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Distributed Coordination of Islanded Microgrid
Clusters Using a Two-layer Intermittent
Communication Network

Xiaoqing Lu, Jingang Lai, Xinghuo Yu, Fellow, IEEE, Yaonan Wang, Josep M. Guerrero, Fellow, IEEE

Abstract—This paper proposes a distributed hierarchical co-
operative (DHC) control strategy for a cluster of islanded
microgrids (MGs) with intermittent communciation, which can
regulate the frequency/voltage of all distributed generators (DGs)
within each MG as well as ensure the active/reactive power shar-
ing among MGs. A droop-based distributed secondary control
(DSC) scheme and a distributed tertiary control (DTC) scheme
are presented based on the iterative learning mechanics, by which
the control inputs are merely updated at the end of each round
of iteration, and thus each DG only needs to share information
with its neighbors intermittently in a low-bandwidth communi-
cation manner. A two-layer sparse communication network is
modeled by pinning one or some DGs (pinned DGs) from the
lower network of each MG to constitute an upper network.
Under this control framework, the tertiary level generates the
frequency/voltage references based on the active/reactive power
mismatch among MGs while the pinned DGs propagate these
references to their neighbors in the secondary level, and the
frequency/voltage nominal set-points for each DG in the primary
level can be finally adjusted based on the frequency/voltage
errors. Stability analysis of the two-layer control system is given,
and sufficient conditions on the upper bound of the sampling
period ratio of the tertiary layer to the secondary layer are also
derived. The proposed controllers are distributed, and thus allow
different numbers of heterogeneous DGs in each MG. The effec-
tiveness of the proposed control methodology is verified by the
simulation of an AC MG cluster in Simulink/SimPowerSystems.

Index Terms—Distributed control, microgrid cluster, secondary
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control, communication network.

I. INTRODUCTION

S an effective integration of DGs, loads, and storage units

via DC/AC inverters [1], MGs can operate in both grid-
connected and islanded modes. For enabling maximum uti-
lization of renewable sources and also efficiently suppressing
stress and aging of the components of MGs [2],[3], matching
power transfer between MGs to form various MG clusters has
become the future trend of the smart distribution grids.

Up to now, many literatures focus on the power quality
issues (i.e., primary [4] and secondary control [5],[6]) within
a MG in the islanded mode and the transient behaviors (i.e.,
tertiary control [7],[8]) that may occur when switching on and
off from the utility grid [9]. The existing secondary control
strategies include the feedback linearization voltage regulation
method [10], a novel DSC approach that requires each local
controller communicate with all the others across the MG [11],
several compromise methods to solve the inherent contradic-
tion between voltage regulation and reactive power sharing
[12],[13],[14], and the frequency/voltage controller to robust
against uncertain communication links [15], to name just a
few. Tertiary control is used to realize the power flow balance
among MGs and utility grid [16], including the optimization
control method to achieve autonomous equal power sharing
among DC-DC converters [17], and the voltage unbalance
compensation scheme [8], and so on.

Although the above studies address many significant re-
search challenges within MGs, to the best of our knowledge,
there are only a few literatures focus on multiple MGs from
the perspective of a smart microgrid network [9]. To this
end, two important issues should be considered. One is the
overlay topology design problem so as to maximize the usage
of renewable DGs, and the other is the power flow and power
quality problem among multiple MGs.

To address the first problem, a reliable overlay topology
design method for the smart microgrid network was pre-
sented very early [9], then [18] studied a reliability and
redundancy design of a smart grid wireless communications
system in view of demand side management, afterwards an
integrated reconfigurable control and self-organizing commu-
nication framework was established for community resilience
microgrids [19]. More recently, a voltage-frequency manage-
ment technique for remote islanded MGs was also proposed
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[20], by which an overloaded MG or the one with excessive
renewable generation can be coupled to one or more suitable
neighboring islanded MGs at the lowest cost. Assuming the
multiple MG network is previously designed, some control
approaches for multiple AC or DC MG clusters have been
proposed to solve the second problem. The existing results
for DC MG clusters include a tertiary power flow scheme
by adopting an droop-based centralized secondary control
method [21], and a hierarchical control framework to avoid
the centralized control mode [22], etc. Unlike DC MG clusters,
the control issues of AC MG clusters involve the control of
frequency and phase, reactive power, and power quality, thus
still faces big challenges [21]. The only relevant results include
a clustering and cooperative control strategy by organizing
DGs into several clusters for grid-connected AC MGs [23], and
a distributed power management scheme for intertied AC MGs
based on the droop operating principles [24], etc. However, the
adopted P/Q control mode in [23] is generally not suitable for
multiple MG clusters in an islanded mode, while the power
management scheme in [24] does not take into account the
proportional power sharing accurately among MGs.

By analysis, to maximum utilize of renewable sources, the
cyber topology structure of a MG cluster will finally present a
hierarchical and clustering characteristic regardless of how the
multiple MGs are dynamically coupled and recombined. In this
situation, it is necessary to consider the time-scale separation
requirements for the hierarchical interactive information flow
that integrated in the cluster-oriented physical network when
we try to address the power flow and power quality problem
within each MG or among multiple MGs. Note that both
secondary and tertiary levels (except primary level) generally
allow information exchange among DGs within a MG via a
centralized, decentralized, or distributed manner [8],[25],[26].
This inspires us to study the multiple AC MGs from the
perspective of a special network that possess some cluster-
oriented two-layer topology structure. In view of this, by
establishing a two-layer communication network for a cluster
of islanded AC MGs, this paper presents a DHC strategy,
consisting of a DTC and a DSC schemes respectively corre-
sponding to the upper and lower networks, that are equipped
with an intermittent communication mechanics. The main
contributions are listed below:

i) The consensus-based DTC scheme allows one or some
DGs within each MG to be pinned to formulate the tertiary
layer, and only the power flow mismatch information of the
pinned DGs is needed to exchange in a distributed way, which
is different from most of the centralized tertiary schemes
[16],[27]. The pinning-based DSC scheme contains a voltage
observer, under which the average voltage magnitude of all
DGs within each MG can be regulated to the reference and
then the accurate reactive power sharing among all MGs
can be realized simultaneously. Thus, it extends the results
of [13],[14],[15] to the case of voltage and reactive power
management with intermittent communication.

ii) All the intermittent communication controllers are in
the discrete form, with which each DG only needs to access
partial or limited knowledge of the system parameters, perform
merely local measurements, and then, communicate with its

neighbors intermittently. It in turn greatly reduces the com-
munication costs and makes our results essentially different
from the existing continuous-time communication methods
[10], [28]. Different from [11], [25], a sparse two-layer cyber
network is sufficient to support the proposed scheme, even
allowing only one DG from each MG to access the references.
Besides the plug-and-play capacity of MG level, the proposed
scheme also possesses high robustness against time delays,
data drop-out, link failure, even for the interval uncertainties
within information exchanges among all DGs or MGs.

iii) Different from the existing single-layer communication
networks [16],[23],[24], the two-layer communication network
are designed with different dynamics and time scales for
each layer, which can more effectively meet the time-scale
separation requirements for the hierarchical interactive infor-
mation flow that integrated in the cluster-oriented physical
network. Unlike many relevant hierarchical results that analyze
the stability of each layer separately [8],[13],[15], this paper
presents the detailed stability analysis on the whole two-layer
dynamical system. Sufficient conditions, in terms of network
connectivity and the sampling period ratio of the tertiary
layer to the secondary layer, are finally derived, which will
provide some inspiration for the future cluster-oriented two-
layer network topology design of MG clusters.

The rest of this paper is organized as follows. The configura-
tion of an AC MG cluster and the DHC strategy are presented
in Sec. II and III, respectively. Sec. IV gives the detailed
analysis of the system. After that, the numerical results are
analyzed via an AC MG cluster system consisting of three
AC MGs in Sec. V before one concludes the work in Sec. VI.

II. MG CLUSTER CONFIGURATION

To begin with, some necessary notations are listed. Let Z,, =
{1,2,---,n}and Z,, = {0,1,2,---,n} be the finite index sets,
Z ={0,1,2,---} be the set of nonnegative integers, [a] be
the maximum integer that does not exceed the scalar a, I,, be
the n x n identity matrix, 1,, = (1,---,1)7 € R", and ® be
the Kronecher product. For any vectors x = (21, -+, 7,)? and
y=(y1, 7/yn)T’ denote z Oy = (xlyla T 7xnyn)T' For
any n-dimensional symmetric matrix A, let A\ (A4) < A2(A) <
-+ < Ap(A) be the n eigenvalues of A with an increasing sort.

A. The proposed DHC control framework

We will adopt the pinning control algorithm from the leader-
follower-based multi-agent control theory [28],[29]. For MGs
with large number of DGs, a pinning-based method is very
suitable since it only needs a small fraction of DGs to be
controlled by simple feedback controllers. Thus it is naturally
used to reduce the number of DG controllers and further
reduce the communication and control costs.

Consider a MG cluster containing M MGs labeled
MGy, -, MGy, - -, MGjy, where MG, consists of ms DGs
labeled (s,1) through (s, m). The DHC framework employs
a sparse two-layer communication network to implement the
information exchange and control in different control levels, as
shown in Fig. 1. As seen, the lower communication network is
responsible to the secondary frequeny/voltage control within
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each MG, while the upper communication network enables to
realize the tertiary active/reactive power control among MGs.

Tl Lower network

Fig. 1. A MG cluster supported by two ldyer communication networks (the
upper network located in the yellow region and the lower network located in
the pink region), where the red and blue dotted lines represent the cyber links
while the black solid lines represent the physical links.

We aim to address the time-scale matching problem in term
of different sampling times, corresponding to each layer of the
cluster-oriented two-layer communication network. In detail,
for each MGy, there is a secondary communication network
(the pink region in Fig. 1), G, corresponding to the infor-
mation exchange among all DGs within MGg. It is assumed
that each DG, ; within MG, only needs to communicate with
its neighboring DGs through the lower network, G, and the
reference information generated by the upper network are
available to a small part or even only one following DG p,in
(as shown in Fig. 1). Herein, by pinning one or some DGs,
DGy, pin, from each MG, the tertiary communication network,
G, can be then formulated (the yellow region in Fig. 1). Note
that all cyber networks are not necessary to own the same
topology structures as the physical networks, thus not all DGs
or MGs in large-scale systems need to be in a direct contact.

The proposed DHC strategy consists of the primary, sec-
ondary, and tertiary control levels. For the ith DG in the
sth MG (i € Z,,, and s € ZIp), DGy, its power out-
puts are adjusted by the primary control through the power,
voltage, and current control loops [15]. To compensate the
voltage/frequency deviations caused by the primary stage, the
secondary control is applied to generate the frequency/voltage
nominal set-points, w“‘)m and Unom for DG, ;, and further
regulate its terminal frequency and voltage outputs to the
references, w'*' and vref, provided by the tertiary control stage.

B. Model of Two-Layer Communication Network

The lower cyber network refers to the secondary control
layer which contains M graphes, G1, G-, and G, respectively
corresponding to M MGs. For the sth MG, MGy, its commu-
nication graph is defined as G, (Vs, s, As), where the node set

s = {V{,V5,---, V5, } represents all DGs within MG, and
the set of edges £ C V, x V;, represents the communication
links within MG,. A = (afj)msxms is an adjacency matrix
with elements aj; = 0 and aj; > 0. a;; = 0 if and only if the
edge (V7, VJS) € &;. The neighbor set of DG, ; (the ith DG
within MGy) is given by N,; = {V; € Vs : (V},V;) € &}

The upper cyber network refers to the tertiary control
layer which is responsible to generate frequency/voltage ref-

erences for the secondary control layer. Similarly, we de-
fine the desired graph as G(V,&, A) with virtual node set
V= {Vl,Vg, o VM} (representing different reference in-
formation states of M MGs), set of edges & - Y xV
(representing the communication links among MGs), and
adjacency matrix A = (@)= Moreover, the neighbor
set MG, is Ny, = {V;, € V: (V5,V;) € £}

To describe the information exchange between the upper
network, G, and the lower networks, {Gs}sezy» We introduce
the leader-adjacency matrix B, = diag{afy,---,a;, o} for
each MGy, where aj, > 0 (1 € Z,,,) if follower-DGy ; is
connected to the virtual node MG, across the pinning link
(Vs, V?), otherwise af, = 0.

III. DHC CONTROL STRATEGY FOR MG CLUSTERS

The DHC strategy contains a pinning-based secondary DSC
scheme and a consensus-based tertiary DTC scheme. The DTC
scheme is responsible to generate frequency/voltage references
for each MG according to the active/reactive power mismatch
among MGs, with which the DSC scheme can then adjust the
frequency/voltage nominal set-points for the primary control
of each DG. Moreover, a pinning-based distributed cooperative
control idea from multi-agent systems [29] is adopted here
to reduce the number of controllers for the MGs with large
number of DGs. Before proceeding the main results, we
transform the MG cluster system into a discrete time system
with different sampling periods for different control layers.

Time is discretized into a finite time sequence of nonempty
and bounded intervals, [t,tr 1) with o = 0 and k € Z,
representing the kth round (secondary or tertiary control)
iteration index, as shown in Fig. 2. We assume that there are
totally 7* (or T™) times secondary (or tertiary, respectively)
state update (iteration) in each time interval [tx,txy1). To
be specific, for the secondary control layer with sampling
period 7y,, there is a sequence of nonoverlapping subintervals
(0. 28). 61, 12). o [t L a0 with 10 = 8] = tin,
satisfying ti'H - tf; = T4, for any non-negative integers k
and /; for the tertiary control layer with sampling period T,,
there is a sequence of nonoverlapping subintervals [t9,th),

L [ e, [t T with ) = 6t = g,
satisfylng t;;“ - tk = Ts, for any non-negative integers k
and /. Nevertheless, the secondary (or tertiary) inputs will be

The (k—Dth

information exchange
and input update

T* 1
1y l L

e |

The kth
information exchange
and input update

T
t l tk+l

IAT -5

Sam lm%perlod

control module

t?z t?+1

| Zsa |------

0
tA (= t,‘) tl.+| (= tk+l ) o
T | ceccee | Tsa | ...... lAz' |, .
= T P ; T P tr*T 1
L= k L k k tk+l
The (k—1)th Sampling period The kth
information exchange of the DSC information exchange

and input update control module and input update
« V)

The kth round iteration with t = t for all &
(Total time: t,, —t =Tsa: T* = Tsa T*)

Fig. 2. Time diagram of the proposed DHC strategy.

designed to only update at the end of the kth iterative process,
Le., [t7 1] + A7) with AT < 7y, (or [t} ,¢5 + AT) with
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. . .. : . max _ T max
AT < Ty,, respectively). For simplicity, we call 7* and T klingo |P s, )/ P Ps i (th )/ P | =0,

the number of the secondary and tertiary input update in each
round of the iteration, and tz* =k-7*-715, and tf* =k-T*T,,
the terminal times of the system state outputs for secondary
and tertiary control layers, respectively.

Remark 1: The assumption of 7* - 75, = T - T, is very
mild since one can always choose the intervals, [tg,tx4+1),
to satisfy it. Moreover, since the tertiary layer is generally
operating with a larger time scale than that of the secondary
layer, their associated sampling periods are supposed to satisfy
Tia > Tsa- With a larger sampling period, the tertiary input
update number is therefore shorter than that of the secondary
layer, i.e., T* < 77, to ensure the same terminal time of the
system state outputs for different control layers. The detailed
constraints on these parameters will be derived later.

A. Local Droop-based Primary Control

Based on the traditional droop control strategy and the d-
q reference frame transformation, where the d-axis and g-
axis of the reference frame of each DG are rotating with the
common reference frequency [13], the references of output
d-axis voltage and frequency of DG, ; can be abstracted as

{ W Z(tk) — wnom(tf) — KSZPS/‘(ti)’ (1)
ogd(th) = w29 (th) — K2Qu (), v23(t5) =0,
for s € Iy, 1 € Iy, k € Z, and ¢ € ZI,., where

wgd™ and vgG™ are respectively the nominal set-points of the
frequency and d-axis actual output voltage, w, ; and vod. P,
and (), ; are the measured active and reactive powerrs with
the associated droop coefficients, K7, and K Q . The voltage

S,
2 .
(vOd) + (1°%)? with the d-axis and g-
axis voltages v“- and v;%. Since primary voltage control is
to align the voltage magmtude on the d-axis of its reference

frame, v,} = 0 and we denote v(t},) = v°%(t}) for simplicity.

magnitude vs; =

B. DSC Scheme for all DGs within MG

The discrete-time system states for the MG, are updated as

wsi(ty™) = wei(th)Fus s (k), vsi(ty™) = vsa(ti)Ful (k)

2)
PS,i(t£+1) = PS,i(t£)+u5i(k)a Qs,i(tfrl) = Qsz(ti)"_ugz(k)

3)
respectively with the voltage, frequency, active, and reactive
power controllers, ug ;, ug ;, u f ;» and uQ

We aim to tune the frequency and voltage of each DG, ;,
ws,i and vs;, to the references, w™ and v**! (provided by
the tertiary control level), exactly at the terminal time tz*.
Moreover, to obtain the accurate reactive power sharing in
MGs with line impedances, a compromise scheme is to ensure
the weighted average value of all DGs’ output voltages within
MG, to converge to the desired reference value [13],[14].
Then, we will design the controllers in (2)-(3) so as to regulate
the nominal set-points in (1), such that the system terminal
outputs, ws ; (17 ), vsi(t7 ), Psi(th ), and Qs (1] ), satisfy

ref

=0, hm ‘,u”v”(tk )—vref

=0,
“4)

lim |w, (1) — Wt
k—o0

(&)

i [Quat7)/ Q2 — Qus17)/ Q2| =0,
for all ¢ # j € Z,,,, and s € Iy, where P and Qm‘”‘
the instantaneous maximum capacities of the active and reac-
tive powers of DG ;, respectively, pts = (s,1,- - - ,us,ms)T €
R™s is the positive left eigenvector corresponding to the zero
eigenvalue of the Laplacian matrix (associated with the graph
Gs of MGy). s = (1/myg,---,1/mg)T if G, is undirected.

1) DSC Scheme for Voltage and Frequency Regulation:
We firstly design the following distributed voltage observer to
estimate each DG’s voltage, v, ;, and then pin the estimation,
1,4, to the voltage reference, vgef

" ¢ . N
”%i(tk+1) = ZjeNs,i Vi [U&j(ti) - Us,i(ti)]
Hosi(tyth) = vaa(t)] + D54 (t5),

where vs ;(t%) and 95 ;(t%) are respectively the measured volt-
age and voltage estimation of DG, ; at time ti, the associated
neighbor set Ny ; and adjacency matrix A, = (afj)msxms are
defined previously, and I's = (7;;)m.xm, is the gain matrix.
By the proof in Appendix, the observer (6) can drive each
DG’s voltage estimation to converge to the weighted average
voltage value of all DGs within MGy if G, is connected.
Now we design ug; and uy; using the information of
relative terminal outputs between neighboring DGs:

(6)

ug (k+1) = ”Vzoazo[‘*’mt (th ) — wai(t})]
+ 2N, Vijijlws,s (th ) —wsalt7)], (D)
uzz(k +1) = %oazo[ ref(tT ) — @s,i(tf)L
with the leader adjacency matrix B, = diag{ajy,---,a;, o}

and the gain matrix =, = diag{y{, --,75.0}- DGs, can
access wi*' and v if and only if b5, > 0, i.e., DGy, is
selected as one of the pinned-DGs within MG;. Denote the
index (s,%) € (s,pin) with pin C Z,,,, and ¢ € pin.

2) DSC Scheme for Active and Reactive Power Sharing:
The power outputs are expected to achieve power sharing
proportionally to DG’s capacities in the steady state, i.e.,

Ps,i(tg**)/Psr?iax = Ps,j (t};:)/PSm)fX’
Qsi(t7 )/QFF = Qs (17 )/
for all i # j € Z,,,. Since the droop coefficients, K f ; and

K@, are generally selected based on the maximum capacities

S l’
of active and reactive power, P} and Q¢'7™, so as to satisfy
€))

®)

max
8,7 7

KP Pmax KQ /Qmax:KSi/ max

P max
K P s,

we then design the consensus-based power controllers:

ugi(k+1)= %: 8 KD P (87 )-K i Pei (8 )/ KL,
JENs,i

usQ,z(k+1) Z rY’Lj zg[Ks 7Q€,](tT) ngQG,l(t;c—*)]/ng
JENs,;

(10)
With the DSC controllers (7) and (10), the nominal set-

points of frequency and voltage for DG, ; can be updated as
Wi (B 1) = Wi (1) g (6) + KSals(h),
o) = uR(H) + (k) + K S, (),

which will be used to further regulate the frequency/voltage
by the power control loop in the primary stage.
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C. DTC Scheme for Power Sharing among Multiple MGs

The tertiary control level aims to adjust the power flow
among MGs to achieve the power outputs balance, i.e.,

=0,
Qi (1) /Qrax| =0

for all s # k € Iy, where P, (Q,) and P™* (Qmax)
respectively denote the total active (reactive) power outputs
and the associated maximum capacities of MGg.

Assume only one DG, denoted as DG iy, can be pinned for
each MGg, then pin € Z,,,. By the objective (5), the tertiary
power sharing objective (12) will be achieved if

Jim | P P~
1 ‘ < tT max __
kJTOO Qs(ti )/

B P

(12)

hm ‘Ps p1n )/qu;)r(r - PE,pin(tg*)/Plzn}?:; = 07
T* max B T* max | __
kgfil ‘Qs pln(tk )/ s,gin - Q/mpin(tk )/ 7;77?3'1“ a
i (13)
for all s # k € Iy, where Pspin (Qs,pin) and PJEY

Q355 are respectively the active (reactive) power outputs
and the associated maximum capacities of DGy ;. Now the

consensus-based DTC controller can be designed as

PSapin(tij_l) - S prn(tk) + us pln(k)

; ’ (14)
‘
Qs,pin(tk+1) = Qs,pin( i) Ug pln(k)7
with the discrete time control inputs
i pin(k+1) = Ypen, T KL L Prpin(th )
KfmeS Pm<t£ )]/KP .
Uy pln(k +1) = Zke]\? Vil K k mek pm(tT )
s mes pln(tT )]/ s pln’
o (15)
for ¢ € Ip+, s € Iy, and pin € T,,,, where K[ ; and
K fpln are respectively the droop coefficients of DGy pin, A =

(@ij)mxar is the adjacency matrix of network graph G (see
Fig. 1).T = (¥4i:) Mx M is the associated gain matrix.

By integrating the power flow mismatch among MGs across
Q, the final references, wgef and U§Ef, for MG, can be set as

£ T .
wge (tg* ) = rated + Kspplnp s,pin (tT* ) (16)
’U;ef(tf ) = rated + Ka mes,pln(tT )

where w'ated and v™@*°d are respectively the rated frequency

and voltage of the MG cluster system.

Remark 2: usi and usi in (11) are the secondary control
inputs of all DG, ; (¢ € Z,,,) within MG, while uS pin and
agpin in (14) are the tertiary control inputs of the pinth DG
(i.e., DGy pin) within MG,. In this sense, only DG, i, within
each MG is involved in the two-layer dynamics regulation.

Now the diagram of the DHC framework can be drawn in
Fig. 3. As seen, the secondary cyber network G is responsible
for exchanging the measured information of each DG; ; within
MG; to generate the nominal set-points, wi3™ and vg%™
for the primary level. While the tertiary cyber network G
is responsible for transmitting the measured information of
each pinned DG, pin from each MG, to the tertiary level to

further generate the references, wgef and vgef, to the secondary

L[l ; @)+ u@ (1 + KL 1P, (D) +ul (0] | o, D) ||
| [vs,,( Y+ul (Ol+ K2, [Qv,(tk)+MSQ’,-(k)] vh v @Y L
= n n - . b
I |Hsitk+D) Py jen WGP ()0 jen F )50, () PM @+ |
—ul,k+pfe, o PN S 7 sl ) )
5 D ien DT )V ey )V (7)) ”

| u;?i(k+1) s, jeN,; Nk PTsiVk P7s,jeN Nk 70 TsiVk Qs,i(t£+1) :
u:,,-(k+1)<—a,;e’(t,{*) o™ K7 Spm(tk |

|

}

|

|

! [«

: v;ef (tl*) prated K‘ me\ pin (tk )
|

Distributed Secondary Control (DSC) Scheme

IZH (k+1’ PI;EN‘,pin(tk ‘)’Rs',pin(tk )
— i * %
|: G20+ | Qi pin 1 Copinh )|
Py in @)+ il (k) P, i)
|_> Qr,pin(t£)+ﬁ,vg(k) Qs,pin(tf-ﬂ)
I

MGs

Distributed Tertiary Control (DTC) Scheme

Fig. 3. The block diagram of the DHC framework for AC MG clusters.

level. For each MGy, the power outputs of the pinned DG pin,
Ps pin and Qs pin, possess both secondary and tertiary control
dynamics, (10) and (15), with different sampling periods, 7,
and Ty,, and terminal times, 7* and 7. Since the response
times for different layers should match each other, we next
present the stability analysis.

IV. STABILITY ANALYSIS OF THE MG CLUSTER SYSTEM

To facilitate the mathematical representation, let the num-
ber of DGs within each MG be always equal to m, ie.,
mp = --- = my; = m. However, the general case can be
analyzed similarly. For the variables in the secondary level,

let the states ws = (ws,1,- - ,wsym)T, vs = (vs,1, - ,vsym)T,
@s = (ﬁs,lv'”vﬁs,m)T’ Ps = (ps,la"'aps,m)T’ qds =
(gs1, 5 qs.m)’, the inputs u¥ = (usl,n- u?, )7,
’U,g = (ug,17"' ugm)T’ ’U/f = (Kflus 15" K\fm fm)T’
and u® = (K&ul,- K?muf?m)T, moreover, de-
note ps; = KSJ-PSJ, and ¢s; = KSiQS,i' For the

variables in the tertiary level, let the states ppin

(pl pins " °° 7pM,pin)Ta (pin = (quina T 7qM,pin)T7 the
lnputs Uf;n = (Kfpmu{)pm’ T K]P\;[,pinﬂf/[,pin)T’ and
af)?in = (KQ,Fm ~?p1n’ e ]{%,pina%,pin)T' Denote w =
(W{,' wM) » U= (U?W"vv]j\})T’ G (ﬁ?’ v{J)T’
p o= Ohph)T g = @) B =
diag{Bi,---,Bum}, and E = diag{=,,---,E,,} with = =
diag{y7p, ", Vmo}- Finally, define the Laplacian matrices

Ls = (£5;)mxm and L = (€, ;) mxnm respectively as

S S S —
s Z a’iq’Yiq?] =1, _
EZ] = qus,j s

S S y >
— QY555 Jj#1i,

with gain matrices I's = (77 ;)1 and T = (5, Pl to
be designed later. Let L = diag{L1,---, Las}, the dyﬁamics,
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2), (3), (7), (10), (14), and (15), can be rewritten as

w(tE ) = Harm — (L + B O D)w(tf)
AT (BOE) W g + ppin(t] )1,
O(thy) = Unm — (L + B O E)]0(t], )
+7*(B © H)[ mtedle + qPin(tFﬂm]v
P(tis1) = Unrm — T LIp(tF),
Q(t2+1) [Inim — 77 L]g(t], ) i
Pt 1)L = [rvon = (L @ LYt VLo
Gpin(tiy 1) 1im = [Tarm — T*(L @ I)]gpin(t] )1m.
a7
Let i = (37, 77) € R, being the positive left eigen-
vector corresponding to the zero eigenvalue of L, denote
the error variables 0 = w — (wmmdl Mm + ppinlm), v =
ﬁpinlm = ppinlm - ﬁ’Tppin(O)]'m’

b — (vratedllv[m + qpin]-m),
17

and @i, Lo = Gpinlm — i ¢y (0)1pn, the error dynamics

&(t7y1) = Uvm — 7 (L+ BOE)w(t} )
o ATL® Ln)Bpin(t] )lm,
o(t4) = [IMmf ™(L+BoE)p(t; )
+T*(L @ In)Gpin (1) L,

BT ) = vt — T LIBT) + T*(L® L) (] Vo,
7(tk+1) [Inm — 7°L]q ( ) + T*(L ®1 )qu(tk )1mv
ppln(tk+1) [IMm -1 (L ® Im )]ppm(tk )L,
me(tk+1)1m = [IMm - T*(L ® I )}Q ( ) ms

18)
A 1)

Denote z; = *([ﬁpin(tf*)
(@@ EOIT v =

(18) can be rewritten as

ml” (@i
(ip(t5 )

@I, then

Tp1 = Pg + (Taarm — Q) 2,
Ye+1 = Yyr + Lomrm — Q) 2k, (19)
Zk4+1 = Qzy,

where & = IQ@[IMm—T*(L—f—B@E)], U = IQ@[I]V[m—T*L],
and Q = I, ®[Insm —T*(L®1,,)] are all symmetric matrices.

We next claim the stability of the origin of the error system
(19). Define the Lyapunov candidates

Vie(k, Yiy 26) = T Tk + YL Uk + 21 21 (20)

and difference along the trajectory of system (20), we have

AV = Vi = Vi < (wkoyk o 20) S (o w2 )T Q2D
for a blocking matrix S = diag{S1, S2,S3} with S; = (1 +
)02 = Dapm, So = (14 5)02 — Iym, S3 = Q2 + (2 +
20)(Iaprm — )% — Iaprm, and any positive constant § > 0. By
the special matrix theory [30] and the symmetry of matrices

®, U, and Q, a sufficient condition for AV}, < 0 is

2 _ 2
1§i§r2I%%/;(—1)m A7 () + (2 + 29)[ )\ (Q)] <1,
(22)
which leads to

2 D) 2M( 71)(\11) 3N () -1
max 2Mm( m < 0 o 2B T 2
@) T= X0 ) ) T 20 (@)
(23)
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for a certain positive constant 6 provided that Aopsm, (P) < 1,
)\QM(m_l)(\I/) < 1, and % < )\1(9) < >\2(M—1)m(Q) < 1.
Thus, by the previous denotations we obtain that

>\2]M7n((p) =1- T*>\1(L +BO® E),

Aom(m-1)(¥) =1 = 7" Apr g1 (L), .

AQ(M—I)m(Q) =1- T*)\Q(L), )\1(9) =1- T*)\M(L)’

(24

By Gershgorin circle theorem [20], the above inequalities hold
if the gain matrices and terminal times are selected such that

{ T D jen,. (Vad; +viai) < 1, )
T eréﬂ/} ’?‘s]}dslg < 2/3’
Tea _ {A1(L+B®E)[2—rjA1(L+B@5)}
Tea Mt (D) ,
)‘M+1(L)[277_j/\1\4+1([1)] }
Awm (L) :
(26)

Conclusion I: If the two-layer communication networks,
{Gs}sez,, and G, are connected, and the associated numbers
of the input update during each round of the iteration, 7* and
7%, and the sampling periods, Ty, and 7g,, of the tertiary and
secondary control levels satisfy (25) and (26), then both of the
secondary control objectives (4)-(5) and the tertiary control ob-
jective (13) can be achieved provided that at least one DG pin
from each MG, can be pinned to realized the information
exchange among all the pinned DGs (in the tertiary level) and
transmit the frequency and voltage references, w™! and v'®f,
to its neighboring DGs within MGy (in the secondary level).

The selected gain matrices, I's, =, and f‘, should not break
the original network topologies. For example, all entries of I',
are always selected to satisfy 7;; = 7j; > 0 when N ; # 1]
and j € N, ;, otherwise v, = vj; = 0. Other gain matrices
also own the same requirements. Moreover, as illustrated in
Remark 1, the assumption of 7% - 75, = T* - T, with 75, < Ty,
leads to T* < 7*. Thus, we initialize all gain matrices as the
associated adjacency matrices, and 7™ as half of 7%, and then
further optimize their values by Algorithm 1.

Algorithm 1 Calculate parameters ', =, f, and T™.

Initialization:

Set € € (0, 1) number of secondary input update 7*, and
let {(’yzj z] 17(’710)1 O}s 1 {( fj)?ff:l’(a‘zo i= O}s 1
(G0 > (@)} and T [0.57°];

Iterative:

1: while inequality conditions in (25) do not hold do
{(’Y;j)?fjszh (Vio)iz 0}M<_ 5{(%])” =1 (Vio)izo} for s =
Lo sme, and (50) ) < e(ai)

2: end while

3: while inequality conditions in (26) do not hold do
T* < max{|eT*],1};

if T*=1do
('Vsk)iwk 1< 5('?31;)2\74,;:1;
end if

4: end while

Set {T's, 5, I, T} — {() 151> (Vi0)i0: (B 2 T -

The coefficient ¢ € (0, 1) characterizes the changing rate
of the gain matrices to achieve optimal values satisfying (25)
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and (26). With the calculated numbers of the two-layer control
input update, 7* and 7%, one can obtain the sampling period
ratio, 7sa/7sa, according to (26), thus Ty, can be then designed
for some given 7,.

Under the DHC framework shown in Fig. 3, the detailed
implementation can be designed as follows:
Step 1:

Initialization: Set the reference trajectory v'ated

and w4, the initial secondary and tertiary inputs
u@ v PQ(0) and ﬂg’l?(o), the related initial states,
and the parameter 7*. Let the iteration index k£ = 1
and the tolerance €; and es.

Calculate gain matrices:Determine I'y, =, T, and
T*, according to Algorithm 1.

Calculate nominal set points: Apply ﬂf;’l? (k) to
compute w'°f(¢") and v"*f(t{"); apply u< " Q (k)
to compute wg ™ (tt) and G (t8) for £ € Ipe, L €
jT*, xS Ims, and s € Zy,.

Measure terminal outputs: Apply w(¢]") and
v (¢tI") to the secondary layer and measure the
terminal outputs, w;“;m(tz) and v;‘gm(t?); which
will be applied to the primary control process and
measure the terminal outputs, w ;(t] ), vs.i(t] ),
P, i(t7), and Q (¢ ) for i € Z,,,, and s € Tyy.
Analyze errors: If Equation (4) holds with tolerance
€1 and Equation (12) holds with tolerance €5, then go
to step 7; Otherwise go to step 6.

Calculate control inputs: Let £ = £+ 1, and update
ue VPR (k) and ﬂ;’f (k) according to the protocols
(7), (10), and (15), then go to step 3.

Stop the iteration.

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Remark 3: By introducing the concepts of interval weights
and interval adjacency matrices [15], the proposed DHC
strategy is also robust against the uncertain communication
links caused by the internal uncertainties and/or external
disturbances by minor change the inequalities (26) and (27).

Remark 4: When the frequency/voltage in each islanded MG
cannot be retained within the acceptable limits by adjusting
the set-points of generators or by controlling the power in-
jection/absorption of energy storage systems, then the power
mismatch signal between the MG will be detected. Simulta-
neously, the pinning control scheme will be implemented. In
this situation, we can control the pinning instant by activating
the corresponding communication links. Through adjusting the
frequency and voltage of the pinned DGs across the tie-line,
the power transfer among MGs can be finally realized.

Remark 5: Since different control variables possess different
communication networks due to their different response times,
it may be more practical to establish different communication
networks for the information interaction of frequency and volt-
age, and the associated work can be found in [13]. Moreover,
to stabilize the power outputs in a longer time scale than that
of the frequency response, an alternative solution is to design
a multiple time-scale control strategy by partially extending
the results of [14],[29]. Additionally, in our control strategy,
the sampling time of each layer communication network is
not directly related to the dynamical evolution time of each
actual physical module. For example, the evolution speed of

the active power outputs depends on its frequency reference
signal. Due to the slower dynamics of the active power, its
final frequency reference will remain unchanged for a long
period of time regardless of how fast the signal is collected in
the communication network.

Remark 6: In view of the advantages of pinning control,
the adopted pinning-based DSC scheme can greatly reduce the
number of the controlled DGs in the lower network. While for
the upper network, each pinned DG possesses a peer-to-peer
attribute, thus a consensus-based DTC scheme is more suitable
to realize a completely distributed control performance.

Remark 7: On one hand, the distributed network of public
utility can benefit from the proposed DHC framework to
achieve effectively monitor and control a large number of
DGs in the overall network; on the other hand, the proposed
DHC framework can also support demand-side management
to increase the reliability of multiple MGs. In view of this, the
proposed DHC framework will provide reference and guidance
on the management of the scalability and controllability of
large-scale DG access in distribution network for the dis-
tributed network of public utility and consumer.

V. PERFORMANCE VALIDATION

The effectiveness of the DHC strategy will be verified by
simulating an AC MG cluster in Simulink/SimPowerSystems.
The basic diagram of the AC MG cluster test system is
shown in Fig. 4, and the specifications of the DGes, lines,

DGs in MG,
DGsin MG,
DGsin MG,
DGs in MG,

‘\

DG, D(:A,z
H :
’ :
| 20
i i
| Rines2 !
¥ i
DG, , \
/ DG,,
Tie line,, 0ad,, y 4
linel 1
/

<=~ Lower network link
<=~ Pinning link
<=~ Upper network link

Fig. 4. Single line diagram of the DGs and loads in an AC MG cluster.

and loads are summarized in Table I. The rated frequency
and terminal voltage magnitude of MGs, w™%d and prated,
are set as 314rad/s and 380V, respectively. Meanwhile, as
seen in Fig. 4, we set DGy 1, DGy 2, DG3 1, and DGy as
the pinned DGs from four MGs, respectively, and the adja-
cency matrices of the lower cyber network can be written as
Ay =A3=10,1;1,0], A, = A, =[0,1,1;1,0,1;1,1,0], and
the pinned DG adjacency matrices are B; = Bs = diag{1,0},
By = diag{0,1,0}, and B, = diag{1,0,0}. While those of
the upper cyber network can be written as A = A;, A = A,
and A = [0,1,0,1;1,0,1,0;0,1,0,1;1,0,1,0] respectively
for the MG clusters consisting of two MGs(i.e., MG; and
MG), three MGs(i.e., MGy, MGy, and MG3), and four MGs.
Let the sampling period of the DSC scheme for the lower
layer 75, = 0.0001s, and the associated input update number
7" = 100. By Algorithm 1(set € = 0.02 and 7* = 100, the
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TABLE I
PARAMETERS FOR THE TEST AC MG CLUSTER SYSTEM

DG171 & DG271 & DG2’3 DGLQ & DG272 & DG3’2
& DG3,1& DGy 2 & DGy, 1& DGy 3
(71 kVA rating) (103 kVA rating)
Vbe 800V Vbe 800V
KT 1.6 x 10~° KT 0.8 x 10~7
K@ 3x 1042 K@ 6 x 107
Loadi 1 Loadsz 1 Loads;1 Loads,2
& Loadj 2 & Loads 2 & Loadys, 1 &Loady, 2
27.5 kW 27.5 kW 39 kW 29 kW
27.5 kVar 27.5 kVar 39 kVar 29 kVar
Line; Lineg 1 Lines o Lines
0.64Q2 0.5192 0.5192 0.58%2
1.32 mH 1.05 mH 1.05 mH 1.21 mH
TieLinejo TieLiness TieLinesy TieLineg1
1.73Q2 1.73Q 1.14Q 1.1492
3.58 mH 3.58 mH 2.38 mH 2.38 mH

total iterative number is 3 and elapsed time is 0.001698s.),
we obtain the desired learning matrices I'y = 0.0004A4, and
2, = 0.0004B; for s = 1,2,3,4, T' = 0.0004A, the sampling
period of the DTC scheme for the upper layer T, = 0.01s, and
the associated input update number 7 = 1. Thus, inequalities
(25) and (26) are satisfied.

During the simulation process, taking the 2-MG cluster test
(i.e., MG; and MG in Fig. 4) as an example, we implement
the two-layer communication network by S-function, S7, Sa,
and S, respectively corresponding to the lower communication
networks G, and G, and the upper communication network Gg.
Set sampling periods 71, = 72 = 0.0001s and Ty, = 0.01s,
and the related input update numbers 77" = 75 = 100 and
T* = 1. Then the information interaction within the lower
networks G; and G5 will occur every 0.0001s while that within
the upper network G will then occur every 0.01s. However, the
control input updates of the lower networks G; and G5 only
occur after 100 times information exchange, while that of the
upper network G occurs after each information exchange. By
this way, both of the two-layer communication systems have
the same terminal time 0.1s so as to drive the two-tier system
to output information at the same time.

The next simulation studies cover two scenarios: 1) load
change performance assessment (with communication delays,
data drop-out, and link failure test), and 2) plug and play
capability of MG level (in case of different communication
network topologies).

A. Load Change Performance Assessment

This subsection studies the performance of the MG cluster
consisting of MG; and MGy in the situation of load change.

1) General performance assessment: The two MGs are set
to be electrically disconnected from each other at £ = Os and
connected at ¢ = 2.5s. Then the tertiary and pinning links,
consequently, are disabled at ¢ = 0Os and activated at ¢t =
2.5s correspondingly. After ¢ = 4s, the DTC controllers are
activated, while Load; » and Loady; are removed at ¢ = 8s,
and then readded at ¢t = 12s. Moreover, all DGs consider
314rad/s and 380V as their references when ¢ € [0, 2.5)s. The
associated results are given in Figs. 5-7.

islanded  connected DHC is activated (load decreasing load increasing )

314.004 314.007.

313.996 . 313.993 N
—_ 7.85 7.851 ~— 15.555 15.556"
£ 314 - = +
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= 314
3 3135 313.994
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Fig. 5. Performance of the test two MG cluster in case of load change. (a)-
(b) frequency/voltage response. (c) voltage estimation. (d)-(e) active/reactive
power outputs. (f)-(g) active/reactive output ratios.

As seen in Fig. 5(d)-(e), the DSC scheme proportionally
shares the load within each MG before ¢ = 2.5s, however, the
power outputs among all MGs are different from each other
due to the different total local loads. After the DTC scheme is
activated at t = 4s, the power sharing among MGs is achieved
within 4s. After ¢ = 8s, the power outputs of each DG vary
with the change of local loads within each MG, however,
the power sharing among MGs is always maintained, as
shown in Fig. 5(f)-(g). Although there exists a little fluctuation
for the frequency and voltage response, the excellent steady
evolutions can still be observed in Fig. 5(a)-(b). Moreover,
due to the inherent contradiction of precise voltage regulation
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Fig. 6. Reference trajectories of two control layers. (a)-(b) frequency/voltage
nominal set-points for primary layer. (c)-(d) frequency/voltage references for
secondary layer.

and reactive power sharing, the designed DSC scheme enables
the weighted average voltage of all DGs within MG; (i.e., the
voltage estimation ©) to converge to v™*f as well as maintains
the accurate reactive power sharing (see Figs. 5(c)-6(d)).

Figs. 6-7 show the frequency/voltage references and their
control inputs for different control layers, respectively. As
seen in Fig. 6(c)-(d), the tertiary references, wf and v'ef, are
designed based on the power output imbalance among MGs,
which are then sent to the secondary control layer. While
the secondary references, w™*™ and v™°™ as shown in Fig.
6(a)-(b), are obtained by absorbing the state errors among all
DGs within each MG. As seen in Fig. 7, the sampling periods
and the control input update numbers for different layers are
designed differently so as to make a scale separation between
the DSC scheme and DTC scheme. In Fig. 8, the selected
T* and T, do not satisfy (25) and (26). Thus the evolutions
of frequency/voltage references and power output curves are
fluctuate (see Fig. 8(a)-(d)).

2) Communication delays, data drop-out, and link failure
test: The two MGs are set to be electrically disconnected
from each other at ¢ = Os and connected at ¢ = 4s. Then the
tertiary and pinning links, consequently, are disabled at ¢ = Os
and activated at ¢ = 7s correspondingly. After ¢ = Ts, the
DTC controllers are activated, while Load; » and Loady ; are
removed at ¢ = 14s, and then readded at ¢ = 12s. Moreover,
all DGs consider 314rad/s and 380V as their references when
t € [0,4)s. The three situations are respectively set as: (i) the
variable communication delays d;(¢) = [1.2 4 0.1sin(¢)]/15
for the lower network and do(t) = [1.5+0.2sin(¢)]/12 for the
upper network. (ii) the data drop-out (packet loss in all links)
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Fig. 8. Performance of the DHC strategy with parameters that do not satisfy
(25) and (26). (a)-(c) active power outputs, frequency reference, and control
inputs with Tg, = 0.01s and T* = 50. (d)-(f) reactive power outputs, voltage
reference, and control inputs with Ts, = 0.001s and T = 1.

occurs once in every 15ms, considering 5.5ms communication
delays. (iii) the links within MG; and MG, (i.e., the lower
network) are randomly disconnected as ¢ € [8,11]s and
t € [15,18]s, while the links between MG; and MG; (i.e.,
the upper network) are randomly disconnected as ¢ € [8,9.5]s
and t € [15,16.5]s. The results are given in Figs. 9-10.

As seen, compared with Fig. 5(a),5(b),5(d),and5(e), the con-
vergence time of the system with both DSC and DTC schemes
is prolonged by the influence of communication delays (shown
in Figs.9(al),9(a2),10(al),and10(a2)), data drop-out(shown in
Figs.9(b1),9(b2),10(b1),and10(b2)), and link failure (shown in
Figs.9(c1),9(c2),10(c1),and10(c2)). Despite this, as verified in
Figs. 9-10, the proposed schemes have an acceptable robust
performance to these unexpected factors. In detail, for the two-
layer communication network with different variable delays
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Fig. 9. Frequency response and active power outputs in case of load change
with (al)-(a2) variable communication delays, (bl)-(b2) data-drop out, and
(c1)-(c2) link failure.

corresponding to different layers, the control performance
is still realized in Fig. 9(al,a2) and 10(al,a2). Moreover,
Comparing these three cases shown in Figs. 9(a2-c2) and
10(a2-c2), we conclude that packet loss will have the worst
impact on system stability as ¢ € [0, 7]s. Nevertheless, this
kind of unstable evolution curves shown in Figs. 9(b2) and
10(b2) has been stabilized after the DTC scheme is activated
at t = 7s. Comparing the active/reactive power outputs shown
in Fig. 9(c2) and 10(c2) and that shown in Fig. 5(d) and 5(e), it
also can be seen that the proposed DTC scheme can suppress
the power output instability (during ¢ € [8,11] U [15, 18]s)
caused by link failure.

B. Plug and Play Capability of MG Level

This subsection studies the performance of the MG cluster
consisting of three MGs and four MGs in the situation of MG
plug and play.

islanded

connected DHC is activated load decreasing

-
K\M_

Lower net.; _variable delays d ;(D=[1.2-+0.1sin(0)]/15
Upper net.: variable delays d ,()=[L.5+0.2sin(D)]/12

e

e ———

‘ DG, , DG, , DG, 4 DG, , DG, ,
7 T T T T T T i
5 8 10 12 14 16 18 20
(a1) Time(s)
/\\‘-._.‘—————__'
e
Data drop-out occurs once in every 15ms with 5.5ms delays
l DG, , DG, , DG, , DG, , DG,
T : : T 1 : : i
4 6 10 12 14 16 18 20
(b1) Time(s)
e~
G
I N e
370 - Lower net:: ink fail at t-c[8, 11}O[15,18]s
Upper net.: link failure occurs at t < [8, 9.5]U[15, 16.5]s
365
‘ DG, , DG, , DG, 4 DG, , DG,
260 i 7 T : T T T : i
o 2 4 5 8 10 12 14 16 18 20
(1) Time(s)

Lower net.; variable delays d ;(0=[1.2+0.1sin(D)]/15

40t
Upper net.; variable delays d ,()=[1.5+0.2sin(1)]/12
o 30 Sﬁ
E

<

I m— P

(74 /,———\___nz’\\
e

10T
DG, 4 DG, , DG, , DG, , DG, 4
° i i
] 2 4 6 8 10 12 14 16 18 20
(a2) Time(s)

Data drop-out occurs once in every 15ms with'5.5ms delays

DG, DG, 4

10 12 14 16 18 20
(b2) Time(s)

Lower net.: link failure occurs at € ¢ |8, 11]U[15, 18]s
| Upper net.: link failure occurs at te [8, 9.5]U[15, 16.5]s

DGy DGz
12 14 16 18 20

10
(e2) Time(s)

Fig. 10. Voltage response and reactive power outputs in case of load change
with (al)-(a2) variable communication delays, (bl)-(b2) data-drop out, and
(c1)-(c2) link failure.

1) MG cluster consisting of MG1, MGs, and MGs: All MGs
begin to operate separately at ¢ = 0Os, MG; and MG, are
connected at t = 2.5s, while MGg is connected and removed
respectively at ¢ = 8s and ¢ = 15s, and the DHC strategy is
activated at ¢ = 4s. The results are shown in Fig. 11.

As seen, MG3 is operating in islanded mode before ¢ = 8s.
When it is connected at ¢ = 8s, the frequency/voltage response
of each DG begin to vary with the change of the references
for each MG (see Fig. 9(a)-(e)), and the power outputs for
each MG are redistributed proportionally (see Fig. 11(f)-(g))
within 7s. When MG3 is removed at ¢ = 15s due to some
malfunction, its local Loads; is also no longer afforded,
however, the remaining Loads 5 still needs to afford by the rest
MG; and MG,. As seen, the power outputs of MGj decline
to zero rapidly after ¢ = 15s, and the power sharing between
the two remaining MGs can still be achieved within 9s.

2) MG cluster consisting of MG1, MG2, MGs3, and MGy:
All MGs begin to operate separately at ¢ = 0s, MGy, MGa,
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and MGy are connected at ¢ = 3s, while MG3 is connected
and removed respectively at ¢ = 10s and ¢ = 18s, and the
DHC strategy is activated at ¢ = 5s. To further illustrate the
effectiveness of the proposed two-layer network, we imple-
ment the proposed scheme on a MG cluster consisting of four
MGs under a two-layer digraph (see Fig. 12(a)) and a single-
layer digraph (see Fig. 12(b)), and the associated evolution
curves are respectively shown in Figs. 13 and 14.

It can be seen by comparing Figs. 13 and 11 that, as the
number of the MG increases, the convergence time for the MG
cluster consisting of four MGs is longer than that for the case
of three MGs. However, the final stability can still be realized.
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Further, for the proposed DSC and DTC schemes implemented
in a single-layer digraph (Fig. 12(b)), it can be found that
the corresponding performance is a little worse than the case
of two-layer digraph (Fig. 12(a)) by comparing the evolution
curves shown Figs.13 and 14. In fact, the DSC and DTC
schemes are designed to implement in different dynamics with
different time scales, while a two-layer digraph can effectively
meet the time-scale separation requirements for the interactive
information flow that integrated in the cluster-oriented physical
network. Moreover, each DG within each MG has the same
control property and thus is responsible to implement both the
secondary and tertiary communication tasks in the single-layer
digraph. But for the two-layer digraph, DGs within different
MGs have no information interaction with each other during
the secondary communication stage, and only the pinned DGs
within each MG participate in the tertiary control decision
process and thus possess the tertiary communication task. The
associated control costs for the two-layer network are therefore
less than that of the single-layer network.

VI. CONCLUSION

A DHC strategy for islanded AC MG cluster systems is
presented, which can regulate the frequency/voltage within
each MG as well as maintain the active/reactive power sharing
among AC MGs with heterogenous DGs. By pinning one
or some DGs from each MG to constitute an upper cyber
network, a two-layer sparse cyber network is formulated to
support the dynamical coupling between the secondary and
tertiary levels. Moreover, the time response matching problem
has been studied, which indicates that the stability can be
guaranteed if the sampling period ratio of the tertiary to

secondary is less than a certain upper bound. All the distributed
controllers are equipped with discrete iterative inputs that are
merely updated at the end of each round of iteration, which
permits an intermittent communication manner. In practical,
how to solve the load uncertainty problem based on the
designed two-layer network will be our future work.

VII. APPENDIX

Lemma 1: 1f the graph G, for MGy is connected, then the
designed voltage observer (6) can ensure that

Jim |04 (8) = praivei(ty )| =0, i € Tn,. s € Tas. (27)
—00

Proof: By the previous denotations, rewrite (6) as

"A’S(t?_l) = (Im, — Ly)bs(t},) + US(t?—l) — v, (th)-

Let V.(2), Va(z) be the Z-transforms of o, (t%), vs(t}), then

(28)

Vi(z) = (z = D[(z = DI, + L 7'Vi(2). (29

Since the transfer function (z — 1)[(z — 1)1, + L]t is
stable if the first inequality in (25) holds, then consider the
discrete dynamic x(¢ + 1) = (I,,, — Ls)x(¢) associated with
this transfer function. If G, is connected, there exists a positive
left eigenvector s corresponding to the zero eigenvalue of L
such that Y " pfx;(€) is an invariant quantity. By the final
value theorem, we deduce the desired objective (27). |
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