this grid 
condition, the inverter-grid system has been changed, as shown 
in Fig. 25. It is a five-order system with an equivalent grid 
impedance Zg_eq that can be expressed as 

_ 2
( )

1
g

g eq g PFC
g PFC

n L s
Z n Z Z

L C s


  


                 (28) 

 
As shown in (28), the grid impedance Zg_eq is equal to zero if 

the grid series inductance Lg is equal to zero, and then the PFC 
capacitor has no influence on the system stability. It implies 
that PFC capacitor has no impact on system stability alone 
without grid inductance. Therefore, the following analysis 
concentrates on the scenarios where the grid inductance Lg is a 
non-zero value. Fig. 26 plots the root locus of J2(s) under an 
inductive grid condition with PFC capacitor CPFC. Compared to 
the previous root loci in Figs. 19 and 21, two more poles (six 
poles in total) and two more zeros (on the circle edge) are 

introduced, and therefore, the stability status of multiple 
inverters is altered. By plotting different root loci, it can be 
concluded the additional zeros are induced by the resonant part 
of grid impedance Lg and PFC capacitor CPFC. So, the root locus 
changes with the variation of Lg and CPFC. 

 

 
To clarify the influence of the grid inductance Lg on the 

system stability, four sets of grid conditions in Table II are 
compared while the PFC capacitor is a fixed at CPFC = 40 μF. 
The results are shown in Fig. 27. It can be observed that the root 
locus is the same with a single inverter as Fig. 19 (a) when the 
grid is stiff (SCR = ∞). With the increase of the grid inductance 
Lg or decrease of the SCR value, two zeros induced by Lg and 
CPFC become closer to the (1,0) point. It is interesting to note 
that all the root loci cross over the point (1/2, ±√3/2) and the 
stable regions of different SCR values are similar with each 
other. 
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Fig. 24. Simulation results (the DC-link voltage) of the 
multiple-inverter system under an inductive grid condition. 

            
Fig. 25. Equivalent circuit for J2(s) if the PFC capacitor CPFC is added.

 
Fig. 26. Root locus of J2(s) under an inductive grid condition with PFC 
capacitors CPFC. 

 
Fig. 27. Root loci for different SCR and grid conditions. 
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Fig. 28 presents the stable regions with various PFC 
capacitance: (a) plots the root loci with relatively large 
capacitance from 10 μF to 100 μF and (b) plots the root loci 
when the PFC capacitance ranges from 1 μF to 5 μF. The grid 
inductance Lg is chosen as #3 condition in Table II, Lg = 3.4mH 
(SCR =5). From the figures, these root loci are quite different 
from each other if the PFC capacitances are selected in different 
ranges. It can be observed that the system with the 100 μF PFC 
capacitor has a wider stable region than the system with 10 μF. 
The reason is that the PFC capacitor offers grid voltage support 
at the PCC, and then the negative influence of the grid 
impedance Zg will be lessened. On the other hand, the PFC 
capacitor also brings resonance to the system. Fig. 28 (b) 
reveals that a relatively small capacitor will bring two resonant 
poles outside the unit circle, meaning that the system will turn 
to unstable no matter what the control gain is. 

Fig. 29 presents the simulation results comparing the cases: 
(a) CPFC = 50 μF and (b) CPFC = 3 μF. In agreement with the 
above analysis, the multiple-parallel system is more robust 
when the PFC capacitor is 50 μF due to the voltage support at 
the PCC. Unfortunately, the system turns to be unstable when 
the PFC capacitor is equal to 3 μF. The analysis reveals that the 

value of the PFC capacitance has a great impact on the stability 
of multiple-inverter systems. 

 

VI. EXPERIMENTAL VERIFICATION  

For the experimental verification, a laboratory-scale 

 
Fig. 30. Laboratory-scale three-inverters prototype, inverter number n 
= 3. 

 
       (a)                                                                                                          (b) 

Fig. 28. Root loci for different PFC capacitances: (a) CPFC = 10, 20, 50, 100 μF and (b) CPFC values 1, 2, 3, 4, 5 μF. 
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Fig. 29. Simulation results of the system with: (a) CPFC = 50 μF and (b) CPFC = 3 μF. 
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three-inverter prototype with LCL-filters is built up to verify 
the analysis. Its physical layout and parameters are given in Fig. 
30 and Table III, respectively. The control scheme is realized 
with a dSPACE DS1007 platform, whose output PWM signals 
are channeled through fiber optic cables to commercial 
inverters. The inverters are then connected to the Chroma 
61800 Grid Simulator acting as the ideal grid, while the input 
DC-link voltages are provided by Yaskawa D1000 regenerative 
converters. Through the stability analysis in the previous 
sections, J1(s) and J2(s) have different stability regions. 
According to the root locus analysis, the stable range for J1(s) is 
0< Kp <20.1, whereas the stable range for J2(s) is 0< Kp <27.5. 
Note that J2(s) has a wider stable region than J1(s). It means that 

there are four possible combinations for the stable conditions of 
these two currents: (1) both the self-current and mutual current 
are stable; (2) the self-current is stable, but the mutual current is 
unstable; (3) the mutual-current is stable, but the self-current is 
unstable; (4) neither the self-current nor the mutual-current are 
stable. 

The experiment results verify these possibilities. In 
experiment #1, if the proportional gain Kp satisfies the J1(s) 
stable requirement 0< Kp <20.1 (Kp=18 in this case), it certainly 
meets the J2(s) stable requirement 0< Kp <27.5. Then, all the 
three parallel inverters are stable, as shown in Fig. 31. The 
waveform of the PCC voltage is also stable. For experimental 
#2, Kp of the 1 # and 2 # inverter is changed from 18 to 25, and 
Kp of the 3 # inverter is kept the same. In this situation, the 

mutual-current is unstable while the self-current is stable. It can 
be observed from Fig. 32 that the resonant current between the 
1 # inverter and 2 # inverter is triggered. Although the 1 # 
inverter and 2 # inverters don’t work in a proper way, the PCC 
voltage remains stable and the 3 # inverter is also in a stable 
operation. In experiment #3, Kp values of all three inverters are 
set above the stable limit 27.5. Then, the results are presented in 
Fig. 33, where all the three grid currents are unstable. The 
system stability, which is divided into self-current stability and 
mutual-current stability, is demonstrated and validated through 
three experiments. 

 
 

 

 

Fig. 34.  Experimental test with PFC capacitor CPFC = 5 μF. 

 
Fig. 33.  Mutual-current is unstable, the self-current is unstable. 

               
Fig. 32.  Mutual-current is unstable, the self-current is stable. 

   
Fig. 31.  Both the self-current and mutual-current are stable. 
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To verify the impact of PFC capacitor on the system stability, 
a three-phase capacitor is inserted in parallel at the PCC. As 
demonstrated in Fig. 28, different PFC capacitance values will 
result in different root loci and stability status. It is revealed that 
a small capacitor will bring unstable poles, leading to system 
instability. Fig. 34 shows the experimental results with the PFC 
capacitor equals to 5 μF, the system turns from stable operation 
to resonant situation. With the increasing of PFC capacitor, the 
Fig. 28 (a) shows that system will have wider stability range 
and larger control gain limit because a large capacitor has the 
function of supporting voltage at PCC point, making the system 
more robust. Then, 40 μF PFC capacitor is added to the system 
to replace the 5 μF capacitor. It can be seen that an additional 
capacitor stabilizes a system which is unstable at the beginning 
point. By adding the capacitor, the system has a better stability 
status. This is in good agreement with what have been 
discussed in simulation part. 

 

 

VII. CONCLUSION 

This paper investigated the mutual interaction and stability 
issues of multiple grid-interfacing inverters with LCL-filters 
operating in the power inverters-based power system in 
different grid conditions. Such interactions between power 
inverters and grid will excite multiple resonances at various 
frequencies under various grid conditions. The nodal 
admittance matrix concept has been adopted in this paper. This 
paper then developed an Interaction-Admittance to describe 
and model these mutual interactions and coupling effects using 
a network physical admittance. Different grid scenarios, 
including the stiff grid condition, the inductive grid condition 
with/without PFC capacitors, can be well illustrated and 
analyzed using the proposed model. This model exhibits more 
intuitive and clearer illustration on multi-inverters system 
resonance and instability problems, which have been validated 
through simulations and experiments on a lab-scale prototype. 
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TABLE I 
SIMULATION MODEL PARAMETERS 

Nominal System Parameters 

Power Rating S  15 kW 

Grid frequency gf  50 Hz 

DC-link voltage dcV  730 V 

Grid voltage gV  380 Vrms 

Sampling frequency sf  10 kHz 

Switch frequency swf  10 kHz 

Parameters of grid-connected inverter 

Converter-side inductor 1L  1.5 mH 

Filter capacitor fC  4.7 μF 

Grid-side inductor 2L  1 mH 

Resonance frequency rf  2.51 kHz 

Parameters of grid condition 

Grid inductance gL  0.8 mH 

Filter capacitor fC  7 μF 

 

TABLE II 
DIFFERENT GRID CONDITIONS 

No. Grid Inductance Lg SCR 

#1 Lg  = 0 mH Infinity 

#2 Lg  = 1.7 mH 10 

#3 Lg  = 3.4 mH 5 

#4 Lg  = 8.5 mH 2 

 

TABLE III 
SYSTEM PARAMETERS 

Nominal System Parameters 

Converter-side 
inductor 

 

1.5 mH 

Filter capacitor 
 

4.7 μF 

Grid-side 
inductor 

 

1.5 mH 

Grid inductance 
 

1 mH 

DC voltage dcV  730 

 

1L

fC

2L

gL


