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An Iterative Receiver for OFDM With
Sparsity-Based Parametric Channel Estimation

Thomas L. Hansen, Peter B. Jørgensen, Mihai-Alin Badiu and Bernard H. Fleury

Abstract—In this work we design a receiver that iteratively
passes soft information between the channel estimation and
data decoding stages. The receiver incorporates sparsity-based
parametric channel estimation. State-of-the-art sparsity-based
iterative receivers simplify the channel estimation problem by
restricting the multipath delays to a grid. Our receiver does not
impose such a restriction. As a result it does not suffer from the
leakage effect, which destroys sparsity. Communication at near
capacity rates in high SNR requires a large modulation order.
Due to the close proximity of modulation symbols in such systems,
the grid-based approximation is of insufficient accuracy. We show
numerically that a state-of-the-art iterative receiver with grid-
based sparse channel estimation exhibits a bit-error-rate floor in
the high SNR regime. On the contrary, our receiver performs very
close to the perfect channel state information bound for all SNR
values. We also demonstrate both theoretically and numerically
that parametric channel estimation works well in dense channels,
i.e., when the number of multipath components is large and each
individual component cannot be resolved.

Index Terms—Iterative receivers, message-passing algorithms,
sparse channel estimation, parametric channel estimation, off-
the-grid compressed sensing.

I. INTRODUCTION

Achieving high data-rate wireless communication with large
spectral efficiency requires the use of higher-order modulation
formats, e.g. up to 256-QAM in 3GPP LTE [1]. Clearly using a
high modulation order presuppose a large signal-to-noise ratio
(SNR), which will be supported by the envisioned transition
to small-cell operation. The availability of channel estimation
schemes that achieve high accuracy is crucial for receivers of
systems with large modulation order operating in the high-
SNR regime.

To facilitate channel estimation, current systems embed pilot
symbols into the transmitted signal. In orthogonal frequency-
division multiplexing (OFDM) systems, a number of sub-
carriers are assigned to transmit pilot symbols. The number
of pilots is chosen to optimize throughput as a trade-off
between the amount of bandwidth and power allocated to pilot
transmission and fidelity of the channel estimate.

In this work we seek to improve upon this trade-off by
designing a highly accurate channel estimator while requiring
a low pilot overhead. We propose a unified receiver design
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Fig. 1. Flowchart of classical receiver design.

that incorporates two main ideas: a) an iterative architecture
and b) sparsity-based parametric channel estimation.

Our proposed receiver does not require any a-priori sta-
tistical information about the wireless channel and is thus
a particularly good candidate for systems where no such
information is available.

A. Design of Iterative Receivers

Classical receiver design employs a functional splitting
of the process in the receiver into independent subtasks, as
illustrated in Fig. 1. Such a structure is suboptimal, since the
information learned from the received signal in any of the
subtasks is only utilized in subsequent subtasks. To remedy
this sub-optimality feedback loops can be introduced between
the functional blocks in the receiver. This approach is known
as the turbo principle [2], [3] due to its resemblance to iterative
decoding of turbo codes.

Application of the turbo principle has led to many iterative
receiver designs, e.g. [2]–[4]. Common to these works is that
each of the subtasks are designed independently using tradi-
tional methods such as maximum likelihood (ML), maximum
a-posteriori probability (MAP) or minimum mean squared
error (MMSE). The work [5] introduced receiver design from
the perspective of inference in a factor graph. This allows
for the receiver subtasks to be designed jointly with a certain
objective in mind; a common example is to seek the MAP
estimate of the information bits. Due to tractability and com-
putational constraints, approximate inference methods must
be employed for iterative receiver design. Examples of such
methods are expectation propagation [6], belief propagation
(BP) with approximated messages [7], combined BP and
mean-field (MF) [8], [9], relaxed BP [10] and generalized
approximate message-passing (GAMP) [11].

B. Parametric Channel Estimation

The impulse response of the compound channel (composed
of the transmitter RF front-end, the propagation channel and
the receiver RF front-end) is traditionally modelled as a sum
of the form

g(τ) =
L∑
l=1

αlc(τ − τl), (1)
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where c(τ) denotes the compound impulse response of the
transmitter and receiver RF front-ends. Here, L is the number
of so-called multipath components. The lth multipath com-
ponent is characterized by its coefficient or weight αl ∈ C
and its relative delay τl ∈ R. For short we refer to g(τ) in
(1) as the channel impulse response (CIR). When the number
of multipath components L is small relative to the number
of OFDM subcarriers, the model (1) provides a parsimonious
representation of the compound channel and it is advantageous
to perform channel estimation by estimating the parameters of
this model, i.e., estimating L, αl and τl for l = 1, . . . , L. We
refer to this approach as parametric channel estimation. It has
been generally understood for many years [12], [13] that the
delays can only be estimated when the multipath components
are well separated (see footnote 7).

In our application context it is very restrictive to assume that
the CIR takes the form (1) with L small and all delays well
separated. In Sec. II-B we demonstrate that even if the wireless
channel exhibits a very large number of (closely located)
multipath components its CIR can still be approximated by
(1) with L small1. We refer to this approximation as the
virtual CIR. We show that the corresponding virtual channel
frequency response (CFR) accurately approximates the actual
CFR within the system bandwidth. This means that we can use
(1) with L small as an estimation model even for channels of
which the multipath components cannot be resolved with the
used system bandwidth.

Early works on parametric channel estimation address
applications to underwater communications [14] and ultra-
wideband (UWB) communications [15], [16]. Another classi-
cal example is the rake receiver [17]. All of these older works
assume that the number of (virtual) multipath components L
is known a priori or use heuristics to estimate it.

A sparsity-based (or compressed sensing-based) approach
can be used to allow for inherent estimation of the number of
(virtual) multipath components. Most literature on sparsity-
based channel estimation [18]–[24] employs a grid-based
approximation of the CIR model (1), where the multipath
delays are confined to a discrete set of possible values. When
a baud-spaced grid2 is used, we refer to the samples of the
CIR (1) as channel taps. The grid-based approximation results
in a leakage effect3 [21], [25] and the vector of channel taps
is therefore only approximately sparse [11], [23], [24]. We
demonstrate in our numerical investigation that the grid-based
approximation impairs the performance of receivers for OFDM
systems with large modulation order operating in the high-
SNR regime. From a compressed sensing point of view the
effect of the grid-based approximation can be understood as a
basis mismatch [26].

Recent works on off-grid compressed sensing have proposed
1 Our analysis makes the usual assumption in OFDM of time-limited CIR,

see (3). Our results are therefore only directly applicable to scenarios where
this assumption can reasonably be made, as is usually the case in radio
communication.

2In the baud-spaced grid, the distance between adjacent grid points is the
reciprocal of the system bandwidth.

3 The compound wireless channel has a representation on the baud-spaced
grid obtained by sampling g(τ). This representation is not sparse due to the
presence of the RF front-end filter c(τ) in (1) that introduces leakage.

methods that could in principle be applied to sparsity-based
channel estimation without resorting to the grid approximation.
These are based on atomic-norm minimization [13], [27], [28],
finite rate of innovation [29] or Bayesian inference [30]–[33].
While all these methods show good performance, the former
two cannot easily be incorporated in an iterative receiver. In
this paper we show how sparsity-based parametric channel
estimation can be incorporated in an iterative receiver by
using approximate Bayesian inference. Our channel estima-
tion scheme is sparsity-based in the sense that a sparsity-
promoting prior model is used to achieve inherent estimation
of the number of (virtual) multipath components (the vector
z associated with (12) is sparse) and it is parametric in the
sense that a parametric channel model is used to design the
channel estimator.

C. Prior Art

Several prior works incorporate sparsity-based channel esti-
mation in an iterative receiver. Prasad et. al. [23], [24] propose
a joint sparse channel estimation and detection scheme for
OFDM transmission. Channel decoding is not considered in
the joint processing and the EM algorithm is used for channel
inference. A baud-spaced grid is used.

Iterative receiver design for OFDM systems via GAMP
and relaxed BP is proposed by Schniter in [10], [11]. The
estimated multipath delays are restricted to the baud-spaced
grid. In the numerical evaluation of [10] the CIRs fulfill this
restriction, thus avoiding the leakage effect at the expense of
introducing an unrealistic channel model. In [11] a channel
model generating continuous-valued delays is assumed. It is
shown that the channel taps follow a super-Gaussian density
that is modelled via a two-component Gaussian mixture. Due
to the baud-spaced grid the channel taps are correlated, which
is mimicked with a hidden Markov model. The resulting model
has a large number of parameters to be estimated, that causes
systems with high-order modulation format to exhibit a bit-
error-rate (BER) floor when operating in the high-SNR regime
(see Sec V).

The problem of parametric channel estimation based only
on pilots or in the contrived case when the data symbols are
given is equivalent to that of line spectral estimation [22]. The
work [31] proposes a variational Bayesian approach to line
spectral estimation. It is shown that the Bernoulli-Gaussian
prior [34] is a powerful and tractable sparsity-inducing model.
Our sparsity-based parametric channel estimator is inspired by
[31] and uses the Bernoulli-Gaussian prior model too. It differs
from [31] in several aspects: a) at the data subcarriers the
observations are modulated with the unknown data symbols,
b) we impose that the estimate of the posterior probability
density function (pdf) of the multipath coefficients factorizes
and c) to reduce computational complexity we use a point
estimate of the multipath delays.4

D. Contributions

The contributions of this paper are as follows:
4By contrast, the scheme in [31] applied in our context computes estimates

of the posterior distribution of the delays.
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1) We propose a method to incorporate sparsity-based
parametric channel estimation into an iterative receiver.
Specifically we use the combined BP and MF (BP-MF)
framework [8] to derive such an iterative receiver within
a unified framework.

2) We show (numerically) that iterative receivers for
OFDM with high modulation order exhibit an error floor
in the high-SNR regime when they employ state-of-
the-art sparse channel estimation based on the baud-
spaced grid approximation. Our iterative receiver design
demonstrates how this error floor can be avoided.

3) We demonstrate that parametric channel estimation, con-
trary to immediate intuition, can be applied to both spec-
ular and dense channels. In particular it is shown that the
impulse response of any uncorrelated scattering channel
can be approximated within the system bandwidth by a
virtual CIR of the form (1). The number of components
L in the virtual CIR is equal to the effective rank of the
channel covariance matrix. We demonstrate numerically
that the effective rank of the channel covariance matrix
is low for both a specular and a dense synthetic channel.

4) Our algorithm development demonstrates how the BP-
MF framework can be modified to provide approximate
ML estimation of model parameters and how some
latent variables can be estimated jointly to improve
convergence speed. We expect that these approaches will
prove useful in other applications of BP-MF.

Our receiver only uses a few parameters (specifically the noise
variance and the two parameters of the Bernoulli-Gaussian
prior model, sparsity level ρ and multipath coefficient variance
η) to describe the statistical properties of the CIR and these are
inherently estimated by appropriately modifying BP-MF. This
is in contrast to, for example, the linear MMSE (LMMSE)
channel estimators, which require a-priori specification of the
second-order statistics of the CFR [4], [35], and the GAMP
receiver [10], which relies on the second-order statistics of
the channel taps and the transition probabilities of the hidden
Markov model.

The parametric channel estimation scheme that we propose
requires the compound frequency response of the RF front-
ends to be known (at active subcarriers). While that is not
a wholly unrealistic assumption, it may prove too restrictive
in some practical situations. Since this frequency response is
stable over many OFDM symbols we expect that it can be
estimated; however that falls outside the scope of this work.

E. Notation and Outline

We denote column vectors as a and matrices as A.
Transposition is denoted as (·)T and conjugate (Hermitian)
transposition as (·)H. The scalar ai or [a]i gives the ith entry
of vector a, while aS gives a vector containing the entries
in a at the indices in the integer set S. The set difference
operator S\{i} gives the index set S with index i removed; we
abuse notation slightly and write S\i for short. The notation
[A]i,k gives the (i, k)th element of matrix A. We denote the
vector a with the ith element removed as a\i and use a similar
notation for matrices with columns and/or rows removed (e.g.

[A]i,\k for the ith row with kth entry removed). The notation
diag(a) denotes a matrix with the entries of a on the diagonal
and zeros elsewhere. The indicator function 1[·] gives 1 when
the condition in the brackets is fulfilled and 0 otherwise. The
notation a ∝e b denotes exp(a) ∝ exp(b), which implies
a = b + const. The multivariate complex normal probability
density function (pdf) is defined as

CN(x;µ,Σ) , π− dim(x)|Σ|−1 exp
(
−(x− µ)HΣ−1(x− µ)

)
.

The notation unif(x; 0, T ) gives the continuous uniform pdf
on the interval [0, T ] and Bern(x; ρ) gives the Bernoulli
probability mass function (pmf) for x ∈ {0, 1} with probability
of success ρ. We use ∗ to denote convolution and δ(·) and δ[·]
to denote the Dirac and Kronecker delta, respectively.

The paper is structured as follows: In Section II we specify
the observation model. In Section III our approach to approxi-
mate Bayesian inference is discussed. The inference algorithm
is derived in detail in Section IV. Section V presents the
numerical evaluation. Conclusions are given in Section VI.

II. MODELLING

We consider data transmission using a single-input single-
output OFDM system. Since we do not exploit any structure
between consecutive OFDM symbols, we model the sequence
of transmitted OFDM symbols to be independent and identi-
cally distributed (i.i.d.). The OFDM system transmits P pilot
subcarriers and D data subcarriers, such that the total number
of subcarriers per symbol is N = P +D. The sets P and D
give the indices of the pilot and data subcarriers, respectively.
It follows that D ∪ P = {1, . . . , N} and D ∩ P = ∅.

A. OFDM System

The K (equi-probable) information bits to be transmitted
are stacked in vector u ∈ {0, 1}K . These bits are coded
by a rate-R encoder and interleaved to get the length-K/R
vector c = C(u). The interleaving and coding function C :
{0, 1}K → {0, 1}K/R can represent any interleaver and coder,
e.g. a turbo [36], low-density parity check (LDPC) [37] or
convolutional code. We split c into subvectors c(i) ∈ {0, 1}Q,
i ∈ D, such that c(i) contains the Q bits that are mapped to
the ith subcarrier. The complex symbols xi =M(c(i)), i ∈ D,
are obtained via the 2Q-ary mappingM : {0, 1}Q → AD ⊂ C,
where AD is the data symbol alphabet. The pilots are selected
in the pilot symbol alphabet AP ⊂ C. In OFDM, AD is typically
a 2Q-ary quadrature amplitude modulation (QAM) alphabet
and AP a quadrature phase shift keying (QPSK) alphabet. The
pilot and data symbols are stacked in vector x. Vector xD
contains the data symbols and xP contains the pilot symbols.

The transmitter and receiver are assumed to operate with
perfect time synchronization. We also assume that the local
oscillators in the transmitter and receiver are perfectly synchro-
nized and that these oscillators are ideal (i.e., no phase noise,
etc.) We consider a baseband signal model and assume ideal
conversion to and from the carrier-frequency passband signal.
The RF front-ends are modelled as linear time-invariant filters
with compound impulse response c(τ) = cTX(τ)∗cRX(τ). The
wireless channel is also assumed linear and time-invariant for
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the duration of an OFDM symbol. The impulse response of the
propagation channel during transmission of the current OFDM
symbol is denoted h(τ) and the (compound) CIR is then

g(τ) = c(τ) ∗ h(τ). (2)

We make the usual assumption of time-limited CIR:

g(τ) = 0 for τ /∈ [0, TCP], (3)

where TCP is the cyclic prefix duration. In practice this
assumption needs only to be fulfilled relative to the noise
level.5

By the assumption in (3) the OFDM system operates with-
out inter-symbol interference, so we can consider transmission
of a single OFDM symbol. The OFDM transmitter is modelled
as a baseband processor followed by an RF front-end that
applies the filter cTX(τ). The baseband processor emits

s(t) =

{∑N
n=1 xn exp(j2π∆fnt) t ∈ [−TCP, Tsym]

0 otherwise,
(4)

where ∆f gives the subcarrier spacing and Tsym = ∆−1
f is

the OFDM symbol length. The OFDM receiver is modelled
as an RF front-end that applies the filter cRX(τ) followed by a
baseband processor that samples the signal. The signal at the
output of the receiver RF front-end is

r(t) = g(τ) ∗ s(t) + w(t), (5)

where w(t) is low-pass filtered white Gaussian noise. The
receiver baseband processor samples r(t), removes the cyclic
prefix and calculates the discrete Fourier transform to obtain
the observed vector y. The assumption in (3) ensures that
orthogonality of the subcarriers is preserved. It can be shown
[38] that

y = Xg +w, (6)

where X = diag(x). The Gaussian noise vector w is
assumed6 white with component variance β. The vector g
contains samples of the compound CFR at the subcarrier
frequencies and its entries are

gn =

∫ Tsym

0

g(τ) exp(−j2π∆fnτ) dτ, n = 1, . . . , N. (7)

Inserting (2) into (7) and by the convolution theorem we can
obtain (see [38] for details)

g = Ch, (8)

where C = diag(c). The vectors c and h contain samples of
the Fourier transform of c(τ) and h(τ), respectively. These
vectors are obtained analogously to (7).

B. Parametric Channel Model

We now consider a model for the propagation channel h(τ).
A classical model is the uncorrelated-scattering (US) channel

5Specifically the signal contribution in (6) arising from the tail of the
compound CIR outside [0, TCP] should be neglectable compared to noise.

6This assumption is fulfilled when the receive RF front-end has constant
frequency response within the system bandwidth.

[39], in which h(τ) is modelled as a stochastic process with
autocorrelation

E[h(τ)h∗(τ ′)] = ρ(τ)δ(τ − τ ′). (9)

The function ρ(τ) is the power-delay profile (PDP). We further
assume that the process h(τ) is zero-mean. The vector h is
then also zero-mean. Denote the covariance matrix of h as
Σ = E

[
hhH

]
. Using the US assumption it can be shown

that the frequency-response vector h contains samples of a
wide-sense-stationary random process and that Σ is a Toeplitz
matrix.

Denote the rank of the N × N matrix Σ as L. Then the
Caratheódory parameterization of a Toeplitz matrix [40], [41]
states that there exist vectors τ ∈ [0,∆−1

f )L and γ ∈ [0,∞)L

such that

Σ = Ψ(τ )ΓΨ(τ ), (10)

where Γ = diag(γ) and the matrix Ψ(τ ) ∈ CN×L has (n, l)th
entry exp(−j2π∆fnτl), n = 1, . . . , N , l = 1, . . . , L. Note
that the parameterization is unique if and only if L < N . From
(10) it is clear that h lies in the column space of Ψ(τ ) and
that it can be represented as h = Ψ(τ )α for some α ∈ CL.
It then follows that

g = CΨ(τ )α. (11)

The parametric channel estimator that we employ is obtained
by estimating τ and α in the above parametric model of g. It
is recognized that h is a superposition of complex sinusoids.
Thus, given X and C, the estimation of L, α and τ reduces
to an instance of line spectral estimation.

The reuse of notation between (1) and (11) is not accidental.
If the CIR is assumed to take the parametric from (1) and this
CIR is Fourier transformed to obtain the CFR, we get exactly
the expression (11). Parametric channel estimators are in fact
usually motivated by assuming that the CIR has the from (1).
But in the above we showed that the parametric model (11) can
be obtained from the US assumption, i.e., without explicitly
imposing a model of the form (1). This means that parametric
channel estimation can be used for all US channels. The pair
(τl, αl) denotes the delay and complex coefficient of a virtual
multipath component. The L virtual multipath components
described by (τ ,α) can be inserted into (1) to obtain a virtual
CIR. The above shows that if the covariance matrix Σ indeed
has rank L the corresponding virtual CFR coincides with the
CFR of the actual channel within the system bandwidth.

In this work we make the simplifying assumption that the
filters in the RF front-ends have constant frequency response
within the system bandwidth. This assumption means that
C = I (any constant scaling can be integrated into α).
This assumption is reasonable because typical OFDM systems
employ a number of unused virtual (or guard) subcarriers in
the roll-off region of the RF front-end filters [42].

Remark 1: The assumption C = I does not mean that there
are no filters at RF front-ends. It just means that these filters
have unit frequency response within the system bandwidth. To
be precise, the wireless channel is “observed” by the receiver
as described by (6) and (11). It is clear that the wireless
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channel is observed only within a band-limited interval of
length N∆f .

Remark 2: The assumption C = I can be relaxed to the
assumption that the frequency response of the RF front-ends
is arbitrary but known or estimated by the receiver (i.e., the
matrix C is known or estimated) [43]. Since C is fixed across
many OFDM symbols we expect that it can be estimated with
high accuracy by the receiver. An investigation of such an
approach is outside the scope of this paper. If C is known
the derivation in Sec. IV can be straightforwardly extended to
include C. We use C = I to keep the notation simple.

C. Specular and Dense Channels

The rank of the channel covariance matrix L describes the
channel’s number of degrees of freedom. The smaller this
number, the fewer parameters are needed in (11) to describe
the channel and the higher channel estimation accuracy can be
achieved. We are thus particularly interested in the case where
Σ is low-rank.

In this paper we classify channels into the two categories of
specular and dense channels. For specular channels the CIR
truly has the form (1) with L much smaller than N and the
delays in τ are well separated.7 In such channels the delays
τ and coefficients α can directly be estimated as indicated by
[13]. It is easy to show that the channel covariance matrix
of a specular channel does indeed take the form (10) and
that it has low rank. Empirical evidence suggests that the
wireless channel in some propagation environments is specular
to a large extent. In practice, specular channels are composed
of a small number of dominant multipath components and
a remaining part with power below the noise floor. Examples
include the ultra-wideband channels that are considered for 5G
wireless communications [44], [45] and underwater acoustic
channels [46]. See also [18], [47] and references therein.

It is, however, broadly accepted that wireless channels are
not always specular [11], [18], [48]. In the general case
they are composed of a very large number of multipath
components that do not adhere to a minimum separation
condition. That is caused by diffuse scattering and by rich
scattering environments. We refer to such channels as dense.
In dense channels it is not possible to estimate the delay and
coefficient of each multipath component in (1). The use of the
Caratheódory parameterization shows that it is, however, still
possible to estimate a set of virtual multipath components that
approximate the actual CFR within the system bandwidth. As
discussed above the parametric approach works better when
Σ has low-rank or, in other words, when the virtual CIR
has only few components. Using a representation based on
discrete prolate spheroidal sequences [49] it can be shown
that the assumption (3) implies that h effectively lies in a
subspace with dimension approximately given by dTCPN∆fe.
This value then also gives an upper bound on the effective
rank8 of Σ. OFDM systems are practically always designed
such that TCP∆f � 1 and so Σ has low effective rank. In

7“Well separated” is here meant relative to the reciprocal of the system
bandwidth 1/(N∆f ).

8By the effective rank we mean a rank that ignores very small eigenvalues.
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Fig. 2. Empirical CDFs of effective rank of Σ when a threshold is applied
to the eigenvalues. The plot is obtained by estimating the CDF from 1, 000
realizations in each of the scenarios described in Sec. V.

many cases the effective rank is even lower than dTCPN∆fe.
We demonstrate below that this is the case for a standardized
and widely used model of a dense channel.

To investigate the effective rank of the channel covariance
matrix we conduct a numerical experiment. We here give a
quick overview of this experiment and refer to [50, Chap.
3] for more details. The experiment is based on the two
propagation scenarios described in Sec. V. The channel model
of Scenario A is specular to a large extent while the channel
model of Scenario B is dense. The channel models randomly
generate a set of multipath delays and component powers
that describe the local behaviour of the channel. The channel
covariance matrix is obtained by inserting these delays and
powers into (10). The obtained Σ has many eigenvalues that
are small but still non-zero (this is not caused by limited
numerical precision). We therefore define a method to neglect
small eigenvalues that do not represent significant power. For
that purpose the eigenvalues are normalized such that their
average value is 1. The normalized eigenvalues below 10−4

are then set to zero. This means that whenever the SNR is
significantly below 40 dB, the removed power is neglectable
in comparison to the noise power. Even in perfect conditions
wireless communication systems practically always operate
significantly below 40 dB SNR. For that reason we find this
to be a conservative approach to thresholding the eigenvalues.
Taking the resulting number of non-zero eigenvalues gives the
effective rank. Fig. 2 depicts empirical cumulative distribution
functions (CDFs) of the effective rank in Scenario A and B.
From Table I we have dTCPN∆fe = 134 in Scenario A
and dTCPN∆fe = 205. It is seen that the effective rank of
Σ is generally much smaller than dTCPN∆fe. In Scenario
B the effective rank is also much smaller than the number
of multipath components in the channel, indicating that a
virtual CIR of the form (1) with L small exists even for
dense channels. Due to the use of the effective rank (and not
the true rank) of the channel covariance matrix, the virtual
CFR approximates the true CFR. The approximation is only
accurate within the system bandwidth.

In summary it can be concluded that parametric channel
estimation can be applied to both specular and dense chan-
nels. That is indeed confirmed in the numerical investigation
reported in Sec. V.
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Fig. 3. Factor graph representation of the probabilistic model describing the complete OFDM system and channel model. The shaded areas indicate multiple
copies of the nodes, as specified by the index sets. The vector of observations y is included with a dotted line because it is known at the time of inference.
Variables of which a point estimate is obtained (as opposed to a full variational estimate of the posterior pdf) are represented by circles with dashed line. The
vertical dashed line shows the separation between the BP and MF subgraphs.

D. Probabilistic Model of the OFDM System

We are now ready to present a probabilistic model that
describes the complete OFDM system. The model expresses
the joint probability of all variables in the system as a
product of factors. This factorization of the joint probability
is represented as the factor graph depicted in Fig. 3. The
factor graph representation is central in the formulation of the
receiver algorithm. In the following we introduce the variables
and factors in the factor graph, moving from right to left.9

The interleaving, coding and modulation of the data bits are
described in Sec. II-A. The subgraph characterizing the system
implementing these tasks involves the factors

fuk(uk) , p(uk) = 0.5 1[uk∈{0,1}], k ∈ K,
fC(c,u) , p(c|u) = 1[c=C(u)],

fMi(xi, c
(i)) , p(xi|c(i)) = 1[xi=M(c(i))], i ∈ D,

where K = {1, . . . ,K} is the index set of the information bits.
The factor fC(c,u) describes the interleaving and channel
coding processes. By “zooming in” this factor can be expanded
to a subgraph involving auxiliary variables and factors that
describe the structure of the channel code and interleaver.

The subgraph characterizing the observation process de-
scribed by (6) and (11) involves the following factors for pilot-
and data subcarriers, respectively:

fPj (α, τ , β) , p(yj |α, τ ;β)

= CN(yj ;xj [Ψ(τ )α]j , β), j ∈ P,
fDi(xi,α, τ , β) , p(yi|xi,α, τ ;β)

= CN(yi;xi[Ψ(τ )α]i, β), i ∈ D.

The lth virtual multipath components is modelled through
the variables αl, τl and zl. To ease the terminology we drop the
attribute “virtual” in the following. To model the fact that there
are only a multipath components, a Bernoulli-Gaussian prior is
used. This prior assigns large probability to the event αl = 0.
The model contains Lmax multipath components of which only
a subset is activated, i.e. has αl 6= 0. The number Lmax is
an upper bound on the number of multipath components that

9We abuse terminology and associate variables and factors with their
respective nodes in the factor graph.

can be estimated.10 This allows us to derive an algorithm
that inherently estimates the number of multipath components.
Each component is assigned an activation variable zl ∈ {0, 1},
which is 1 when said multipath component is active and
0 otherwise. The sequence {z1, . . . , zLmax} is modelled i.i.d.
where each zl is assigned a Bernoulli prior with activation
probability ρ:

fzl(zl, ρ) , p(zl; ρ) = Bern(zl; ρ), l ∈ L, (12)

where we have defined the set of multipath component indices
L = {1, . . . , Lmax}. The prior density of the multipath coeffi-
cient αl is conditioned on zl, such that zl = 0 implies αl = 0
and zl = 1 gives a Gaussian density with variance η:

fαl(αl, zl, η) , p(αl|zl; η)

= (1− zl)δ(αl) + zl CN(αl; 0, η), l ∈ L.
When performing inference in this model, the estimated num-
ber of active multipath components is L̂ , ‖α̂‖0, where α̂ is
a vector containing the estimates of αl for all l ∈ L.

We finally need to impose a prior model on the multipath
delays τl, l ∈ L. The only prior information available is
through the assumption (3) that implies that for all l ∈ L
we have 0 ≤ τl ≤ TCP. To express this an i.i.d. uniform prior
is used:

fτl(τl) , p(τl) = unif(τl; 0, TCP), l ∈ L.

III. INFERENCE METHOD

The BER optimal receiver (assuming ρ, η and β known)
computes the MAP estimate

ûk = arg max
uk∈{0,1}

p(uk|y; ρ, η, β), k ∈ K. (13)

The pdf p(uk|y; ρ, η, β) ∝ p(uk,y; ρ, η, β) can ideally be
found by marginalizing all variables but uk in the joint pdf

p(y, z,α, τ ,xD, c,u; ρ, η, β) = p(y|xD,α, τ ;β)

10In our implementation we select Lmax = dTCPN∆f e + 1, which is
the maximum number of degrees of freedom under the assumption (3) [18].
It roughly corresponds to the number of baud-spaced (spacing 1/(N∆f ))
components on the interval [0, TCP).
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∏
l∈L

p(αl|zl; η)p(zl; ρ)p(τl)
∏
i∈D

p(xi|c(i))p(c|u)
∏
k∈K

p(uk).

Calculating the marginals of uk, k ∈ K, is intractable and we
resort to approximate Bayesian inference.

A. Combined Belief Propagation and Mean-Field

Our inference method is based on the merged belief prop-
agation and mean-field (BP-MF) framework of [8]. In this
framework a so-called belief function is found for each vari-
able in the factor graph. The belief function is an approxi-
mation of the marginal posterior pdf or pmf of that variable.
We abuse notation and let q(a) denote the belief of variable a.
When the set of belief functions has been calculated, the MAP
estimate of the kth data bit is found as the mode of q(uk).

For tractability we obtain a point estimate of the variables
z and τ . This is achieved as proposed in [8] by restricting
their beliefs to be Kronecker and Dirac delta functions, i.e.,
q(zl) = δ[zl − ẑl] and q(τl) = δ(τl − τ̂l) for all l ∈ L.

At the heart of BP-MF lies the so-called region-based free
energy approximation (RBFE) [51]. The RBFE is obtained by
splitting the factor graph into a MF and a BP subgraph, as
indicated in Fig. 3. The RBFE is a function of11 the point
estimates ẑ, τ̂ and the belief functions q(αl), q(xi), q([c(i)]m)
and q(uk) for indices l ∈ L, i ∈ D, k ∈ K and m = 1, . . . , Q.
It is also a function of the model parameter estimates (ρ̂, η̂, β̂),
as justified below. The expression of the RBFE is given in
Appendix A. BP-MF seeks to minimize the RBFE under
a number of normalization and consistency constraints. The
messages of BP-MF are derived such that at convergence they
satisfy the Karush-Kuhn-Tucker conditions of the constrained
RBFE minimization, i.e., a (possibly local) minimum of the
constrained problem is found. See [8] for a more detailed
discussion of BP-MF.

The understanding of BP-MF as RBFE minimization allows
us to make a number of adaptations to the message-passing
scheme to improve convergence speed. Further, we will see
that this understanding is useful when analyzing convergence
of the algorithm.

B. Model Parameter Estimation with BP-MF

The BP-MF framework [8] does not directly provide a
method to estimate the unknown model parameters (ρ, η, β).
We propose to do so by letting the RBFE be a function of these
model parameters. The model parameter estimates (ρ̂, η̂, β̂) are
then obtained as the minimizers of the RBFE.

To justify this method we first note that the model pa-
rameters are located in the MF subgraph. Then we follow
an approach similar to [52] to obtain a lower bound on the
marginal log-likelihood function:

ln p(y; ρ̂, η̂, β̂) ≥ −FBP-MF + const., (14)

where FBP-MF is the RBFE (39) and the constant only depends
on beliefs of variables in the BP subgraph (including q(xi),

11The RBFE is also a functional of the beliefs corresponding to the factors
in the BP subgraph. BP-MF enforces consistency between the variable beliefs
and these factor beliefs. Since the latter are not relevant to the derivation of
the receiver, we omit them.

for i ∈ D), i.e., it does not depend on (ρ̂, η̂, β̂). It can then be
seen that the values of (ρ̂, η̂, β̂) minimizing FBP-MF maximize
the lower bound on the likelihood function in (14). These
minimizers are thus approximate ML estimates. We note that
if the above approach is applied in a pure MF context it
simplifies to variational EM estimation with all other variables
treated as latent variables [8], [53].

C. Relation to Prior Art

To relate our receiver algorithm to current methods we
note that the decoding of many popular channel codes can be
described as an instance of BP [54] in a factor graph [55]–[57].
For example, BP decoding of a convolutional code leads to the
BCJR algorithm [58]. We see in Fig. 3 that the merged BP-
MF algorithm employs BP in the subgraph that represents the
channel code, i.e., standard techniques are used for decoding.

Similarly, there are examples in the literature of MF in-
ference where the underlying factor graph resembles the MF
subgraph of our receiver. The work [31] uses a Bernoulli-
Gaussian prior model similar to that in our work, while [30],
[32] use a gamma-Gaussian prior typical of sparse Bayesian
learning.

The strength of the BP-MF framework is now clear: It
allows us to merge existing methods for channel decoding
and sparsity-based estimation using a unifying design method
(namely that of RBFE minimization).

IV. PARAMETRIC BP-MF RECEIVER

To minimize the RBFE, we apply the BP-MF algorithm
given by Eq. (21)–(22) in [8] on the factor graph of Fig. 3. In
the following we use the notation 〈·〉a to denote expectation
with respect to the belief density q(a). We follow the conven-
tion of [8] in naming the messages. In [9] a similar BP-MF
receiver is derived, which does not exploit channel sparsity.

A. Message Passing for Channel Estimation

1) Update of Coefficient Belief: We start by finding belief
updates in the MF subgraph. To find the update of q(αl), l ∈ L,
we calculate the messages passed to the node αl:

mMF
fαl→αl

(αl) ∝
{

exp
(
−η̂−1|αl|2

)
if ẑl = 1,

δ(αl) if ẑl = 0

mMF
fDi→αl

(αl) ∝ exp
(
−β̂−1

〈
|yi − xi[Ψ(τ̂ )α]i|2

〉
xi,α\l

)
mMF
fPj→αl

(αl) ∝ exp
(
−β̂−1

〈
|yj − xj [Ψ(τ̂ )α]j |2

〉
α\l

)
,

which holds for all l ∈ L, i ∈ D and j ∈ P . Taking the
product of all messages going into the node αl gives its belief

q(αl) =

{
CN(αl; µ̂l, σ̂

2
l ) if ẑl = 1

δ(αl) if ẑl = 0
(15)

with the active component mean and variance

µ̂l = σ̂2
l ql (16)

σ̂2
l =

(
sl + η̂−1

)−1
. (17)
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Here we have introduced

sl = β̂−1ψH(τ̂l)
〈
XHX

〉
xD
ψ(τ̂l) (18)

ql = β̂−1ψH(τ̂l)r (19)

r = 〈X〉HxD y −
〈
XHX

〉
xD

Ψ(τ̂Â\l)µ̂Â\l, (20)

where ψ(τl) is defined as the lth column of Ψ(τ ). Note
that the belief of inactive components (ẑl = 0) becomes a
point mass at αl = 0, thus eliminating the influence of that
component in the product XΨ(τ̂ )α. We have defined the set
of currently active components as Â , {l : ẑl = 1} and the
vectors µ̂ = [µ̂1, . . . , µ̂Lmax ]

T, σ̂2 = [σ̂2
1 , . . . , σ̂

2
Lmax

]T.
2) Joint Update of Delay and Coefficient Belief: We now

turn our attention to the estimation of the multipath delays τl,
l ∈ L. To improve the convergence speed of the algorithm,
we find the update of τ̂l by minimizing the RBFE jointly with
respect to the beliefs q(αl) and τ̂l. Due to the selected prior
p(τl), the following expressions are valid for τ̂l ∈ [0, TCP]. We
are only concerned with active components, i.e., l ∈ Â and
thus ẑl = 1. Writing only the terms of the RBFE (39) that
depend on q(αl) and τ̂l, we get

FBP-MF(q(αl), τ̂l) ∝e

∫
q(αl) ln

q(αl)

Q(αl, τ̂l)
dαl (21)

with

Q(αl, τ̂l) = p(αl|ẑl; η̂)p(τ̂l) exp
(〈

ln p(y|xD,α, τ̂ ; β̂)
〉
xD,α\l

)
∝ CN(αl; µ̂l, σ̂

2
l ) exp

(
|ql|2

sl + η̂−1

)
, (22)

where σ̂2
l , µ̂l, sl and ql are given by (16) - (19) and thus

implicitly are functions of τ̂l. We need to minimize (21) under
the normalization constraint

∫
q(αl) dαl = 1. To do so, define

gτl(τ̂l) , max
q̃(αl):

∫
q̃(αl) dαl=1

−FBP-MF (q̃(αl), τ̂l) (23)

∝e ln

∫
Q(αl, τ̂l) dαl (24)

∝e β̂−2

sl + η̂−1
|ψH(τ̂l)r|2. (25)

The result in (24) is easily obtained by noting that (21) can
be rewritten as

FBP-MF ∝e KL

[
q(αl)

∣∣∣∣∣∣ Q(αl, τ̂l)∫
Q(α̃l, τ̂l) dα̃l

]
− ln

∫
Q(α̃l, τ̂l) dα̃l,

where KL[·||·] is the Kullback-Leibler divergence. The co-
efficient belief is selected as the maximizer of (23), i.e.,
q(αl) = Q(αl, τ̂l)/

∫
Q(α̃l, τ̂l) dα̃l, which is easily shown to

coincide with the result in (15).
Since sl is constant with respect to τ̂l, we find the delay

update as

τ̂l = arg max
τ̃l∈[0,TCP]

gτl(τ̃l) = arg max
τ̃l∈[0,TCP]

|ψH(τ̃l)r|2. (26)

We recognize the objective function in (26) as the continu-
ous periodogram of the residual vector r. While it is possible
to find the maximizer of the periodogram, doing so has high
computational cost. In our iterative algorithm, we instead find
an update of τ̂l that cannot increase the objective in (26).

Denote the updated delay estimate as τ̂ [t]
l and the previous

delay estimate as τ̂ [t−1]
l . Our scheme now reads:

1) Find initial step ∆ =
g′τ (τ̂

[t−1]
l )

|g′′τ (τ̂
[t−1]
l )|

.

2) If gτ (τ̂
[t−1]
l + ∆) ≥ gτ (τ̂

[t−1]
l ), set τ̂ [t]

l = τ̂
[t−1]
l + ∆

and terminate. Otherwise set ∆ = ∆
2 and repeat step 2.

Functions g′τ (τl) and g′′τ (τl) are the first and second derivatives
of (25). The scheme gives the Newton update of τ̂l if this
value increases the objective function and otherwise resorts to
a gradient ascent with a backtracking line search. We have the
following lemma, that we will use in the convergence analysis:

Lemma 1: The procedure listed in Steps 1-2 above followed
by an update of q(αl) does not increasing the RBFE.

Proof: First, note that the updated τ̂l, does not decrease
gτl(τ̂l). It then follows that by selecting the maximizer of (23),
the RBFE is non-increasing.

3) Joint Update of Activation Variable and Coefficient Be-
lief: We now turn our focus on the update of the activation
variable ẑl. It is again desirable to perform a joint update
of ẑl and q(αl). We proceed in a similar way as we did to
compute the updates of the multipath delays. The terms in the
RBFE (39), which depend on q(αl) and ẑl, are denoted as
FBP-MF(q(αl), ẑl). We then define

gzl(ẑl) , max
q̃(αl):

∫
q̃(αl) dαl=1

−FBP-MF(q̃(αl), ẑl) (27)

∝e

{
|µ̂l|2
σ̂2
l

+ ln
σ̂2
l

η̂ + ln ρ̂ if ẑl = 1,

ln(1− ρ̂) if ẑl = 0.
(28)

This result is easily obtained by following steps analogous to
(21) – (25). The activation variable solves the decision problem
ẑl = maxz̃l∈{0,1} gzl(z̃l). Writing the “activation criterion”
gzl(1) > gzl(0) we get

|µ̂l|2
σ̂2
l

> ln
η̂

σ̂2
l

+ ln
1− ρ̂
ρ̂

. (29)

If the above criterion is true we set ẑl = 1; otherwise we set
ẑl = 0. The corresponding update of q(αl) is the maximizer
of (27), which remains as in (15). The criterion in (29) is the
same as that obtained in [31].

4) Update of Channel Parameter Estimates: The channel
parameters (ρ, η, β) are estimated as the values that minimize
the RBFE. Writing only the terms of the RBFE (39) that
depend on the channel parameters we have

FBP-MF(ρ̂, η̂, β̂)

∝e −
〈

ln
∏
l∈L

p(ẑl; ρ̂)p(αl|ẑl; η̂)p(y|α, τ̂ ,xD; β̂)

〉
xD,α

∝e ‖ẑ‖0 ln ρ̂+ (Lmax − ‖ẑ‖0) ln(1− ρ̂)−N ln β̂ − β̂−1u

− ‖ẑ‖0 ln η̂ − η̂−1
∑
{l:ẑl=1}

(|µ̂l|2 + σ̂2
l ), (30)

where

u ,
〈
‖y −XΨ(τ̂ )α‖2

〉
xD,α

= ‖y‖2 + µ̂H
ÂΨH(τ̂Â)

〈
XHX

〉
xD

Ψ(τ̂Â)µ̂Â
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+
∑
l∈Â

σ̂2
l ψ

H(τ̂l)
〈
XHX

〉
xD
ψ(τ̂l)

−2 Re
{
yH 〈X〉xD Ψ(τ̂Â)µ̂Â

}
. (31)

It is readily seen that FBP-MF(ρ̂, η̂, β̂) can be minimized inde-
pendently with respect to each of the parameters. By taking
derivatives and equating to zero we find the global minima
(the second derivatives are all positive):

ρ̂ =
‖ẑ‖0
Lmax

(32)

η̂ =

∑
{l:ẑl=1}(|µ̂l|2 + σ̂2

l )

‖ẑ‖0
(33)

β̂ =
u

N
. (34)

5) Iterating all Coefficient Beliefs Ad-Infinitum: In [32] it
is demonstrated that iterating the updates of some variables
ad-infinitum is a powerful technique for increasing the con-
vergence speed of MF algorithms. We apply that idea to the
beliefs of the multipath coefficients.

Since q(αl) = δ(αl) for all l ∈ L\Â, the following discus-
sion is only concerned with the beliefs of active components,
i.e. for l ∈ Â. First note that the variance (17) of an active
multipath coefficient σ̂2

l does not depend on the beliefs of the
remaining coefficients q(αk), k 6= l. The mean (16) of the lth
coefficient, on the other hand, depends on the remaining mean
values as

µ̂l = σ̂2
l︸︷︷︸

[Q]−1
l,l

(
β̂−1ψH(τ̂l)〈X〉HxDy︸ ︷︷ ︸

pl

−
∑
k∈Â\l

β̂−1ψH(τ̂l)〈XHX〉xDψ(τ̂k)︸ ︷︷ ︸
[Q]l,k

µ̂k

)

for all l ∈ Â. The matrix Q is of size |Â| × |Â| and we
have abused notation in using l, k as indices into this matrix,
because 1 ≤ l, k ≤ Lmax, even though |Â| ≤ Lmax. The above
equation is recognized as the Gauss-Seidel [59] iteration for
solving the system of linear equations

Qµ̂Â = p (35)

with

p = β̂−1ΨH(τ̂Â) 〈X〉HxD y
Q = β̂−1ΨH(τ̂Â)

〈
XHX

〉
xD

Ψ(τ̂Â) + η̂−1I.

It follows that the updates of µ̂l, for all l ∈ Â, converge to
the solution µ̂Â found by solving (35).

We note that in the hypothetical special case where the
beliefs of X are point estimates (or equivalently known) y =
XΨ(τ̂Â)αÂ+w is a linear observation model with Gaussian
noise. In this case, the estimator µ̂Â = Q−1p reduces to
the LMMSE estimator of αÂ in the linear observation model
under the Bayesian model dictated by the current beliefs of the
remaining variables. The estimator µ̂Â = Q−1p is, however,
not the LMMSE estimator of αÂ when the uncertainty of the
estimate of X is considered.

B. Message-Passing for Decoding

In the previous subsections we derived the belief functions
q(·) of the variables whose factor neighbours are in the MF
subgraph only. To perform inference in the BP subgraph, i.e.,
detection, demapping, decoding and deinterleaving, we need
to calculate the messages that are passed along its edges.

We begin with the messages nxi→fMi (xi), i ∈ D, which
constitute the interface from the continuous-valued channel
estimator to the discrete-valued decoder. They are given as

nxi→fMi (xi) = mMF
fDi→xi

(xi)

∝ CN

xi; yi 〈gi〉∗α,τ〈∣∣gi∣∣2〉
α,τ

,
β̂〈∣∣gi∣∣2〉
α,τ

 , (36)

where gi , [Ψ(τ )α]i is the CFR sampled at subcarrier i. Its
mean and second moment are

〈gi〉α,τ = [Ψ(τ̂ )µ̂]i〈∣∣gi∣∣2〉
α,τ

=
[
Ψ(τ̂ )(µ̂µ̂H + diag(σ̂2))ΨH(τ̂ )

]
i,i
.

Note that even though the above expression has the form
of a Gaussian, the messages are probability mass functions
obtained by evaluating the above Gaussian at the points of the
symbol alphabet AD followed by appropriate normalization.

The mean in (36) can be interpreted as the output of an
LMMSE equalizer. Consider the observation model yi =
gixi + wi where p(wi) = CN(wi; 0, β̂) and gi = [Ψ(τ̂ )α]i.
Let q(αl) be the density of αl and impose a prior p(xi) =
CN(xi; 0, σ2

xi) on xi. The LMMSE estimator of xi is now

x̂LMMSE
i =

yi 〈gi〉∗α,τ〈∣∣gi∣∣2〉
α,τ

+ β̂σ−2
xi

.

By letting σ2
xi → ∞ to express that we have no prior

information on xi, we recover the mean in (36). Note that
a similar analogy does not exist for the variance in (36).

All remaining messages passed in the BP subgraph are
functions of discrete variables (i.e., coded or information
bits). These messages are calculated with the sum-product
algorithm, see e.g. [55], [56]. Due to space constraints, we
do not give the details here.

When BP messages have been passed in the BP subgraph,
the beliefs of the data symbols xi, i ∈ D, are calculated from

q(xi) ∝ mMF
fDi→xi

(xi)m
BP
fMi→xi

(xi). (37)

Since q(xi) is a probability mass function, we can use
straightforward evaluation of finite sums to obtain 〈X〉xD and〈
XHX

〉
xD

, which are used in the belief updates in the MF
subgraph.

C. An Incremental Algorithm

Algorithm 1 combines the derived belief update expressions
into an iterative receiver with sparsity-based parametric chan-
nel estimation. The algorithm is split into two parts: channel
estimation (lines 5 - 30) and decoding (line 32). The outer



1053-587X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2018.2868314, IEEE
Transactions on Signal Processing

10

Algorithm 1: Parametric BP-MF receiver.
Input: Observations y, pilot indices P and pilot symbols xP .
Output: Belief functions of data bits {q(uk)}k∈K.
Notes: Define the set of components as L = {1, . . . , Lmax} and

the set of active components as Â , {l ∈ L : ẑl = 1}.
1 τ̃ ← Vector with values from equispaced grid on [− 1/2

N∆f
, TCP].

2 Initialize channel parameter estimates (ρ̂, η̂, β̂).
3 ẑ, τ̂ , µ̂, σ̂2 ← Zero vectors of length N .
4 while Outer stopping criterion not met do
5 while Inner stopping criterion not met do
6 µ̂Â, σ̂

2
Â ← Updates from (35) and (17).

7 Activate an inactive component:
8 if the inactive set L\Â is non-empty then
9 l← Any index from the inactive set L\Â.

10 ẑl ← 1.
11 τ̂l ← Value from (26) calculated on the grid τ̃ .
12 µ̂Â, σ̂

2
Â ← Updates from (35) and (17).

13 τ̂l ← Update via the scheme in Sec. IV-A2.
14 µ̂l, σ̂

2
l ← Updates from (16) and (17).

15 if activation criterion (29) is false then
16 ẑl ← 0.
17 Reset µ̂Â to the value calculated in line 6.
18 end
19 end
20 Update all components currently included in model:
21 for l ∈ Â do
22 τ̂l ← Update via the scheme in Sec. IV-A2.
23 µ̂l, σ̂

2
l ← Updates from (16) and (17).

24 if activation criterion (29) is false then
25 ẑl ← 0.
26 end
27 end
28 µ̂Â, σ̂

2
Â ← Updates from (35) and (17).

29 ρ̂, η̂, β̂ ← Updates from (32), (33) and (34).
30 end
31 Update the messages mMF

fDi→xi
(xi) from (36).

32 Iterate message-passing in the BP subgraph.
33 Update the beliefs q(xi) from (37).
34 end

loop alternates between these two steps until the information
bit estimates have not changed in 10 iterations or a maximum
of 50 iterations is reached.

The scheduling of the channel estimation is inspired by [30].
The basic idea is to construct a representation of the CFR
in (11) by sequential refinement of the estimated multipath
components. One component is determined by the parameters
(zl, αl, τl) for a particular index l. All multipath components
are initialized in the inactivated state, i.e., ẑ is the zero vector.

The channel estimation procedure alternates between two
stages: In the activation stage (at line 7) one of the inactive
components is activated and its multipath delay and coefficient
are calculated. The activation criterion (29) determines if the
component should stay activated. In the second stage (starting
at line 20), all active components are sequentially refined.
Again, the criterion (29) determines if a component should be
deactivated. The channel estimation procedure thus iteratively
adds, updates and possibly removes components until the
stopping criterion is fulfilled. The multipath delays are tracked
via the scheme in Sec. IV-A2 in a way that resembles the
operation of a rake receiver [17]. The approach presented

here differs from that implemented in a rake receiver in that
it provides an integral criterion for inclusion or exclusion of
components (rake “fingers”) via (29). The multipath delay of
the newly activated component is found via a maximization
over the grid τ̃ . The grid should have a sufficiently fine
resolution, such that the initial estimate of the delay is close to
the maximizer in (26). We choose the distance between points
in the grid as (N∆f )−1/8. As inner stopping criterion we
use |1/β̂[t] − 1/β̂[t−1]| < 10−3/β̂[t−1], where t is the inner
iteration number. The number of inner iterations is limited to
50.

During the first outer iteration the decoder has not been
used yet and symbol beliefs q(xi) of the data subcarriers
(indices i ∈ D) are not available. During the first iteration
the channel estimator therefore only uses the pilot subcarriers
(indices j ∈ P). To avoid any identifiability issue regarding the
multipath delays (see Sec. V-C) during the pilot-only iteration,
the multipath delays estimated in this iteration are restricted to
the interval [0, 1/(∆f∆P )), where ∆P is the pilot spacing.12

The active component prior variance is initialized to η̂ = 1
and the activation probability is initialized to ρ̂ = 0.5. We
initialize the noise variance to β̂ = ‖y‖2/N · 10−15/10

(i.e., assuming approximately 15 dB SNR). The activation
probability and noise variance is kept fixed during the first 3
outer iterations, because these can only be accurately estimated
when a reliable estimate of the channel is available.

D. Convergence Analysis and Computational Complexity

We now wish to analyze the convergence properties of
Algorithm 1. First recognize that the algorithm alternates
between updates in the MF and BP subgraphs of Fig. 3. To
analyze convergence, we discuss under which conditions each
of these sets of updates are guaranteed not to increase the
RBFE. If all updates give a non-increasing RBFE it can be
concluded that the algorithm converges, since the RBFE is
bounded below.

We first discuss the updates in the MF subgraph, i.e., of be-
lief functions q(αl) (l ∈ L) and point estimates (ẑ, τ̂ , ρ̂, η̂, β̂).
During these updates the messages mBP

fMi→xi
(xi) are kept

fixed. The joint update of τ̂l and q(αl) gives a non-increasing
RBFE as per Lemma 1. A similar conclusion can be drawn
regarding the joint update of ẑl and q(αl). The individual
update of q(αl) is found via the method of Lagrange mul-
tipliers applied to the RBFE with normalization constraint∫
q(αl) dαl = 1. The second-order functional derivative of the

RBFE δ2FBP-MF
δq2(αl)

= 1
q(αl)

is a positive semi-definite function; it
follows that the RBFE is convex in this argument. It can be
concluded that the update of q(αl) is the global minimizer of
the RBFE and the objective is thus non-increasing. A similar
conclusion can be drawn regarding the update of the channel
parameters, cf. Eq. (30). All updates in the MF subgraph thus
give non-increasing RBFE.

We now analyze the convergence in the BP subgraph, i.e.,
the updates of belief functions q(xi), q([c

(i)]q) and q(uk).
12We define the pilot spacing as ∆P = D+ 1, where D is the number of

data subcarriers between any two neighboring pilot subcarriers.
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Parameter Scenario A Scenario B

Channel model ITU-R M.2135 UMa NLOS [60] IEEE 802.15.a Outdoor NLOS [61]
Number of subcarriers (N ) 1024 1024
Modulation format of data subcarriers 256-QAM 256-QAM
Convolutional code polynomial (561, 753)8 (561, 753)8

Subcarrier spacing (∆f ) 25 kHz 250 kHz
Cyclic prefix duration (TCP) 5200 ns 800 ns
Number of equispaced pilots 172 256
Pilot spacing (∆P ) (implied by the above) 6 4

TABLE I
SIMULATION PARAMETERS.

Considering the belief functions of variables in the MF sub-
graph as fixed and ignoring scaling and constant terms, the
RBFE is equal to the Bethe free energy corresponding to the
factorization (see [8, Appendix E])∏

i∈D
mMF
fDi→xi

(xi)p(xi|c(i))p(c|u)
∏
k∈K

p(uk).

Further, all messages in the BP subgraph are equal to the
messages obtained from BP applied to the above factorization.
This means that we can analyze the behaviour of message-
passing in the BP subgraph, by analyzing BP applied to
the above factorization. If the factor graph does not contain
any cycles it can be shown that BP globally minimizes the
Bethe free energy [8], [51] (which in this case is equal to
the Gibss free energy) and convergence of the complete BP-
MF receiver algorithm is guaranteed. Recall that the factor
fC(c,u) = p(c|u) describes the channel code and may be
replaced by a number of auxiliary variables and factors. The
specific structure of the BP factor graph is thus determined by
the channel code. In the special case of convolutional coding
with binary or quadrature phase-shift keying (BPSK or QPSK)
modulation, the BP graph does indeed become a tree-graph
and convergence of Alg. 1 is guaranteed. If the modulation
order is higher than QPSK, loops occur between fMi and fC
and convergence can thus not be guaranteed.

For other common channel codes, such as Turbo and LDPC
codes, the subgraph represented by fC contains loops. How-
ever, BP has empirically been shown to converge for decoding
of many channel codes and it is a well known practice
to use BP even though convergence cannot be guaranteed
theoretically, see e.g. [55]–[58]. When BP does converge it
has been shown to be to a (local) minimum of the Bethe
free energy [62], which further explains why we do indeed
obtain convergence of Alg. 1 in our numerical investigations.
Conditions exist under which BP is guaranteed to converge
in loopy graphs, e.g. [63], [64]. These are, however, not
applicable to our situation.

We now turn our attention to the computational complexity
of the channel estimator, i.e., the loop starting at line 5. The
most demanding part of the channel estimation in terms of
computational complexity is the calculation of µ̂Â via (35).
We show in Appendix B that (under a conjecture) this update
can be calculated in time O

(
min(L̂2N, L̂N

√
N)
)

, where L̂
is the number of components currently included in the model.

The grid search in line 11 is recognized as the maximization
of the periodogram, which can be calculated via a fast Fourier
transform in time O(N logN) when the grid is assumed to
be of size O(N).

The loop starting at line 21 necessitates the calculation of r
in (20). Direct computation has complexity O(L̂N) for each of
the L̂ iterations in the loop. By updating r with each change to
µ̂, the direct evaluation can be avoided and the complexity of
each iteration in the loop becomes O(N), which is the same
as that of all other operations inside the loop. The overall
complexity of the loop is thus O(L̂N).

With these remarks, we see that the overall complexity per
iteration of the channel estimator is O

(
min(L̂2N, L̂N

√
N)
)

.

V. NUMERICAL EVALUATION

In our numerical evaluation we consider an OFDM system
as described in Sec. II. We use a random interleaver and a
rate–1/2 non-systematic convolutional channel code, decoded
by the loopy BP implementation from the Coded Modulation
Library.13 The pilot signals are chosen at random from a
QPSK alphabet. The first and last subcarriers are designated
as pilots. The other pilot subcarriers are located equispaced14

with spacing ∆P , i.e., the number of data subcarriers between
two such neighbour pilot subcarriers is ∆P − 1. The SNR is
defined based on the realization of the CFR as

SNR ,
E
[
|xi|2

]
‖g‖2

Nβ
, (38)

where E
[
|xi|2

]
is calculated under the assumption that the

symbols in the respective alphabets AD and AP are equiprob-
able.

We asses how the receivers behave in two different sce-
narios. The parameters considered in each scenario are listed
in Table I. Scenario A uses the channel model put forward
by ITU for the evaluation of IMT-Advanced radio interface
technologies [60]. Specifically we use the model with the
parameter setting for urban macro (UMa) environment with
non line-of-sight (NLOS) conditions. The model generates im-
pulse responses h(τ) typical of macro-cellular communication
in an urban environment targeting continuous coverage for

13Available from http://iterativesolutions.com/Matlab.htm
14We have also conducted experiments with random pilot patterns (not

shown), but have seen no significant benefit in doing so for the setup
considered here.
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Fig. 4. Three sample realizations of h(τ) for Scenario A (top) and Scenario B (bottom). An estimate of the PDP is also shown, which is obtained by
averaging the magnitude-squared impulse responses of 50, 000 channel realizations.

pedestrian up to fast vehicular users [60]. The channel model
[60] is specified for use with up to 100 MHz bandwidth, while
the system we are simulating uses 25.6 Mhz bandwidth. We
are thus well within the specified bandwidth range.

Scenario B uses the standardized model proposed for the
evaluation of IEEE 802.15.4a UWB technologies [61]. Specif-
ically we use the model with the setting proposed for outdoor
environments with NLOS conditions. The model generates im-
pulse responses h(τ) typical of micro-cellular communication
in a suburban-like environment with a rather small range [61].
Note that this model is also used in [11].

Since our signal model (6) is not valid for CIRs longer
than the cyclic prefix duration TCP, we drop realizations of
the impulse response h(τ) with component delays larger than
TCP. Fig. 4 shows 3 impulse responses generated for each
of scenarios A and B, along with an estimate of the PDP. An
investigation of a few realizations has shown that in Scenario A
most (but not all) pairs of neighbouring multipath components
adhere to a separation by at least the reciprocal of the system
bandwidth 1/(N∆f ). On the other hand, in Scenario B, there
are many pairs of neighbouring multipath components that are
not even separated by 10−2/(N∆f ). In conclusion the impulse
responses in Scenario A generally show a specular behaviour,
while in Scenario B they show a dense behaviour.

We asses the performance of the considered receivers in
terms of average coded bit error rate (BER) and normalized
mean squared error (MSE) of the CFR, calculated as ‖ĝ −
g‖2/‖g‖2. These averages are obtained from 500 Monte Carlo
trials (≈ 1.5·106 information bits) for SNR < 20 dB, with one
OFDM symbol transmitted in each trial. To get reliable BER
estimates we use 3, 000 trials (≈ 107 information bits) for SNR
= 20 dB and 15, 000 trials (≈ 4.5 · 107 information bits) for
SNR > 20 dB. The OFDM symbols and channel realizations
are generated i.i.d. according to the above.

A. Evaluation and Comparison with Other Algorithms

We evaluate our algorithm (Parametric BP-MF) and com-
pare with the following reference algorithms:

Turbo-GAMP [11]: The algorithm employs a baud-spaced
grid in the delay domain, i.e., the resolution of the grid is
Ts = (N∆f )−1 ≈ 39 ns for Scenario A and Ts ≈ 3.9 ns for
Scenario B. For each channel tap a large-tap and small-tap
variance is provided along with tap-state transition probabili-
ties (see [11] for more details). These are estimated via the EM
algorithm provided in [11] from 50, 000 channel realizations.
Turbo-GAMP is provided with significant prior information on
the CIR via these statistical values. We also provide Turbo-
GAMP with the true noise variance, as [11] does not give a
way to estimate this value.

LMMSE BP-MF [9]: The algorithm directly estimates the
CFR g via the BP-MF framework. It is an iterative receiver
with LMMSE channel estimation that requires prior knowl-
edge of the noise variance and the covariance matrix E

[
ggH

]
.

We provide the true noise variance to the receivers and show
results using three different covariance matrices:
• A receiver using the covariance matrix calculated from

the robust PDP described in [35], which assumes constant
PDP within the interval [0, TCP). This is known to be an
appropriate choice when no statistical information about
the channel is available at the receiver [35].

• A receiver using the true covariance matrix associated
to the channel model. Due to the complex structure of
the channel models, the true covariance matrix is not
easy to obtain analytically. We therefore estimate it as the
sample covariance matrix obtained from 50, 000 channel
realizations. We identify this estimate with its true coun-
terpart. The use of the true covariance matrix corresponds
to knowing the true PDP (of which an estimate is shown
in Fig. 4). We refer to this receiver as LMMSE BP-MF
with known PDP.

• An oracle receiver that calculates the channel covariance
matrix conditioned on (i.e., knowing) the true delays and
powers of the multipath components. This oracle receiver
is thus provided with significant side information. We
refer to it as LMMSE BP-MF with multipath oracle.

These three choices of the covariance matrix progressively
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Fig. 5. BER (top) and MSE of CFR (bottom) vs. SNR in Scenario A.

assume stronger prior knowledge or side information to be
available at the receiver.

Perfect CSI: This oracle receiver has perfect channel state
information (CSI), i.e., it knows the true CFR g, and thus
provides a lower bound on the achievable BER. The Perfect
CSI trace is only shown in the BER plots. To be specific, it is
implemented by computing the messages nxi→fMi (xi) for all
i ∈ D (see (36)), followed by 5 iterations in the BP subgraph
of Fig. 3.

B. Varying the Signal-to-Noise Ratio

Fig. 5 shows performance results for varying SNR in
Scenario A. We first note that Parametric BP-MF performs
very well in both BER and MSE. Its BER is remarkably
close to that of the two oracle estimators (LMMSE BP-MF
with multipath oracle and Perfect CSI), indicating that there
is very little margin for improvement of the algorithm in this
scenario. The robust and known PDP versions of LMMSE BP-
MF show higher BER than Parametric BP-MF, corresponding
to a decrease in SNR of about 1 dB. They show almost the
same BER performance because the delay spread in Scenario
A is relatively large (cf. Fig. 4) and the robust PDP assumption
is therefore realistic. Turbo-GAMP does not perform well and
shows a BER floor at high SNR. The reason is discussed
below.

Fig. 6 shows the corresponding results for Scenario B. We
here observe that Parametric BP-MF has a BER loss compared
to the Perfect CSI trace corresponding to about 0.5 dB SNR
difference. Parametric BP-MF is among the best performing
algorithms, even though the impulse responses generated in
Scenario B are dense and thus composed of a very large
number of multipath components that the algorithm cannot
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Fig. 6. BER (top) and MSE of CFR (bottom) vs. SNR in Scenario B.

resolve individually (cf. Fig. 4). Instead, the algorithm esti-
mates a virtual CIR with significantly fewer components that
approximates the true CIR within the system bandwidth. We
have observed that the estimated virtual CIR approximately
“recovers the support” of the true CIR, in the sense that
an estimated multipath component is located wherever the
CIR contains significant power. Parametric BP-MF has a BER
and MSE performance equivalent to that of LMMSE BP-MF
with both known PDP and multipath oracle. We stress that
Parametric BP-MF achieves this performance without using
prior knowledge of the channel.

In Scenario B we observe a significant difference between
the LMMSE BP-MF algorithms with known and robust PDP.
To explain this difference observe in Fig. 4 that most of the
mass of the PDP is located at small delays. This significantly
deviates from the evenly distributed mass on [0, TCP) that
underlies the robust PDP assumption.

In both Fig. 5 and Fig. 6 an error floor is observed for Turbo-
GAMP at high SNR.15 We conjecture that this error floor is
caused by the restriction of the delays to the baud-spaced
grid. If the delays are generated to be located on that grid,
the performance of Turbo-GAMP is very close to that of the
Perfect CSI trace (not shown here). We have also conducted
experiments with random pilot patterns (not shown) as used
in [11] (where Turbo-GAMP is introduced) but did not see an

15In [11], where Turbo-GAMP is introduced, such an error floor is not
observed even though the setup in the numerical investigation is almost
identical to that in Scenario B. The reason is an error in the signal model in
[11] that invalidates the numerical results obtained in that paper. Specifically
the error occurs when the “uniformly sampled channel taps” are defined as
rate 1/T samples of the compound CIR x(τ) , (gr ∗ h ∗ gt)(τ) (notation
as in [11]). However, since (gr ∗ gt)(τ) is a raised-cosine filter with design
parameter 0.5, x(τ) has bandwidth 1.5/T , leading to aliasing in the sampling
operation.
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Fig. 7. BER vs. number of pilot subcarriers in Scenario A (top) and Scenario
B (bottom) at 20 dB SNR.

improvement of Turbo-GAMP in that case. We note that such
error floors in BER and MSE have previously been observed
for other grid-based sparse channel estimation algorithms,
see for example [21], [43]. In conclusion, the grid-based
approximation is of insufficient accuracy for communication
with large modulation order in the high-SNR regime.

C. Varying the Number of Pilots
We now investigate if our receiver design improves the

trade-off between the number of pilots and estimator perfor-
mance. Fig. 7 shows the BER performance for varying number
of pilot subcarriers.

The first observation is that LMMSE BP-MF with robust
PDP shows a point at which the BER performance quickly
transitions between high (50 %) BER and low (< 10−3) BER.
Under the robust PDP assumption, the channel coherence
bandwidth is approximately 1/TCP. As a rule of thumb there
should be at least one pilot subcarrier per coherence interval,
which gives the criterion P > N∆fTCP, where P is the
needed number of pilot subcarriers. For Scenario A we have
N∆fTCP ≈ 133 and for Scenario B we have N∆fTCP ≈ 205,
which exactly are the respective numbers of pilots at which
LMMSE BP-MF with robust PDP transitions between low and
high BER.

All algorithms except LMMSE BP-MF with robust PDP can
operate significantly below the above-mentioned limit. Due to
the iterative processing, the number of pilots can be decreased
significantly without incurring an increase in BER.

VI. CONCLUSIONS

In this paper we proposed an iterative OFDM receiver that
employs sparsity-based parametric channel estimation. The

iterative receiver is derived using the BP-MF framework for
approximate Bayesian inference. Unlike state-of-the-art sparse
channel estimators, our scheme does not restrict multipath
delays of the estimated channel impulse response to a grid. As
a result it can truly exploit parsimony of the channel impulse
response, without resorting to approximate sparsity (as in [11],
[23], [24]).

We have presented a numerical evaluation that compares
our algorithm with state-of-the-art methods, i.e., Turbo-GAMP
[11] and LMMSE BP-MF [9]. This study demonstrated that
restricting the multipath delays to a baud-spaced grid (e.g., as
in Turbo-GAMP) is not a viable approach because the resulting
equivalent vector of channel taps is only approximately sparse.

The numerical evaluation also shows that our proposed
scheme can effectively exploit the structure of wireless chan-
nel impulse responses. We have showed numerically that
parametric channel estimation works well with both specular
and dense channels. Our analysis of the channel covariance
matrix in Sec. II-B shows that for dense channels a virtual
channel impulse response can be estimated, with a number of
virtual components given by the (effective) rank of the chan-
nel covariance matrix. The corresponding virtual frequency
response approximates the actual channel frequency response
well within the system bandwidth.

APPENDIX A
THE REGION-BASED FREE ENERGY APPROXIMATION

At the heart of the derivation of our algorithm lies the RBFE
as defined by [8, Eq. (17)], [51]. In this paper we use the RBFE
of the probability distribution corresponding to the factor graph
depicted in Fig. 3. For convenience, we give here the complete
expression of the RBFE:

FBP-MF = FBP + FMF (39)

with
FBP =

∑
k∈K

∑
uk∈{0,1}

buk(uk) ln
buk(uk)

p(uk)

+
∑
i∈D

∑
xi∈AD

c(i)∈{0,1}Q

bMi
(xi, c

(i)) ln
bMi(xi, c

(i))

p(xi|c(i))

+
∑

c∈{0,1}K/R

u∈{0,1}K

bC(c,u) ln
bC(c,u)

p(c|u)
−
∑
k∈K

∑
uk∈{0,1}

q(uk) ln q(uk)

−
∑
i∈D

∑
m∈{1,...,Q}

∑
[c(i)]m∈{0,1}

q([c(i)]m) ln q([c(i)]m),

FMF =
∑
l∈L

∫
q(αl) ln q(αl) dαl

−
〈

ln p(y|xD,α, τ̂ ; β̂)
〉
xD,α

−
∑
l∈L

〈ln p(αl|ẑl; η̂)p(ẑl; ρ̂)p(τ̂l)〉αl ,

where bC(c,u), bMi
(xi, c

(i)) for i ∈ D and buk(uk) for k ∈ K
are factor beliefs. With abuse of notation we let q(·) denote
variable beliefs and 〈·〉a denote expectation with respect to the
belief density q(a).
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APPENDIX B
EFFICIENT CALCULATION OF µ̂Â WHEN L̂ IS LARGE

In this appendix we present a computationally efficient
method for evaluating µ̂Â as defined by (35). We here present
an iterative approach but note that an alternative (non-iterative)
fast method can most likely be obtained by extending the
approach of [65].

Direct evaluation and inversion of Q has time complexity
O(L̂2N), where L̂ , |Â|. The iterative method presented here
has complexity O(L̂N

√
N) provided Conjecture 1 (below)

holds. It is thus beneficial to use it when L̂ grows faster than√
N .
We first use the Woodbury matrix identity to write µ̂ as

µ̂ = β̂−1η̂
(
I− β̂−1η̂ΨH(τ̂Â)C

−1Ψ(τ̂Â)
)

ΨH(τ̂Â) 〈X〉
H
xD
y,

where

C =
〈
XHX

〉−1

xD
+ β̂−1η̂Ψ(τ̂Â)ΨH(τ̂Â).

We immediately recognize that the computationally dominat-
ing part is to solve a system of N linear equations of the
form Cz = a. Since C is Hermitian and positive-definite, we
can solve this system via the conjugate-gradient (CG) method
(Alg. 2.1 in [66]), which is an iterative method for solving
systems of linear equations. In the following we show that the
number of iterations of the CG method is O(

√
N).

We first need a conjecture on the eigenvalues of the
(Hermitian-Toeplitz) matrix T = β̂−1η̂Ψ(τ̂Â)ΨH(τ̂Â).

Conjecture 1: There exists an upper bound on the largest
eigenvalue of T that grows linearly with N , i.e.,

λmax(T) = O(N).

To justify this conjecture we refer to Fig. 8, where the largest
eigenvalue is shown for varying N .

We also need a number of lemmas.
Lemma 2: There exists constants c1 > 0 and c2 <∞, such

that c1 ≤
〈
|xi|2

〉
xD
≤ c2 for all i ∈ D ∪ P .

Proof: Observe that the data and pilot modulation sym-
bol alphabets AD and AP only contain finite, non-zero val-
ues. We can thus take c1 = minx∈AP∪AD |x|2 and c2 =
maxx∈AP∪AD |x|2 to complete the proof.

Lemma 3: Assume that Conjecture 1 holds. The largest and
smallest eigenvalues of C obey

λmax(C) = O(N), λmin(C) ≥ c−1
1 .

Proof: By the Weyl inequality for Hermitian matrices C,
T and

〈
XHX

〉−1

xD
we have

λmax(C) ≤ λmax

(〈
XHX

〉−1

xD

)
+ λmax(T).

The first inequality follows directly from Conjecture 1 and
Lemma 2.

Similarly by the dual Weyl inequality

λmin(C) ≥ λmin

(〈
XHX

〉−1

xD

)
+ λmin(T).

Since L̂ < N , the matrix T is singular and λmin(T) = 0. The
second inequality now follows from Lemma 2.
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Fig. 8. Average of the largest eigenvalue of the matrix T encountered during
one execution of Parametric BP-MF for Scenario A (left) and B (right).
Average obtained from 1000 Monte Carlo trials. Both plots were generated
at 20 dB SNR. A dashed line depicts the least-squares linear fit.

By Theorem 2.2 in [66] the number of iterations required by
the CG method to achieve a desired accuracy in the solution
of a = Cz is O

(√
λmax(C)
λmin(C)

)
. By Lemma 3 the number of

iterations is thus O(
√
N). Each iteration has time complexity

O(L̂N) and the overall complexity of solving (35) via this
method is therefore O(L̂N

√
N).
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