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Distributed Coordination of Islanded Microgrid
Clusters Using a Two-layer Intermittent

Communication Network
Xiaoqing Lu, Jingang Lai, Xinghuo Yu, Fellow, IEEE, Yaonan Wang, Josep M. Guerrero, Fellow, IEEE

Abstract—This paper proposes a distributed hierarchical co-
operative (DHC) control strategy for a cluster of islanded
microgrids (MGs) with intermittent communciation, which can
regulate the frequency/voltage of all distributed generators (DGs)
within each MG as well as ensure the active/reactive power shar-
ing among MGs. A droop-based distributed secondary control
(DSC) scheme and a distributed tertiary control (DTC) scheme
are presented based on the iterative learning mechanics, by which
the control inputs are merely updated at the end of each round
of iteration, and thus each DG only needs to share information
with its neighbors intermittently in a low-bandwidth communi-
cation manner. A two-layer sparse communication network is
modeled by pinning one or some DGs (pinned DGs) from the
lower network of each MG to constitute an upper network.
Under this control framework, the tertiary level generates the
frequency/voltage references based on the active/reactive power
mismatch among MGs while the pinned DGs propagate these
references to their neighbors in the secondary level, and the
frequency/voltage nominal set-points for each DG in the primary
level can be finally adjusted based on the frequency/voltage
errors. Stability analysis of the two-layer control system is given,
and sufficient conditions on the upper bound of the sampling
period ratio of the tertiary layer to the secondary layer are also
derived. The proposed controllers are distributed, and thus allow
different numbers of heterogeneous DGs in each MG. The effec-
tiveness of the proposed control methodology is verified by the
simulation of an AC MG cluster in Simulink/SimPowerSystems.

Index Terms—Distributed control, microgrid cluster, secondary
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control, communication network.

I. INTRODUCTION

AS an effective integration of DGs, loads, and storage units
via DC/AC inverters [1], MGs can operate in both grid-

connected and islanded modes. For enabling maximum uti-
lization of renewable sources and also efficiently suppressing
stress and aging of the components of MGs [2],[3], matching
power transfer between MGs to form various MG clusters has
become the future trend of the smart distribution grids.

Up to now, many literatures focus on the power quality
issues (i.e., primary [4] and secondary control [5],[6]) within
a MG in the islanded mode and the transient behaviors (i.e.,
tertiary control [7],[8]) that may occur when switching on and
off from the utility grid [9]. The existing secondary control
strategies include the feedback linearization voltage regulation
method [10], a novel DSC approach that requires each local
controller communicate with all the others across the MG [11],
several compromise methods to solve the inherent contradic-
tion between voltage regulation and reactive power sharing
[12],[13],[14], and the frequency/voltage controller to robust
against uncertain communication links [15], to name just a
few. Tertiary control is used to realize the power flow balance
among MGs and utility grid [16], including the optimization
control method to achieve autonomous equal power sharing
among DC-DC converters [17], and the voltage unbalance
compensation scheme [8], and so on.

Although the above studies address many significant re-
search challenges within MGs, to the best of our knowledge,
there are only a few literatures focus on multiple MGs from
the perspective of a smart microgrid network [9]. To this
end, two important issues should be considered. One is the
overlay topology design problem so as to maximize the usage
of renewable DGs, and the other is the power flow and power
quality problem among multiple MGs.

To address the first problem, a reliable overlay topology
design method for the smart microgrid network was pre-
sented very early [9], then [18] studied a reliability and
redundancy design of a smart grid wireless communications
system in view of demand side management, afterwards an
integrated reconfigurable control and self-organizing commu-
nication framework was established for community resilience
microgrids [19]. More recently, a voltage-frequency manage-
ment technique for remote islanded MGs was also proposed
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[20], by which an overloaded MG or the one with excessive
renewable generation can be coupled to one or more suitable
neighboring islanded MGs at the lowest cost. Assuming the
multiple MG network is previously designed, some control
approaches for multiple AC or DC MG clusters have been
proposed to solve the second problem. The existing results
for DC MG clusters include a tertiary power flow scheme
by adopting an droop-based centralized secondary control
method [21], and a hierarchical control framework to avoid
the centralized control mode [22], etc. Unlike DC MG clusters,
the control issues of AC MG clusters involve the control of
frequency and phase, reactive power, and power quality, thus
still faces big challenges [21]. The only relevant results include
a clustering and cooperative control strategy by organizing
DGs into several clusters for grid-connected AC MGs [23], and
a distributed power management scheme for intertied AC MGs
based on the droop operating principles [24], etc. However, the
adopted P/Q control mode in [23] is generally not suitable for
multiple MG clusters in an islanded mode, while the power
management scheme in [24] does not take into account the
proportional power sharing accurately among MGs.

By analysis, to maximum utilize of renewable sources, the
cyber topology structure of a MG cluster will finally present a
hierarchical and clustering characteristic regardless of how the
multiple MGs are dynamically coupled and recombined. In this
situation, it is necessary to consider the time-scale separation
requirements for the hierarchical interactive information flow
that integrated in the cluster-oriented physical network when
we try to address the power flow and power quality problem
within each MG or among multiple MGs. Note that both
secondary and tertiary levels (except primary level) generally
allow information exchange among DGs within a MG via a
centralized, decentralized, or distributed manner [8],[25],[26].
This inspires us to study the multiple AC MGs from the
perspective of a special network that possess some cluster-
oriented two-layer topology structure. In view of this, by
establishing a two-layer communication network for a cluster
of islanded AC MGs, this paper presents a DHC strategy,
consisting of a DTC and a DSC schemes respectively corre-
sponding to the upper and lower networks, that are equipped
with an intermittent communication mechanics. The main
contributions are listed below:

i) The consensus-based DTC scheme allows one or some
DGs within each MG to be pinned to formulate the tertiary
layer, and only the power flow mismatch information of the
pinned DGs is needed to exchange in a distributed way, which
is different from most of the centralized tertiary schemes
[16],[27]. The pinning-based DSC scheme contains a voltage
observer, under which the average voltage magnitude of all
DGs within each MG can be regulated to the reference and
then the accurate reactive power sharing among all MGs
can be realized simultaneously. Thus, it extends the results
of [13],[14],[15] to the case of voltage and reactive power
management with intermittent communication.

ii) All the intermittent communication controllers are in
the discrete form, with which each DG only needs to access
partial or limited knowledge of the system parameters, perform
merely local measurements, and then, communicate with its

neighbors intermittently. It in turn greatly reduces the com-
munication costs and makes our results essentially different
from the existing continuous-time communication methods
[10], [28]. Different from [11], [25], a sparse two-layer cyber
network is sufficient to support the proposed scheme, even
allowing only one DG from each MG to access the references.
Besides the plug-and-play capacity of MG level, the proposed
scheme also possesses high robustness against time delays,
data drop-out, link failure, even for the interval uncertainties
within information exchanges among all DGs or MGs.

iii) Different from the existing single-layer communication
networks [16],[23],[24], the two-layer communication network
are designed with different dynamics and time scales for
each layer, which can more effectively meet the time-scale
separation requirements for the hierarchical interactive infor-
mation flow that integrated in the cluster-oriented physical
network. Unlike many relevant hierarchical results that analyze
the stability of each layer separately [8],[13],[15], this paper
presents the detailed stability analysis on the whole two-layer
dynamical system. Sufficient conditions, in terms of network
connectivity and the sampling period ratio of the tertiary
layer to the secondary layer, are finally derived, which will
provide some inspiration for the future cluster-oriented two-
layer network topology design of MG clusters.

The rest of this paper is organized as follows. The configura-
tion of an AC MG cluster and the DHC strategy are presented
in Sec. II and III, respectively. Sec. IV gives the detailed
analysis of the system. After that, the numerical results are
analyzed via an AC MG cluster system consisting of three
AC MGs in Sec. V before one concludes the work in Sec. VI.

II. MG CLUSTER CONFIGURATION

To begin with, some necessary notations are listed. Let In =
{1, 2, · · · , n} and Īn = {0, 1, 2, · · · , n} be the finite index sets,
Z̄ = {0, 1, 2, · · ·} be the set of nonnegative integers, ⌈a⌉ be
the maximum integer that does not exceed the scalar a, In be
the n× n identity matrix, 1n = (1, · · · , 1)T ∈ Rn, and ⊗ be
the Kronecher product. For any vectors x = (x1, · · · , xn)

T and
y = (y1, · · · , yn)T , denote x ⊙ y = (x1y1, · · · , xnyn)

T . For
any n-dimensional symmetric matrix A, let λ1(A) ≤ λ2(A) ≤
· · · ≤ λn(A) be the n eigenvalues of A with an increasing sort.

A. The proposed DHC control framework

We will adopt the pinning control algorithm from the leader-
follower-based multi-agent control theory [28],[29]. For MGs
with large number of DGs, a pinning-based method is very
suitable since it only needs a small fraction of DGs to be
controlled by simple feedback controllers. Thus it is naturally
used to reduce the number of DG controllers and further
reduce the communication and control costs.

Consider a MG cluster containing M MGs labeled
MG1, · · · ,MGs, · · · ,MGM , where MGs consists of ms DGs
labeled (s, 1) through (s,ms). The DHC framework employs
a sparse two-layer communication network to implement the
information exchange and control in different control levels, as
shown in Fig. 1. As seen, the lower communication network is
responsible to the secondary frequeny/voltage control within



1551-3203 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2017.2783334, IEEE
Transactions on Industrial Informatics

LU et al.: DISTRIBUTED COORDINATION OF ISLANDED MICROGRID CLUSTERS USING A TWO-LAYER INTERMITTENT COMMUNICATION NETWORK 3

each MG, while the upper communication network enables to
realize the tertiary active/reactive power control among MGs.
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Fig. 1. A MG cluster supported by two-layer communication networks (the
upper network located in the yellow region and the lower network located in
the pink region), where the red and blue dotted lines represent the cyber links
while the black solid lines represent the physical links.

We aim to address the time-scale matching problem in term
of different sampling times, corresponding to each layer of the
cluster-oriented two-layer communication network. In detail,
for each MGs, there is a secondary communication network
(the pink region in Fig. 1), Gs, corresponding to the infor-
mation exchange among all DGs within MGs. It is assumed
that each DGs,i within MGs only needs to communicate with
its neighboring DGs through the lower network, Gs, and the
reference information generated by the upper network are
available to a small part or even only one following DGs,pin

(as shown in Fig. 1). Herein, by pinning one or some DGs,
DGs,pin, from each MGs, the tertiary communication network,
G̃, can be then formulated (the yellow region in Fig. 1). Note
that all cyber networks are not necessary to own the same
topology structures as the physical networks, thus not all DGs
or MGs in large-scale systems need to be in a direct contact.

The proposed DHC strategy consists of the primary, sec-
ondary, and tertiary control levels. For the ith DG in the
sth MG (i ∈ Ims and s ∈ IM ), DGs,i, its power out-
puts are adjusted by the primary control through the power,
voltage, and current control loops [15]. To compensate the
voltage/frequency deviations caused by the primary stage, the
secondary control is applied to generate the frequency/voltage
nominal set-points, ωnom

s,i and vnoms,i , for DGs,i, and further
regulate its terminal frequency and voltage outputs to the
references, ωref

s and vrefs , provided by the tertiary control stage.

B. Model of Two-Layer Communication Network

The lower cyber network refers to the secondary control
layer which contains M graphes, G1, G2, and GM , respectively
corresponding to M MGs. For the sth MG, MGs, its commu-
nication graph is defined as Gs(Vs, Es, As), where the node set
Vs = {Vs

1 ,Vs
2 , · · · ,Vs

ms
} represents all DGs within MGs and

the set of edges Es ⊆ Vs × Vs represents the communication
links within MGs. As = (asij)ms×ms is an adjacency matrix
with elements asii = 0 and asij ≥ 0. asij = 0 if and only if the
edge (Vs

i ,Vs
j ) ∈ Es. The neighbor set of DGs,i (the ith DG

within MGs) is given by Ns,i = {Vs
j ∈ Vs : (Vs

i ,Vs
j ) ∈ Es}.

The upper cyber network refers to the tertiary control
layer which is responsible to generate frequency/voltage ref-

erences for the secondary control layer. Similarly, we de-
fine the desired graph as G̃(Ṽ, Ẽ , Ã) with virtual node set
Ṽ = {Ṽ1, Ṽ2, · · · , ṼM} (representing different reference in-
formation states of M MGs), set of edges Ẽ ⊆ Ṽ × Ṽ
(representing the communication links among MGs), and
adjacency matrix Ã = (ãsk̃)M×M . Moreover, the neighbor
set MGs is Ñs = {Ṽk̃ ∈ Ṽ : (Ṽs, Ṽk̃) ∈ Ẽ}.

To describe the information exchange between the upper
network, G̃, and the lower networks, {Gs}s∈IM , we introduce
the leader-adjacency matrix Bs = diag{as10, · · · , asms0} for
each MGs, where asi0 > 0 (i ∈ Ims) if follower-DGs,i is
connected to the virtual node MGs across the pinning link
(Ṽs,Vs

i ), otherwise asi0 = 0.

III. DHC CONTROL STRATEGY FOR MG CLUSTERS

The DHC strategy contains a pinning-based secondary DSC
scheme and a consensus-based tertiary DTC scheme. The DTC
scheme is responsible to generate frequency/voltage references
for each MG according to the active/reactive power mismatch
among MGs, with which the DSC scheme can then adjust the
frequency/voltage nominal set-points for the primary control
of each DG. Moreover, a pinning-based distributed cooperative
control idea from multi-agent systems [29] is adopted here
to reduce the number of controllers for the MGs with large
number of DGs. Before proceeding the main results, we
transform the MG cluster system into a discrete time system
with different sampling periods for different control layers.

Time is discretized into a finite time sequence of nonempty
and bounded intervals, [tk, tk+1) with t0 = 0 and k ∈ Z̄ ,
representing the kth round (secondary or tertiary control)
iteration index, as shown in Fig. 2. We assume that there are
totally τ∗ (or T ∗) times secondary (or tertiary, respectively)
state update (iteration) in each time interval [tk, tk+1). To
be specific, for the secondary control layer with sampling
period τsa, there is a sequence of nonoverlapping subintervals
[t0k, t

1
k), [t1k, t

2
k), · · ·, [tτ

∗−1
k , tτ

∗

k ) with t0k = tk, t
τ∗

k = tk+1,
satisfying tℓ+1

k − tℓk = τsa for any non-negative integers k
and ℓ; for the tertiary control layer with sampling period Tsa,
there is a sequence of nonoverlapping subintervals [t0̃k, t

1̃
k),

· · ·, [tℓ̃k, t
ℓ̃+1
k ), · · ·, [tT

∗−1
k , tT

∗

k ) with t0̃k = tk, t
T∗

k = tk+1,
satisfying tℓ̃+1

k − tℓ̃k = Tsa for any non-negative integers k
and ℓ̃. Nevertheless, the secondary (or tertiary) inputs will be

0
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Fig. 2. Time diagram of the proposed DHC strategy.

designed to only update at the end of the kth iterative process,
i.e., [tτ

∗

k , tτ
∗

k +∆τ) with ∆τ ≪ τsa (or [tT
∗

k , tT
∗

k +∆T ) with
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∆T ≪ Tsa, respectively). For simplicity, we call τ∗ and T ∗

the number of the secondary and tertiary input update in each
round of the iteration, and tτ

∗

k = k·τ∗ ·τsa and tT
∗

k = k·T ∗ ·Tsa

the terminal times of the system state outputs for secondary
and tertiary control layers, respectively.

Remark 1: The assumption of τ∗ · τsa = T ∗ · Tsa is very
mild since one can always choose the intervals, [tk, tk+1),
to satisfy it. Moreover, since the tertiary layer is generally
operating with a larger time scale than that of the secondary
layer, their associated sampling periods are supposed to satisfy
Tsa > τsa. With a larger sampling period, the tertiary input
update number is therefore shorter than that of the secondary
layer, i.e., T ∗ < τ∗, to ensure the same terminal time of the
system state outputs for different control layers. The detailed
constraints on these parameters will be derived later.

A. Local Droop-based Primary Control

Based on the traditional droop control strategy and the d-
q reference frame transformation, where the d-axis and q-
axis of the reference frame of each DG are rotating with the
common reference frequency [13], the references of output
d-axis voltage and frequency of DGs,i can be abstracted as{

ωs,i(t
ℓ
k) = ωnom

s,i (tℓk)−KP
s,iPs,i(t

ℓ
k),

vods,i(t
ℓ
k) = vnoms,i (tℓk)−KQ

s,iQs,i(t
ℓ
k), voqs,i(t

ℓ
k) = 0,

(1)

for s ∈ IM , i ∈ Ims , k ∈ Z̄ , and ℓ ∈ Iτ∗ , where
ωnom
s,i and vnoms,i are respectively the nominal set-points of the

frequency and d-axis actual output voltage, ωs,i and vods,i. Ps,i

and Qs,i are the measured active and reactive powers with
the associated droop coefficients, KP

s,i and KQ
s,i. The voltage

magnitude vs,i =
√

(vods,i)
2
+ (voqs,i)

2 with the d-axis and q-
axis voltages vods,i and voqs,i. Since primary voltage control is
to align the voltage magnitude on the d-axis of its reference
frame, voqs,i = 0 and we denote v(tℓk) = vod(tℓk) for simplicity.

B. DSC Scheme for all DGs within MGs

The discrete-time system states for the MGs are updated as

ωs,i(t
ℓ+1
k ) = ωs,i(t

ℓ
k)+uω

s,i(k), vs,i(t
ℓ+1
k ) = vs,i(t

ℓ
k)+uv

s,i(k),
(2)

Ps,i(t
ℓ+1
k ) = Ps,i(t

ℓ
k)+uP

s,i(k), Qs,i(t
ℓ+1
k ) = Qs,i(t

ℓ
k)+uQ

s,i(k),
(3)

respectively with the voltage, frequency, active, and reactive
power controllers, uω

s,i, u
v
s,i, u

P
s,i, and uQ

s,i.
We aim to tune the frequency and voltage of each DGs,i,

ωs,i and vs,i, to the references, ωref
s and vrefs (provided by

the tertiary control level), exactly at the terminal time tτ
∗

k .
Moreover, to obtain the accurate reactive power sharing in
MGs with line impedances, a compromise scheme is to ensure
the weighted average value of all DGs’ output voltages within
MGs to converge to the desired reference value [13],[14].
Then, we will design the controllers in (2)-(3) so as to regulate
the nominal set-points in (1), such that the system terminal
outputs, ωs,i(t

τ∗

k ), vs,i(tτ
∗

k ), Ps,i(t
τ∗

k ), and Qs,i(t
τ∗

k ), satisfy

lim
k→∞

∣∣∣ωs,i(t
τ∗

k )− ωref
s

∣∣∣ = 0, lim
k→∞

∣∣∣µs,ivs,i(t
τ∗

k )− vrefs

∣∣∣ = 0,

(4)

lim
k→∞

∣∣Ps,i(t
τ∗

k )/Pmax
s,i − Ps,j(t

τ∗

k )/Pmax
s,j

∣∣ = 0,

lim
k→∞

∣∣Qs,i(t
τ∗

k )/Qmax
s,i −Qs,j(t

τ∗

k )/Qmax
s,j

∣∣ = 0,
(5)

for all i ̸= j ∈ Ims and s ∈ IM , where Pmax
s,i and Qmax

s,i are
the instantaneous maximum capacities of the active and reac-
tive powers of DGs,i, respectively, µs = (µs,1, · · · , µs,ms)

T ∈
Rms is the positive left eigenvector corresponding to the zero
eigenvalue of the Laplacian matrix (associated with the graph
Gs of MGs). µs = (1/ms, · · · , 1/ms)

T if Gs is undirected.
1) DSC Scheme for Voltage and Frequency Regulation:

We firstly design the following distributed voltage observer to
estimate each DG’s voltage, vs,i, and then pin the estimation,
v̂s,i, to the voltage reference, vrefs .

v̂s,i(t
ℓ+1
k ) =

∑
j∈Ns,i

γs
ija

s
ij [v̂s,j(t

ℓ
k)− v̂s,i(t

ℓ
k)]

+[vs,i(t
ℓ+1
k )− vs,i(t

ℓ
k)] + v̂s,i(t

ℓ
k),

(6)

where vs,i(t
ℓ
k) and v̂s,i(t

ℓ
k) are respectively the measured volt-

age and voltage estimation of DGs,i at time tℓk, the associated
neighbor set Ns,i and adjacency matrix As = (asij)ms×ms are
defined previously, and Γs = (γs

ij)ms×ms is the gain matrix.
By the proof in Appendix, the observer (6) can drive each

DG’s voltage estimation to converge to the weighted average
voltage value of all DGs within MGs if Gs is connected.

Now we design uω
s,i and uv

s,i using the information of
relative terminal outputs between neighboring DGs:

uω
s,i(k + 1) = γs

i0a
s
i0[ω

ref
s (tτ

∗

k )− ωs,i(t
τ∗

k )]

+
∑

j∈Ns,i
γs
ija

s
ij [ωs,j(t

τ∗

k )− ωs,i(t
τ∗

k )],

uv
s,i(k + 1) = γs

i0a
s
i0[v

ref
s (tτ

∗

k )− v̂s,i(t
τ∗

k )],

(7)

with the leader adjacency matrix Bs = diag{as10, · · · , asms0}
and the gain matrix Ξs = diag{γs

10, · · · , γs
ms0}. DGs,i can

access ωref
s and vrefs if and only if bsi,0 > 0, i.e., DGs,i is

selected as one of the pinned-DGs within MGs. Denote the
index (s, i) ∈ (s, pin) with pin ⊂ Ims and i ∈ pin.

2) DSC Scheme for Active and Reactive Power Sharing:
The power outputs are expected to achieve power sharing
proportionally to DG’s capacities in the steady state, i.e.,

Ps,i(t
τ∗

k )/Pmax
s,i = Ps,j(t

τ∗

k )/Pmax
s,j ,

Qs,i(t
τ∗

k )/Qmax
s,i = Qs,j(t

τ∗

k )/Qmax
s,j ,

(8)

for all i ̸= j ∈ Ims . Since the droop coefficients, KP
s,i and

KQ
s,i, are generally selected based on the maximum capacities

of active and reactive power, Pmax
s,i and Qmax

s,i , so as to satisfy

KP
s,j/P

max
s,i = KP

s,i/P
max
s,j , KQ

s,j/Q
max
s,i = KQ

s,i/Q
max
s,j , (9)

we then design the consensus-based power controllers:
uP
s,i(k + 1)=

∑
j∈Ns,i

γs
ija

s
ij [K

P
s,jPs,j(t

τ∗

k )−KP
s,iPs,i(t

τ∗

k )]/KP
s,i,

uQ
s,i(k + 1)=

∑
j∈Ns,i

γs
ija

s
ij [K

Q
s,jQs,j(t

τ∗

k )−KQ
s,iQs,i(t

τ∗

k )]/KQ
s,i.

(10)
With the DSC controllers (7) and (10), the nominal set-

points of frequency and voltage for DGs,i can be updated as{
ωnom
s,i (tℓ+1

k ) = ωnom
s,i (tℓk) + uω

s,i(k) +KP
s,iu

P
s,i(k),

vnoms,i (tℓ+1
k ) = vnoms,i (tℓk) + uv

s,i(k) +KQ
s,iu

Q
s,i(k),

(11)

which will be used to further regulate the frequency/voltage
by the power control loop in the primary stage.
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C. DTC Scheme for Power Sharing among Multiple MGs

The tertiary control level aims to adjust the power flow
among MGs to achieve the power outputs balance, i.e., lim

k→+∞

∣∣∣P̃s(t
T∗

k )/P̃max
s − P̃k̃(t

T∗

k )/P̃max
k̃

∣∣∣ = 0,

lim
k→+∞

∣∣∣Q̃s(t
T∗

k )/Q̃max
s − Q̃k̃(t

T∗

k )/Q̃max
k̃

∣∣∣ = 0
(12)

for all s ̸= k̃ ∈ IM , where P̃s (Q̃s) and P̃max
s (Q̃max

s )
respectively denote the total active (reactive) power outputs
and the associated maximum capacities of MGs.

Assume only one DG, denoted as DGs,pin, can be pinned for
each MGs, then pin ∈ Ims . By the objective (5), the tertiary
power sharing objective (12) will be achieved if lim

k→+∞

∣∣∣Ps,pin(t
T∗

k )/Pmax
s,pin − Pk̃,pin(t

T∗

k )/Pmax
k̃,pin

∣∣∣ = 0,

lim
k→+∞

∣∣∣Qs,pin(t
T∗

k )/Qmax
s,pin −Qk̃,pin(t

T∗

k )/Qmax
k̃,pin

∣∣∣ = 0

(13)
for all s ̸= k̃ ∈ IM , where Ps,pin (Qs,pin) and Pmax

s,pin

(Qmax
s,pin) are respectively the active (reactive) power outputs

and the associated maximum capacities of DGs,pin. Now the
consensus-based DTC controller can be designed as{

Ps,pin(t
ℓ̃+1
k ) = Ps,pin(t

ℓ̃
k) + ũP

s,pin(k),

Qs,pin(t
ℓ̃+1
k ) = Qs,pin(t

ℓ̃
k) + ũQ

s,pin(k),
(14)

with the discrete time control inputs
ũP
s,pin(k + 1) =

∑
k̃∈Ñs

γ̃sk̃ãsk̃[K
P
k̃,pin

Pk̃,pin(t
T∗

k )

−KP
s,pinPs,pin(t

T∗

k )]/KP
s,pin,

ũQ
s,pin(k + 1) =

∑
k̃∈Ñs

γ̃sk̃ãsk̃[K
Q

k̃,pin
Qk̃,pin(t

T∗

k )

−KQ
s,pinQs,pin(t

T∗

k )]/KQ
s,pin,

(15)
for ℓ̃ ∈ ĪT∗ , s ∈ IM , and pin ∈ Ims , where KP

s,pin and
KQ

s,pin are respectively the droop coefficients of DGs,pin, Ã =

(ãij)M×M is the adjacency matrix of network graph G̃ (see
Fig. 1). Γ̃ = (γ̃sk̃)M×M is the associated gain matrix.

By integrating the power flow mismatch among MGs across
G̃, the final references, ωref

s and vrefs , for MGs can be set as{
ωref
s (tT

∗

k ) = ωrated +KP
s,pinPs,pin(t

T∗

k ),

vrefs (tT
∗

k ) = vrated +KQ
s,pinQs,pin(t

T∗

k ),
(16)

where ωrated and vrated are respectively the rated frequency
and voltage of the MG cluster system.

Remark 2: uP
s,i and uQ

s,i in (11) are the secondary control
inputs of all DGs,i (i ∈ Ims) within MGs, while ũP

s,pin and
ũQ
s,pin in (14) are the tertiary control inputs of the pinth DG

(i.e., DGs,pin) within MGs. In this sense, only DGs,pin within
each MGs is involved in the two-layer dynamics regulation.

Now the diagram of the DHC framework can be drawn in
Fig. 3. As seen, the secondary cyber network Gs is responsible
for exchanging the measured information of each DGs,i within
MGs to generate the nominal set-points, ωnom

s,i and vnoms,i

for the primary level. While the tertiary cyber network G̃
is responsible for transmitting the measured information of
each pinned DGs,pin from each MGs to the tertiary level to
further generate the references, ωref

s and vrefs , to the secondary
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Fig. 3. The block diagram of the DHC framework for AC MG clusters.

level. For each MGs, the power outputs of the pinned DGs,pin,
Ps,pin and Qs,pin, possess both secondary and tertiary control
dynamics, (10) and (15), with different sampling periods, τsa
and Tsa, and terminal times, τ∗ and T ∗. Since the response
times for different layers should match each other, we next
present the stability analysis.

IV. STABILITY ANALYSIS OF THE MG CLUSTER SYSTEM

To facilitate the mathematical representation, let the num-
ber of DGs within each MG be always equal to m, i.e.,
m1 = · · · = mM = m. However, the general case can be
analyzed similarly. For the variables in the secondary level,
let the states ωs = (ωs,1, · · · , ωs,m)T , vs = (vs,1, · · · , vs,m)T ,
v̂s = (v̂s,1, · · · , v̂s,m)T , ps = (ps,1, · · · , ps,m)T , qs =
(qs,1, · · · , qs,m)T , the inputs uω

s = (uω
s,1, · · · , uω

s,m)T ,
uv
s = (uv

s,1, · · · , uv
s,m)T , uP

s = (KP
s,1u

P
s,1, · · · ,KP

s,muP
s,m)T ,

and uQ
s = (KQ

s,1u
Q
s,1, · · · ,KQ

s,muQ
s,m)T , moreover, de-

note ps,i = KP
s,iPs,i, and qs,i = KQ

s,iQs,i. For the
variables in the tertiary level, let the states ppin =
(p1,pin, · · · , pM,pin)

T , qpin = (q1,pin, · · · , qM,pin)
T , the

inputs ũP
pin = (KP

1,pinũ
P
1,pin, · · · ,KP

M,pinũ
P
M,pin)

T , and
ũQ
pin = (KQ

1,pinũ
Q
1,pin, · · · ,K

Q
M,pinũ

Q
M,pin)

T . Denote ω =

(ωT
1 , · · · , ωT

M )T , v = (vT1 , · · · , vTM )T , v̂ = (v̂T1 , · · · , v̂TM )T ,
p = (pT1 , · · · , pTM )T , q = (qT1 , · · · , qTM )T , B =
diag{B1, · · · , BM}, and Ξ = diag{Ξ1, · · · ,ΞM} with Ξs =
diag{γs

10, · · · , γs
m0}. Finally, define the Laplacian matrices

Ls = (ℓsij)m×m and L̃ = (ℓ̃s×k̃)M×M respectively as

ℓsij =

{ ∑
q∈Ns,j

asiqγ
s
iq, j = i,

−asijγs
ij , j ̸= i,

ℓ̃sk̃ =


∑

k̃∈Ñs

ãs
sk̃
γ̃s
sk̃
, k̃ = s,

−ãsk̃γ̃sk̃, k̃ ̸= s

with gain matrices Γs = (γs
i,j)

m
i,j=1 and Γ̃ = (γ̃s,k̃)

m
s,k̃=1

to
be designed later. Let L = diag{L1, · · · , LM}, the dynamics,
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(2), (3), (7), (10), (14), and (15), can be rewritten as

ω(tτ
∗

k+1) = [IMm − τ∗(L+B ⊙ Ξ)]ω(tτ
∗

k )

+τ∗(B ⊙ Ξ)[ωrated1Mm + ppin(t
T∗

k )1m],

v̂(tτ
∗

k+1) = [IMm − τ∗(L+B ⊙ Ξ)]v̂(tτ
∗

k )

+τ∗(B ⊙ Ξ)[vrated1Mm + qpin(t
T∗

k )1m],

p(tτ
∗

k+1) = [IMm − τ∗L]p(tτ
∗

k ),

q(tτ
∗

k+1) = [IMm − τ∗L]q(tτ
∗

k ),

ppin(t
T∗

k+1)1m = [IMm − T ∗(L̃⊗ Im)]ppin(t
T∗

k )1m,

qpin(t
T∗

k+1)1m = [IMm − T ∗(L̃⊗ Im)]qpin(t
T∗

k )1m.
(17)

Let µ̃ = ( 1
M , ..., 1

M ) ∈ RM , being the positive left eigen-
vector corresponding to the zero eigenvalue of L̃, denote
the error variables ω̄ = ω − (ωrated1Mm + ppin1m), v̄ =

v̂− (vrated1Mm+qpin1m), p̄pin1m = ppin1m− µ̃T ppin(0)1m,
and q̄pin1m = qpin1m − µ̃T qpin(0)1m, the error dynamics

ω̄(tτ
∗

k+1) = [IMm − τ∗(L+B ⊙ Ξ)]ω̄(tτ
∗

k )

+T ∗(L̃⊗ Im)p̄pin(t
T∗

k )1m,

v̄(tτ
∗

k+1) = [IMm − τ∗(L+B ⊙ Ξ)]v̄(tτ
∗

k )

+T ∗(L̃⊗ Im)q̄pin(t
T∗

k )1m,

p̄(tτ
∗

k+1) = [IMm − τ∗L]p̄(tτ
∗

k ) + T ∗(L̃⊗ Im)p̄pin(t
T∗

k )1m,

q̄(tτ
∗

k+1) = [IMm − τ∗L]q̄(tτ
∗

k ) + T ∗(L̃⊗ Im)q̄pin(t
T∗

k )1m,

p̄pin(t
T∗

k+1)1m = [IMm − T ∗(L̃⊗ Im)]p̄pin(t
T∗

k )1m,

q̄pin(t
T∗

k+1)1m = [IMm − T ∗(L̃⊗ Im)]q̄pin(t
T∗

k )1m,
(18)

Denote zk = ([p̄pin(t
T∗

k )1m]T , [q̄pin(t
T∗

k )1m]T )T , xk =
([ω̄(tτ

∗

k )]T , [v̄(tτ
∗

k )]T )T , yk = ([p̄(tτ
∗

k )]T , [q̄(tτ
∗

k )]T )T , then
(18) can be rewritten as xk+1 = Φxk + (I2Mm − Ω)zk,

yk+1 = Ψyk + (I2Mm − Ω)zk,
zk+1 = Ωzk,

(19)

where Φ = I2⊗[IMm−τ∗(L+B⊙Ξ)], Ψ = I2⊗[IMm−τ∗L],
and Ω = I2⊗ [IMm−T ∗(L̃⊗Im)] are all symmetric matrices.

We next claim the stability of the origin of the error system
(19). Define the Lyapunov candidates

Vk(xk, yk, zk) = xT
k xk + yTk yk + zTk zk, (20)

and difference along the trajectory of system (20), we have

∆Vk = Vk+1 − Vk ≤ (xT
k , y

T
k , z

T
k )S(x

T
k , y

T
k , z

T
k )

T (21)

for a blocking matrix S = diag{S1, S2, S3} with S1 = (1 +
1
θ )Φ

2 − I2Mm, S2 = (1 + 1
θ )Ψ

2 − I2Mm, S3 = Ω2 + (2 +
2θ)(I2Mm − Ω)2−I2Mm, and any positive constant θ > 0. By
the special matrix theory [30] and the symmetry of matrices
Φ, Ψ, and Ω, a sufficient condition for ∆Vk < 0 is{

(1 + 1
θ )λ

2
2Mm(Φ) < 1, (1 + 1

θ )λ
2
2M(m−1)(Ψ) < 1,

max
1≤i≤2(M−1)m

λ2
i (Ω) + (2 + 2θ)[1− λi(Ω)]

2 < 1,

(22)
which leads to

max{ λ2
2Mm(Φ)

1− λ2
2Mm(Φ)

,
λ2
2M(m−1)(Ψ)

1− λ2
2M(m−1)(Ψ)

} < θ <
3λ1(Ω)− 1

2[1− λ1(Ω)]
(23)

for a certain positive constant θ provided that λ2Mm(Φ) < 1,
λ2M(m−1)(Ψ) < 1, and 1

3 < λ1(Ω) ≤ λ2(M−1)m(Ω) < 1.
Thus, by the previous denotations we obtain that

λ2Mm(Φ) = 1− τ∗λ1(L+B ⊙ Ξ),
λ2M(m−1)(Ψ) = 1− τ∗λM+1(L),

λ2(M−1)m(Ω) = 1− T ∗λ2(L̃), λ1(Ω) = 1− T ∗λM (L̃),
(24)

By Gershgorin circle theorem [20], the above inequalities hold
if the gain matrices and terminal times are selected such that{

τ∗
∑

j∈Ns,i
(γs

ija
s
ij + γs

i0a
s
i0) < 1,

T ∗ ∑
k̃∈Ñs

γ̃sk̃ãsk̃ < 2/3,
(25)

τsa
Tsa

= T∗

τ∗ < min
{

λ1(L+B⊙Ξ)[2−τ∗λ1(L+B⊙Ξ)]

λM (L̃)
,

λM+1(L)[2−τ∗λM+1(L)]

λM (L̃)

}
.

(26)
Conclusion 1: If the two-layer communication networks,

{Gs}s∈IM and G̃, are connected, and the associated numbers
of the input update during each round of the iteration, T ∗ and
τ∗, and the sampling periods, Tsa and τsa, of the tertiary and
secondary control levels satisfy (25) and (26), then both of the
secondary control objectives (4)-(5) and the tertiary control ob-
jective (13) can be achieved provided that at least one DGs,pin

from each MGs can be pinned to realized the information
exchange among all the pinned DGs (in the tertiary level) and
transmit the frequency and voltage references, ωref

s and vrefs ,
to its neighboring DGs within MGs (in the secondary level).

The selected gain matrices, Γs, Ξs, and Γ̃, should not break
the original network topologies. For example, all entries of Γs

are always selected to satisfy γs
ij = γs

ji > 0 when Ns,i ̸= ∅
and j ∈ Ns,i, otherwise γs

ij = γs
ji = 0. Other gain matrices

also own the same requirements. Moreover, as illustrated in
Remark 1, the assumption of τ∗ ·τsa = T ∗ ·Tsa with τsa < Tsa

leads to T ∗ < τ∗. Thus, we initialize all gain matrices as the
associated adjacency matrices, and T ∗ as half of τ∗, and then
further optimize their values by Algorithm 1.

Algorithm 1 Calculate parameters Γs, Ξs, Γ̃, and T ∗.
Initialization:
Set ε ∈ (0, 1), number of secondary input update τ∗, and

let {(γs
ij)

ms
i,j=1, (γ

s
i0)

ms
i=0}Ms=1 → {(asij)

ms
i,j=1, (a

s
i0)

ms
i=0}Ms=1,

{(γ̃sk̃)Ms,k̃=1
} → {(ãsk̃)Ms,k̃=1

}, and T ∗ → ⌈0.5τ∗⌉;
Iterative:
1: while inequality conditions in (25) do not hold do
{(γs

ij)
ms
i,j=1, (γ

s
i0)

ms
i=0} ← ε{(γs

ij)
ms
i,j=1, (γ

s
i0)

ms
i=0} for s =

1, · · · ,ms, and (γ̃sk̃)
M
s,k̃=1

← ε(γ̃sk̃)
M
s,k̃=1

;
2: end while
3: while inequality conditions in (26) do not hold do

T ∗ ← max{⌊εT ∗⌋ , 1};
if T ∗ = 1 do
(γ̃sk̃)

M
s,k̃=1

← ε(γ̃sk̃)
M
s,k̃=1

;
end if

4: end while
Set {Γs,Ξs, Γ̃, T

∗} → {(γs
ij)

ms
i,j=1, (γ

s
i0)

ms
i=0, (γ̃sk̃)

M
s,k̃=1

, T ∗}.

The coefficient ε ∈ (0, 1) characterizes the changing rate
of the gain matrices to achieve optimal values satisfying (25)
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and (26). With the calculated numbers of the two-layer control
input update, T ∗ and τ∗, one can obtain the sampling period
ratio, τsa/Tsa, according to (26), thus Tsa can be then designed
for some given τsa.

Under the DHC framework shown in Fig. 3, the detailed
implementation can be designed as follows:

Step 1: Initialization: Set the reference trajectory vrated

and ωrated, the initial secondary and tertiary inputs
uω,v,P,Q
s (0) and ũP,Q

pin (0), the related initial states,
and the parameter τ∗. Let the iteration index k = 1
and the tolerance ϵ1 and ϵ2.

Step 2: Calculate gain matrices:Determine Γs, Ξs, Γ̃, and
T ∗, according to Algorithm 1.

Step 3: Calculate nominal set points: Apply ũP,Q
pin (k) to

compute ωref
s (tℓ̃

∗

k ) and vrefs (tℓ̃
∗

k ); apply uω,v,P,Q
s (k)

to compute ωnom
s,i (tℓk) and vnoms,i (tℓk) for ℓ̃ ∈ ĪT∗ , ℓ ∈

Īτ∗ , i ∈ Ims , and s ∈ IM .
Step 4: Measure terminal outputs: Apply ωref

s (tT
∗

k ) and
vrefs (tT

∗

k ) to the secondary layer and measure the
terminal outputs, ωnom

s,i (tτ
∗

k ) and vnoms,i (tτ
∗

k ); which
will be applied to the primary control process and
measure the terminal outputs, ωs,i(t

τ∗

k ), vs,i(t
τ∗

k ),
Ps,i(t

τ∗

k ), and Qs,i(t
τ∗

k ) for i ∈ Ims and s ∈ IM .
Step 5: Analyze errors: If Equation (4) holds with tolerance

ϵ1 and Equation (12) holds with tolerance ϵ2, then go
to step 7; Otherwise go to step 6.

Step 6: Calculate control inputs: Let k = k+1, and update
uω,v,P,Q
s (k) and ũP,Q

pin (k) according to the protocols
(7), (10), and (15), then go to step 3.

Step 7: Stop the iteration.

Remark 3: By introducing the concepts of interval weights
and interval adjacency matrices [15], the proposed DHC
strategy is also robust against the uncertain communication
links caused by the internal uncertainties and/or external
disturbances by minor change the inequalities (26) and (27).

Remark 4: When the frequency/voltage in each islanded MG
cannot be retained within the acceptable limits by adjusting
the set-points of generators or by controlling the power in-
jection/absorption of energy storage systems, then the power
mismatch signal between the MG will be detected. Simulta-
neously, the pinning control scheme will be implemented. In
this situation, we can control the pinning instant by activating
the corresponding communication links. Through adjusting the
frequency and voltage of the pinned DGs across the tie-line,
the power transfer among MGs can be finally realized.

Remark 5: Since different control variables possess different
communication networks due to their different response times,
it may be more practical to establish different communication
networks for the information interaction of frequency and volt-
age, and the associated work can be found in [13]. Moreover,
to stabilize the power outputs in a longer time scale than that
of the frequency response, an alternative solution is to design
a multiple time-scale control strategy by partially extending
the results of [14],[29]. Additionally, in our control strategy,
the sampling time of each layer communication network is
not directly related to the dynamical evolution time of each
actual physical module. For example, the evolution speed of

the active power outputs depends on its frequency reference
signal. Due to the slower dynamics of the active power, its
final frequency reference will remain unchanged for a long
period of time regardless of how fast the signal is collected in
the communication network.

Remark 6: In view of the advantages of pinning control,
the adopted pinning-based DSC scheme can greatly reduce the
number of the controlled DGs in the lower network. While for
the upper network, each pinned DG possesses a peer-to-peer
attribute, thus a consensus-based DTC scheme is more suitable
to realize a completely distributed control performance.

Remark 7: On one hand, the distributed network of public
utility can benefit from the proposed DHC framework to
achieve effectively monitor and control a large number of
DGs in the overall network; on the other hand, the proposed
DHC framework can also support demand-side management
to increase the reliability of multiple MGs. In view of this, the
proposed DHC framework will provide reference and guidance
on the management of the scalability and controllability of
large-scale DG access in distribution network for the dis-
tributed network of public utility and consumer.

V. PERFORMANCE VALIDATION

The effectiveness of the DHC strategy will be verified by
simulating an AC MG cluster in Simulink/SimPowerSystems.
The basic diagram of the AC MG cluster test system is
shown in Fig. 4, and the specifications of the DGs, lines,
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Fig. 4. Single line diagram of the DGs and loads in an AC MG cluster.

and loads are summarized in Table I. The rated frequency
and terminal voltage magnitude of MGs, ωrated and vrated,
are set as 314rad/s and 380V, respectively. Meanwhile, as
seen in Fig. 4, we set DG1,1, DG2,2, DG3,1, and DG4,1 as
the pinned DGs from four MGs, respectively, and the adja-
cency matrices of the lower cyber network can be written as
A1 = A3 = [0, 1; 1, 0], A2 = A4 = [0, 1, 1; 1, 0, 1; 1, 1, 0], and
the pinned DG adjacency matrices are B1 = B3 = diag{1, 0},
B2 = diag{0, 1, 0}, and B4 = diag{1, 0, 0}. While those of
the upper cyber network can be written as Ã = A1, Ã = A2,
and Ã = [0, 1, 0, 1; 1, 0, 1, 0; 0, 1, 0, 1; 1, 0, 1, 0] respectively
for the MG clusters consisting of two MGs(i.e., MG1 and
MG2), three MGs(i.e., MG1, MG2, and MG3), and four MGs.
Let the sampling period of the DSC scheme for the lower
layer τsa = 0.0001s, and the associated input update number
τ∗ = 100. By Algorithm 1(set ε = 0.02 and τ∗ = 100, the
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TABLE I
PARAMETERS FOR THE TEST AC MG CLUSTER SYSTEM

DG1,1 & DG2,1 & DG2,3 DG1,2 & DG2,2 & DG3,2

& DG3,1& DG4,2 & DG4,1& DG4,3

(71 kVA rating) (103 kVA rating)
VDC 800V VDC 800V

KP 1.6× 10−5 KP 0.8× 10−5

KQ 3× 10−4 KQ 6× 10−4

Load1,1 Load2,1 Load3,1 Load3,2
& Load1,2 & Load2,2 & Load4,1 &Load4,2
27.5 kW 27.5 kW 39 kW 29 kW
27.5 kV ar 27.5 kV ar 39 kV ar 29 kV ar

Line1 Line2,1 Line2,2 Line3
0.64Ω 0.51Ω 0.51Ω 0.58Ω

1.32 mH 1.05 mH 1.05 mH 1.21 mH

TieLine12 TieLine23 TieLine34 TieLine41
1.73Ω 1.73Ω 1.14Ω 1.14Ω

3.58 mH 3.58 mH 2.38 mH 2.38 mH

total iterative number is 3 and elapsed time is 0.001698s.),
we obtain the desired learning matrices Γs = 0.0004As and
Ξs = 0.0004Bs for s = 1, 2, 3, 4, Γ̃ = 0.0004Ã, the sampling
period of the DTC scheme for the upper layer Tsa = 0.01s, and
the associated input update number T ∗ = 1. Thus, inequalities
(25) and (26) are satisfied.

During the simulation process, taking the 2-MG cluster test
(i.e., MG1 and MG2 in Fig. 4) as an example, we implement
the two-layer communication network by S-function, S1, S2,
and S̃, respectively corresponding to the lower communication
networks G1 and G2, and the upper communication network G̃.
Set sampling periods τ1sa = τ2sa = 0.0001s and Tsa = 0.01s,
and the related input update numbers τ∗1 = τ∗2 = 100 and
T ∗ = 1. Then the information interaction within the lower
networks G1 and G2 will occur every 0.0001s while that within
the upper network G̃ will then occur every 0.01s. However, the
control input updates of the lower networks G1 and G2 only
occur after 100 times information exchange, while that of the
upper network G̃ occurs after each information exchange. By
this way, both of the two-layer communication systems have
the same terminal time 0.1s so as to drive the two-tier system
to output information at the same time.

The next simulation studies cover two scenarios: 1) load
change performance assessment (with communication delays,
data drop-out, and link failure test), and 2) plug and play
capability of MG level (in case of different communication
network topologies).

A. Load Change Performance Assessment

This subsection studies the performance of the MG cluster
consisting of MG1 and MG2 in the situation of load change.

1) General performance assessment: The two MGs are set
to be electrically disconnected from each other at t = 0s and
connected at t = 2.5s. Then the tertiary and pinning links,
consequently, are disabled at t = 0s and activated at t =
2.5s correspondingly. After t = 4s, the DTC controllers are
activated, while Load1,2 and Load2,1 are removed at t = 8s,
and then readded at t = 12s. Moreover, all DGs consider
314rad/s and 380V as their references when t ∈ [0, 2.5)s. The
associated results are given in Figs. 5-7.

Fig. 5. Performance of the test two MG cluster in case of load change. (a)-
(b) frequency/voltage response. (c) voltage estimation. (d)-(e) active/reactive
power outputs. (f)-(g) active/reactive output ratios.

As seen in Fig. 5(d)-(e), the DSC scheme proportionally
shares the load within each MG before t = 2.5s, however, the
power outputs among all MGs are different from each other
due to the different total local loads. After the DTC scheme is
activated at t = 4s, the power sharing among MGs is achieved
within 4s. After t = 8s, the power outputs of each DG vary
with the change of local loads within each MG, however,
the power sharing among MGs is always maintained, as
shown in Fig. 5(f)-(g). Although there exists a little fluctuation
for the frequency and voltage response, the excellent steady
evolutions can still be observed in Fig. 5(a)-(b). Moreover,
due to the inherent contradiction of precise voltage regulation
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Fig. 6. Reference trajectories of two control layers. (a)-(b) frequency/voltage
nominal set-points for primary layer. (c)-(d) frequency/voltage references for
secondary layer.

and reactive power sharing, the designed DSC scheme enables
the weighted average voltage of all DGs within MGs (i.e., the
voltage estimation v̂) to converge to vrefs as well as maintains
the accurate reactive power sharing (see Figs. 5(c)-6(d)).

Figs. 6-7 show the frequency/voltage references and their
control inputs for different control layers, respectively. As
seen in Fig. 6(c)-(d), the tertiary references, ωref and vref , are
designed based on the power output imbalance among MGs,
which are then sent to the secondary control layer. While
the secondary references, ωnom and vnom as shown in Fig.
6(a)-(b), are obtained by absorbing the state errors among all
DGs within each MG. As seen in Fig. 7, the sampling periods
and the control input update numbers for different layers are
designed differently so as to make a scale separation between
the DSC scheme and DTC scheme. In Fig. 8, the selected
T ∗ and Tsa do not satisfy (25) and (26). Thus the evolutions
of frequency/voltage references and power output curves are
fluctuate (see Fig. 8(a)-(d)).

2) Communication delays, data drop-out, and link failure
test: The two MGs are set to be electrically disconnected
from each other at t = 0s and connected at t = 4s. Then the
tertiary and pinning links, consequently, are disabled at t = 0s
and activated at t = 7s correspondingly. After t = 7s, the
DTC controllers are activated, while Load1,2 and Load2,1 are
removed at t = 14s, and then readded at t = 12s. Moreover,
all DGs consider 314rad/s and 380V as their references when
t ∈ [0, 4)s. The three situations are respectively set as: (i) the
variable communication delays d1(t) = [1.2 + 0.1 sin(t)]/15
for the lower network and d2(t) = [1.5+0.2 sin(t)]/12 for the
upper network. (ii) the data drop-out (packet loss in all links)

Fig. 7. Control inputs of the reference trajectories. (a)-(b) for primary layer.
(c)-(d) for secondary layer.

Fig. 8. Performance of the DHC strategy with parameters that do not satisfy
(25) and (26). (a)-(c) active power outputs, frequency reference, and control
inputs with Tsa = 0.01s and T ∗ = 50. (d)-(f) reactive power outputs, voltage
reference, and control inputs with Tsa = 0.001s and T ∗ = 1.

occurs once in every 15ms, considering 5.5ms communication
delays. (iii) the links within MG1 and MG2 (i.e., the lower
network) are randomly disconnected as t ∈ [8, 11]s and
t ∈ [15, 18]s, while the links between MG1 and MG2 (i.e.,
the upper network) are randomly disconnected as t ∈ [8, 9.5]s
and t ∈ [15, 16.5]s. The results are given in Figs. 9-10.

As seen, compared with Fig. 5(a),5(b),5(d),and5(e), the con-
vergence time of the system with both DSC and DTC schemes
is prolonged by the influence of communication delays (shown
in Figs.9(a1),9(a2),10(a1),and10(a2)), data drop-out(shown in
Figs.9(b1),9(b2),10(b1),and10(b2)), and link failure (shown in
Figs.9(c1),9(c2),10(c1),and10(c2)). Despite this, as verified in
Figs. 9-10, the proposed schemes have an acceptable robust
performance to these unexpected factors. In detail, for the two-
layer communication network with different variable delays
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Fig. 9. Frequency response and active power outputs in case of load change
with (a1)-(a2) variable communication delays, (b1)-(b2) data-drop out, and
(c1)-(c2) link failure.

corresponding to different layers, the control performance
is still realized in Fig. 9(a1,a2) and 10(a1,a2). Moreover,
Comparing these three cases shown in Figs. 9(a2-c2) and
10(a2-c2), we conclude that packet loss will have the worst
impact on system stability as t ∈ [0, 7]s. Nevertheless, this
kind of unstable evolution curves shown in Figs. 9(b2) and
10(b2) has been stabilized after the DTC scheme is activated
at t = 7s. Comparing the active/reactive power outputs shown
in Fig. 9(c2) and 10(c2) and that shown in Fig. 5(d) and 5(e), it
also can be seen that the proposed DTC scheme can suppress
the power output instability (during t ∈ [8, 11] ∪ [15, 18]s)
caused by link failure.

B. Plug and Play Capability of MG Level

This subsection studies the performance of the MG cluster
consisting of three MGs and four MGs in the situation of MG
plug and play.

Fig. 10. Voltage response and reactive power outputs in case of load change
with (a1)-(a2) variable communication delays, (b1)-(b2) data-drop out, and
(c1)-(c2) link failure.

1) MG cluster consisting of MG1, MG2, and MG3: All MGs
begin to operate separately at t = 0s, MG1 and MG2 are
connected at t = 2.5s, while MG3 is connected and removed
respectively at t = 8s and t = 15s, and the DHC strategy is
activated at t = 4s. The results are shown in Fig. 11.

As seen, MG3 is operating in islanded mode before t = 8s.
When it is connected at t = 8s, the frequency/voltage response
of each DG begin to vary with the change of the references
for each MG (see Fig. 9(a)-(e)), and the power outputs for
each MG are redistributed proportionally (see Fig. 11(f)-(g))
within 7s. When MG3 is removed at t = 15s due to some
malfunction, its local Load3,1 is also no longer afforded,
however, the remaining Load3,2 still needs to afford by the rest
MG1 and MG2. As seen, the power outputs of MG3 decline
to zero rapidly after t = 15s, and the power sharing between
the two remaining MGs can still be achieved within 9s.

2) MG cluster consisting of MG1, MG2, MG3, and MG4:
All MGs begin to operate separately at t = 0s, MG1, MG2,
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Fig. 11. Performance of the test three MG cluster in case of MG plug and
play. (a)-(b) frequency and its reference for the secondary layer. (c)-(e) voltage
response for MG1, MG2, and MG3. (f)-(g) active/reactive power outputs.

and MG4 are connected at t = 3s, while MG3 is connected
and removed respectively at t = 10s and t = 18s, and the
DHC strategy is activated at t = 5s. To further illustrate the
effectiveness of the proposed two-layer network, we imple-
ment the proposed scheme on a MG cluster consisting of four
MGs under a two-layer digraph (see Fig. 12(a)) and a single-
layer digraph (see Fig. 12(b)), and the associated evolution
curves are respectively shown in Figs. 13 and 14.

It can be seen by comparing Figs. 13 and 11 that, as the
number of the MG increases, the convergence time for the MG
cluster consisting of four MGs is longer than that for the case
of three MGs. However, the final stability can still be realized.
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Fig. 12. The test different cyber networks. (a) two-layer network topology: G̃
and {G}i=1,2,3,4 are respectively corresponding to the tertiary and secondary
communication, DGs from different MGs have no information interaction
during the secondary communication and only the pinned DGs from different
MGs participate in the tertiary communication. (b) single-layer network
topology: each DG within the same or different MGs is enable to communicate
with each other in both the secondary and tertiary communication.

Fig. 13. Performance of the test four MG cluster under two-layer network.
(a)-(b) frequency/voltage response. (c)-(d) active/reactive power outputs.
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Fig. 14. Performance of the test four MG cluster under single-layer network.
(a)-(b) frequency/voltage response. (c)-(d) active/reactive power outputs.

Further, for the proposed DSC and DTC schemes implemented
in a single-layer digraph (Fig. 12(b)), it can be found that
the corresponding performance is a little worse than the case
of two-layer digraph (Fig. 12(a)) by comparing the evolution
curves shown Figs.13 and 14. In fact, the DSC and DTC
schemes are designed to implement in different dynamics with
different time scales, while a two-layer digraph can effectively
meet the time-scale separation requirements for the interactive
information flow that integrated in the cluster-oriented physical
network. Moreover, each DG within each MG has the same
control property and thus is responsible to implement both the
secondary and tertiary communication tasks in the single-layer
digraph. But for the two-layer digraph, DGs within different
MGs have no information interaction with each other during
the secondary communication stage, and only the pinned DGs
within each MG participate in the tertiary control decision
process and thus possess the tertiary communication task. The
associated control costs for the two-layer network are therefore
less than that of the single-layer network.

VI. CONCLUSION

A DHC strategy for islanded AC MG cluster systems is
presented, which can regulate the frequency/voltage within
each MG as well as maintain the active/reactive power sharing
among AC MGs with heterogenous DGs. By pinning one
or some DGs from each MG to constitute an upper cyber
network, a two-layer sparse cyber network is formulated to
support the dynamical coupling between the secondary and
tertiary levels. Moreover, the time response matching problem
has been studied, which indicates that the stability can be
guaranteed if the sampling period ratio of the tertiary to

secondary is less than a certain upper bound. All the distributed
controllers are equipped with discrete iterative inputs that are
merely updated at the end of each round of iteration, which
permits an intermittent communication manner. In practical,
how to solve the load uncertainty problem based on the
designed two-layer network will be our future work.

VII. APPENDIX

Lemma 1: If the graph Gs for MGs is connected, then the
designed voltage observer (6) can ensure that

lim
k→∞

∣∣∣v̂s,i(tτ∗

k )− µs,ivs,i(t
τ∗

k )
∣∣∣ = 0, i ∈ Ims , s ∈ IM . (27)

Proof: By the previous denotations, rewrite (6) as

v̂s(t
ℓ+1
k ) = (Ims − Ls)v̂s(t

ℓ
k) + vs(t

ℓ+1
k )− vs(t

ℓ
k). (28)

Let V̂s(z), Vs(z) be the Z-transforms of v̂s(tℓk), vs(t
ℓ
k), then

V̂s(z) = (z − 1)[(z − 1)Ims + Ls]
−1Vs(z). (29)

Since the transfer function (z − 1)[(z − 1)Ims + Ls]
−1 is

stable if the first inequality in (25) holds, then consider the
discrete dynamic x(ℓ+ 1) = (Ims − Ls)x(ℓ) associated with
this transfer function. If Gs is connected, there exists a positive
left eigenvector µs corresponding to the zero eigenvalue of Ls

such that
∑ms

i=1 µ
s
ixi(ℓ) is an invariant quantity. By the final

value theorem, we deduce the desired objective (27).

REFERENCES

[1] X. Yu, and Y. Xue, “Smart grids: a cyber-physical systems perspective”,
Proceedings of the IEEE, vol.104, no.5, pp.1058-1070, May, 2016.

[2] M. Yazdanian, and A. Mehrizi-Sani, “Distributed control techniques in
microgrids”, IEEE Trans. Smart Grid, vol.5, no.6, pp.2091-2099, Oct.
2014.

[3] N. Nikmehr, S.N. Ravadanegh, “Optimal power dispatch of multi-
microgrids at future smart distribution grids”, IEEE Trans. Smart Grid,
vol. 6, no.4, pp.1648-1657, Jul. 2015.

[4] B. Robbins, C. Hadjicostis, and A. Dominguez-Garcia, “A two-stage
distributed architecture for voltage control in power distribution systems”,
IEEE Trans. Power Syst., vol. 28, no. 2, pp.1470-1482, May. 2013.

[5] T. Vandoorn, J.De Kooning, and B. Meersman, “Review of primary con-
trol strategies for islanded microgrids with power-electronic interfaces”,
Renew. Sustain. Energy Rev., vol. 19, pp. 613-628, Mar. 2013.

[6] X. Lu, J. M. Guerrero, K. Sun, J. Vasquez, et. al, “Hierarchical control of
parallel AC-DC converter interfaces for hybrid microgrids”, IEEE Trans.
Smart Grid, vol.5, no.2, pp.683-692, Jul. 2014.

[7] Q.C. Zhong, “Robust droop controller for accurate proportional load
sharing among inverters operated in parallel”, IEEE Trans. Ind. Electron.,
vol. 60, no. 4, pp.1281-1290, Apr. 2013.

[8] L. Meng , F. Tang , M. Savaghebi , J.C. Vasquez, J.M. Guerrero, “Tertiary
control of voltage unbalance compensation for optimal power quality
in islanded microgrids”, IEEE Trans. Energy Conversion.,vol. 29, no4,
pp.802-815, Dec. 2014.

[9] M. Erol-Kantarci, B. Kantarci, and H. T. Mouftah, “Reliable overlay
topology design for the smart microgrid network”, IEEE Network, vol.
25, no.5, pp.38-43, Sep. 2011.

[10] A. Bidram, A. Davoudi, F.L. Lewis, and J. M. Guerrero, “Distributed co-
operative secondary control of microgrids using feedback linearization”,
IEEE Trans. Power Syst., vol.28, no.3, pp.3462-3470, Aug. 2013.

[11] Q. Shafiee, J.M. Guerrero, and J.C. Vasquez, “Distributed secondary
control for islanded microgrids–A novel approach”, IEEE Trans. Power
Electron., vol. 29, no. 2, pp.1018-1031, Feb. 2014.

[12] J.W. Simpson-Porco, Q. Shafiee, F. Dörfler, J.M. Guerrero, and F.
Bullo, “ Secondary frequency and voltage control of islanded microgrids
via distributed averaging”, IEEE Trans. Ind. Electron, vol. 62, no. 11,
pp.7025-7038, Nov. 2015.



1551-3203 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2017.2783334, IEEE
Transactions on Industrial Informatics

LU et al.: DISTRIBUTED COORDINATION OF ISLANDED MICROGRID CLUSTERS USING A TWO-LAYER INTERMITTENT COMMUNICATION NETWORK 13

[13] J. Lai, H. Zhou, X. Lu, X. Yu, and W.S. Hu, “Droop-based distributed
cooperative control for microgrids with time-varying delays”, IEEE Trans.
Smart Grid, vol. 7, no. 4, pp.1175-1189, Jul. 2016.

[14] X. Lu, X. Yu, J. Lai, Y. Wang, and J. M. Guerrero, “A novel
distributed secondary coordination control approach for islanded mi-
crogrids”, IEEE Trans. Smart Grid, 2017, to be published, doi:
10.1109/TSG.2016.2618120.

[15] X. Lu, X. Yu, J. Lai, J.M. Guerrero, and H. Zhou,“Distributed secondary
voltage and frequency control for islanded microgrids with uncertain
communication links”, IEEE Trans. Ind. Infor., vol. 13, no. 2, pp.448-
460, Apr. 2017.

[16] J.M. Guerrero, M. Chandorkar, T. Lee, and P. Loh, “Advanced control
architectures for intelligent microgrids, part I: decentralized and hierar-
chical control”, IEEE Trans. Ind. Electron, vol. 60, no.4, pp.1254-1262,
Apr. 2013.

[17] L. Meng, T. Dragicevic, J.C. Vasquez, and J.M. Guerrero, “Tertiary and
secondary control levels for efficiency optimization and system damping
in droop controlled dc-dc converters”, IEEE Trans. Smart Grid, vol. 6,
no. 6, pp. 2615-2626, Nov, 2015.

[18] D. Niyato, P. Wang, “Reliability analysis and redundancy design of smart
grid wireless communications system for demand side management”,
IEEE Wireless Commun., vol. 19, no.3, pp.38-46, June 2012.

[19] L. Wu, J. Li, M. Erol-Kantarci, and B. Kantarci, “An integrated re-
configurable control and self-organizing communication framework for
community resilience microgrids”, The Electricity Journal, vol. 30, no.
4, pp. 27-34, May 2017.

[20] A. Arefi, F. Shahnia, “Tertiary controller-based optimal voltage and
frequency management technique for multi-microgrid systems of large
remote towns”, IEEE Trans. Smart Grid, 2017, to be published, doi:
10.1109/TSG.2017.2700054.

[21] Q. Shafiee, T. Dragievi, J.C. Vasquez, and J.M. Guerrero, “Hierarchical
control for multiple DC microgrids clusters”, IEEE Trans. Energy
Convers., vol. 29, no.4, pp.922-933, Oct. 2014.

[22] S. Moayedi, and A. Davoudi, “Distributed tertiary control of dc micro-
grid clusters”, IEEE Trans. Power Electron., vol. 31, no.2, pp.1717-1733,
Feb. 2016.

[23] A. Maknouninejad, Z. Qu, J. Enslin, and N. Kutkut, “Clustering and
cooperative control of distributed generators for maintaining microgrid
unified voltage profile and complex power control”, in Proc. IEEE PES
Transm. Distrib. Conf. Expo., pp. 1-8, May. 2012.

[24] I.U. Nutkani, P.C. Loh, and F. Blaabjerg, “Distributed operation of in-
terlinked AC microgrids with dynamic active and reactive power tuning”,
IEEE Trans. Ind. Appl., vol. 49, no.5, pp.2188-2196, Sep. 2013.

[25] S. Weckx, R. D’hulst, and J. Driesen, “Primary and secondary frequency
support by a multi-agent demand control system”, IEEE Trans. Power
Syst., vol. 30, no. 3, pp.1394-1404, May. 2015.

[26] Q.Y. Sun, R.K. Han, H.G. Zhang, J.G. Zhou, and J. M. Guerrero,“Multi-
agent-based consensus algorithm for distributed coordinated control of
distributed generators in the energy internet”, IEEE Trans. Smart Grid,
vol.6, no.6, pp.3006-3019, Nov. 2015.

[27] T. L. Vandoorn, J. C. Vasquez, J. D. Kooning, J. M. Guerrero, and
L. Vandevelde, “Microgrids: hierarchical control and an overview of the
control and reserve management strategies”, IEEE Ind. Electron. Mag.,
pp. 42-55, Dec. 2013.

[28] W. Liu, W. Gu, W. Sheng, X. Meng, S. Xue, and M. Chen, “Pinning-
based distributed cooperative control for autonomous microgrids under
uncertain communication topologies”, IEEE Trans. Power Syst, vol. 31,
no. 2, pp. 1320-1329, Mar. 2016.

[29] X. Lu, Y. Wang, X. Yu, and J. Lai, “Finite-time control for robust
tracking consensus in MASs with an uncertain leader,” IEEE Trans.
Cybern., vol. 47, no.5, pp.1210-1223, May 2017.

[30] R. Horn and C. Jornson. Matrix analysis. New York: Cambridge Uni-
versity Press; 1985.

Xiaoqing Lu received the M.Sc. and Ph.D. degrees
in applied mathematics from Wuhan University,
Wuhan, China.

She is currently a Professor in the School of
Power and Mechanical Engineering, Wuhan Univer-
sity, Wuhan, China. She is also a Postdoctoral Re-
search Fellow at the School of Engineering, RMIT
University, Melbourne, Australia. Her research inter-
ests include nonlinear dynamical systems, intelligent
systems and applications, complex networks, multi-
agent systems, and microgrids.

Jingang Lai (M’17) received the M.Sc. degree in
control science and engineering from the Wuhan
University of Technology, Wuhan, China, in 2013,
and Ph.D. degree from Department of Automation,
Wuhan University, Wuhan, China, in 2016. He was
a Visiting Ph.D. Student in the School of Electrical
and Computer Engineering, RMIT University, Mel-
bourne, VIC, Australia, in 2015.

He is currently a Visiting Research Fellow in
the School of Engineering, RMIT University, Mel-
bourne, VIC, Australia. His current research interests

include smart grid and networked control systems.

Xinghuo Yu (M’92-SM’98-F’08) received the
B.Eng. and M.Eng. degrees from the University of
Science and Technology of China, Hefei, China, in
1982 and 1984, respectively, and the Ph.D. degree
from Southeast University, Nanjing, China, in 1988.

He is currently with RMIT University (Royal Mel-
bourne Institute of Technology), Melbourne, VIC,
Australia, where he is Associate Deputy Vice- Chan-
cellor Research Capability and Distinguished Profes-
sor. His current research interests include variable
structure and nonlinear control, and complex and

intelligent systems and applications.
Prof. Yu was a recipient of a number of awards and honors for his

contributions, including the 2013 Dr.-Ing. Eugene Mittlemann Achievement
Award of the IEEE Industrial Electronics Society and the 2012 IEEE Industrial
Electronics Magazine Best Paper Award. He is President-Elect (2016-2017)
of the IEEE Industrial Electronics Society.

Yaonan Wang (SM’94) received the B.S. degree in
computer engineering from East China Science and
Technology University (ECSTU), Fuzhou, China, in
1981, and the M.S. and Ph.D. degrees in electri-
cal engineering from Hunan University, Changsha,
China, in 1990 and 1994, respectively.

He is currently a Professor with the College of
Electrical and Information Engineering, Hunan Uni-
versity. From 1994 to 1995, he was a Post-Doctoral
Research Fellow with the National University of
Defense Technology, Changsha. From 1981 to 1994,

he was with ECSTU. From 1998 to 2000, he was a Senior Humboldt Fellow
in Germany, and from 2001 to 2004, he was a Visiting Professor with
the University of Bremen, Bremen, Germany. His current research interests
include intelligent control, image processing, and intelligent robotics.

 

Josep M. Guerrero (S’01-M’04-SM’08-F’15) re-
ceived the B.S. degree in telecommunications engi-
neering, the M.S. degree in electronics engineering,
and the Ph.D. degree in power electronics from the
Technical University of Catalonia, Barcelona, Spain,
in 1997, 2000, and 2003, respectively.

Since 2011, he has been a Full Professor with
the Department of Energy Technology, Aalborg Uni-
versity, Aalborg, Denmark, where he is responsible
for the Microgrid Research Program. From 2012,
he is a Guest Professor at the Chinese Academy

of Science, Beijing, China and the Nanjing University of Aeronautics and
Astronautics, Nanjing, China; from 2014, he is Chair Professor in Shandong
University, Jinan, China; and from 2015, he is a Distinguished Guest Professor
in Hunan University, Changsha, China. His research interests include different
microgrid aspects, including power electronics, distributed energy-storage
systems, hierarchical and cooperative control, energy management systems,
and optimization of microgrids and islanded minigrids.


