
Aalborg Universitet

Finding Most Popular Indoor Semantic Locations Using Uncertain Mobility Data

Li, Huan; Lu, Hua; Shou, Lidan; Chen, Gang; Chen, Ke

Published in:
IEEE Transactions on Knowledge and Data Engineering

DOI (link to publication from Publisher):
10.1109/TKDE.2018.2875096

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Li, H., Lu, H., Shou, L., Chen, G., & Chen, K. (2019). Finding Most Popular Indoor Semantic Locations Using
Uncertain Mobility Data. IEEE Transactions on Knowledge and Data Engineering, 31(11), 2108 - 2123. Article
8486725. https://doi.org/10.1109/TKDE.2018.2875096

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 24, 2025

https://doi.org/10.1109/TKDE.2018.2875096
https://vbn.aau.dk/en/publications/94516224-bd1c-44b8-a4c5-a4b8853bb508
https://doi.org/10.1109/TKDE.2018.2875096

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

1

Finding Most Popular Indoor Semantic Locations
Using Uncertain Mobility Data

Huan Li, Hua Lu, Senior Member, IEEE, Lidan Shou, Gang Chen, and Ke Chen

Abstract—Knowing popular indoor locations can benefit many applications like exhibition planning and location-based advertising,
among others. In this work, we use uncertain historical indoor mobility data to find the top-k popular indoor semantic locations with the
highest flow values. In the data we use, an object positioning report contains a set of samples, each consisting of an indoor location
and a corresponding probability. The problem is challenging due to the difficulty in obtaining reliable flow values and the heavy
computational workload on probabilistic samples for large numbers of objects. To address the first challenge, we propose an indoor
flow definition that takes into account both data uncertainty and indoor topology. To efficiently compute flows for individual indoor
semantic locations, we design data structures for facilitating accessing the relevant data, a data reduction method that reduces the
intermediate data to process, and an overall flow computing algorithm. Furthermore, we design search algorithms for finding the top-k
popular indoor semantic locations. All proposals are evaluated extensively on real and synthetic data. The evaluation results show that
our data reduction method significantly reduces the data volume in computing, our search algorithms are efficient and scalable, and the
top-k popular semantic locations returned are in good accord with ground truth.

Index Terms—Indoor space, Indoor mobility data, Indoor flows

F

1 INTRODUCTION

The past few years have witnessed the rapid deployment of
multiple indoor location-based service infrastructures [1] as well
as the high penetration of powerful smartphones [2]. On the
other side, people (most are smartphone users) spend significant
part (up to 87%) of their daily life indoors as disclosed by
multiple studies [16], [22]. Driven jointly by these key factors,
people’s indoor movements are increasingly datafied, which pro-
duces large volumes of indoor mobility data. Such data takes
different formats [24] depending on the particular underlying
indoor positioning technology [10], [25], [41].

Akin to what has been done using outdoor GPS data [8], [30],
[33], proper analysis on indoor mobility data can reveal insights
that are otherwise difficult or even impossible to obtain. As a
typical example, by analyzing the historical mobility data we can
determine the number of people passing by a particular indoor
region during a past time interval, which can be useful in many
application scenarios such as location-based advertising [12] and
environmental quality improvement [29]. We use indoor flow to
refer to such findings.

In this paper, we formulate and study the problem of finding
the top-k indoor semantic locations with the highest indoor
flows during a past time interval. Solving this problem is useful
in pertinent indoor settings. For example, the indoor semantic
locations in question can be the regions in a large exhibition where
different items are placed. The top-k regions with highest flows
indicate which items are the most popular, and they can be used
to make recommendations to future visitors or to optimize the
exhibition selections. As another example, the indoor semantic
locations can be the individual shops in a large shopping mall.

• H. Li, L. Shou, G. Chen, and K. Chen are with the College of Com-
puter Science, Zhejiang University, China. E-mail: {lihuancs, should, cg,
chenk}@zju.edu.cn

• H. Lu is with the Department of Computer Science, Aalborg University,
Denmark. He is the corresponding author. E-mail: luhua@cs.aau.dk

Knowing the most popular semantic locations is useful for the
mall management, e.g., to decide the space rental prices.

In the setting of our study, we use a type of indoor mobility
data that can be obtained from multiple indoor positioning tech-
nologies. To put it briefly, the mobility information of an object
at a past time t is captured by a set of samples in the format
(loc, prob). Such a sample means that the object is at location loc
with a probability prob at time t. Note that loc here is a point
location, whereas the indoor semantic location mentioned above
is a region location. We further differentiate them in Section 2.1.

The aforementioned data format is often seen in the indoor
positioning services based on wireless infrastructure. In Wi-Fi
fingerprinting [25], such samples can be obtained through the
weighted k-nearest neighbor method (WkNN) [14] that returns k
reference points, where the object is most likely be, with respective
probabilities. In wireless packet sniffing [11], [12], the location
information gathered by multiple access points (APs) can be
represented as samples with probabilities. The purpose of using
such a data format is to help achieve better overall positioning
effectiveness. In most practical indoor positioning services, the
precision of measuring wireless signals is limited by the deployed
APs that are mainly designed for network access usage [12], [25].
Also, wireless signals are highly sensitive to environmental factors
such as temperature, humidity, AP deployment [6], [15]. In an
indoor space where such factors are dynamic, wireless signals
fluctuate a lot rather than being stable. To address the problems,
using probabilistic samples in a location report is a natural option
that can make the location report more reliable [14], [37].

In general, the problem to study is nontrivial due to two
challenges. The first challenge is the difficulty in obtaining reliable
flow values for the indoor semantic locations. On the one hand, the
inherent uncertainty in indoor mobility data renders it impossible
to directly count the number of objects in an indoor region. The
data available at a time t is uncertain as there can be multiple
positioning samples. Also, for the time intervals where there is no

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

2

mobility data available for an object, we have no straightforward
information about the object’s whereabouts. On the other hand,
indoor spaces are characterized by walls, doors, rooms, and other
entities, which altogether create the unique indoor topology that
constrains as well as allows indoor movements. Therefore, unlike
outdoor Euclidean spaces and spatial networks, indoor spaces are
modeled differently [17], [23], [26], [34], [35] and computing
indoor flows must consider the indoor topology appropriately.
Note that the aforementioned data uncertainty takes effect in the
context of indoor topology, which renders the flow computing even
more complex. Hence, the data uncertainty together with indoor
topology entails an appropriate formulation of indoor flows.

The second challenge comes from the heavy workloads in the
flow computing. In our setting, the volume of indoor mobility
data is very large due to the sampling nature of positioning
data and the large numbers of indoor moving objects. It is thus
computationally expensive to consider all indoor moving objects
and their mobility data when we compute the flow for a particular
semantic location in a given indoor space. Effective data pruning
is certainly needed such that the most popular semantic locations
can be found efficiently by computations that only involve the
relevant moving objects.

We propose a number of novel techniques to address these
challenges. First, we formulate the definition of indoor flows by
taking into account both data uncertainty and indoor topology.
Given a time interval [ts, te], we identify all possible indoor paths
for an object from its positioning samples in [ts, te]. Accordingly,
the indoor flow for an indoor semantic location is calculated in
terms of the number of such paths that go through that location.
Second, we design data structures that bridge the gap between
raw indoor positioning data and indoor topology in our setting.
The structures make it easy to access the data needed in the
flow computing. Third, we design a data reduction method that
can significantly reduce the number of possible indoor paths
to consider and thus is able to improve the efficiency of flow
computing by orders of magnitude. Fourth, by using the data
structures and data reduction method, we propose the search
algorithms to find the top-k popular indoor semantic locations,
i.e., those with the highest flow values. Our best search algorithm
is able to aggressively prune moving objects that are irrelevant to
the flows of the top-k popular semantic locations.

We conduct extensive experiments to evaluate our proposals
using both real and synthetic data. The results show that our
overall solution is efficient and scalable. Also, our approach to
indoor flows is effective in that the top-k results returned by our
approach are highly consistent with ground truth.

We make the following contributions in this paper.
• We formulate the indoor flow definition and the indoor

top-k popular location query that returns the indoor se-
mantic locations with the highest flow values in a past
time interval (Section 2).

• We design a complete set of techniques for efficiently com-
puting the flows for individual indoor semantic locations,
including the data structures that facilitate accessing the
relevant data, a data reduction method that reduces the
scale of intermediate data to process, and an overall flow
computing algorithm (Section 3).

• We design search algorithms for answering the indoor top-
k popular location query (Section 4).

• We conduct extensive experiments to evaluate our pro-
posals. The results verify the efficiency, scalability, and

effectiveness of our approach (Section 5).
In addition, Section 6 reviews the related work; Section 7 con-
cludes the paper and discusses future work.

2 PRELIMINARIES

Table 1 lists the notations used throughout this paper.

Table 1
Notations

Symbol Meaning
o ∈ O an indoor moving object

p, loc ∈ LP an indoor P-location
c ∈ C an indoor cell
s ∈ LS an indoor S-location
q ∈ Q an indoor S-location in a query set
X a sample set in a positioning record

πl(X) a P-location set of a sample set X
X = (X1, . . . , Xn) a positioning sequence of sample sets
φ = (loc1, . . . , locn) a (possible) path of an indoor object

φ q a path φ passes an S-location q

2.1 Indoor Space Locations
An indoor space is naturally divided into indoor partitions like
rooms, hallways or staircases by indoor entities like walls and
doors. For the sake of simplicity, we treat hallways or staircases as
rooms and use room and partition interchangeably in this paper.

We differentiate two kinds of indoor locations. Semantic loca-
tions (S-locations) refer to those region locations that are defined
by users and interesting to applications. Such region locations are
usually associated with some practical semantics, e.g., a lobby in
an office building, the first-aid site in a large shopping mall, etc.
Positioning locations (P-locations) refer to those point locations
returned by an indoor positioning system. Unlike outdoor GPS, the
P-locations returned by an indoor positioning system are discrete
and often determined from a set of pre-defined positions [24].
This localization discreteness is generally due to the limited labor
that is unable to survey an indoor space entirely [14], [25].
For example, in the calibration phase of a fingerprinting based
positioning system, the signal feature data for training is only
collected in some reference points pre-selected in an indoor space.
In the subsequent positioning phase, the reference points whose
collected signal data matches the current state best are returned as
the current possible locations. We use LP and LS to denote the
sets of P-locations and S-locations, respectively.

We further distinguish P-locations into two subclasses accord-
ing to their properties with respect to indoor topology. A set of
partitioning P-locations altogether partition the indoor space into
cells 1 in that an object cannot move from one cell to another
without passing one of these P-locations. In contrast, presence P-
locations do not partition the indoor space but simply imply the
presence of a positioned object.
Example 1. Referring to the example in Figure 1, the floor plan is

divided into six indoor partitions: rooms r1 to r5 and hallway
r6. Each partition may be a region of interest and can be
regarded as an S-location. Two partitioning P-locations 4 and
9 (denoted as p4 and p9) located at room doors are used as
reference points in Wi-Fi based positioning. They result in a
cell c1 (shaded) that consists of partitions r1 and r2 such that
an object cannot enter or leave cell c1 without being positioned
at either of this two P-locations. In contrast, P-locations 6 and

1. A cell defined in this paper is an indoor partition or a combination of
adjacent indoor partitions.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

3

8 (p6 and p8) in partition r6 and P-location 7 (p7) in cell c1
are presence P-locations.

7r3

o2 o1

o3

r2 r1

r6
r5r4

3

6

8

P-location p6

r1 partitionr6

doordoor cell

object true locationobject true location

trajectorytrajectory

direct connectiondirect connection

2

c1

c5

c1c1

1

4 9

5 6

Figure 1. An Example of Indoor Space and Locations

2.2 Indoor Positioning Data
Following the literature [11], [14], [36], [37], the indoor position-
ing technology in our setting reports the record (oid , X, t) non-
periodically, where oid identifies an object, X is a positioning
sample set and t is a timestamp. Such a triplet means that the
object’s location is described by the sample set X at time t.
Furthermore, each entry e in the sample set X is in the format
of (loc, prob) that means the object is at a P-location loc with
probability prob. For an arbitrary object and an arbitrary reporting
time,

∑
e∈X e.prob = 1 always holds for the corresponding

sample set X . This sample-based positioning approach is very
often employed due to its robustness to the dynamic changes in
the indoor environment [6], [14], [25]. Given a sample set X , we
use πl(X) to denote its P-location set {e.loc | e ∈ X}.

For a given indoor space of interest, the historical positioning
records of indoor moving objects are stored in a table called
Indoor Uncertain Positioning Table (IUPT). A possible IUPT
corresponding to the example in Figure 1 is shown in Table 2. Each
object’s whereabouts is modeled by a set of probable locations at
different reporting time. For example, o2’s P-location set πl(X)
is {p1, p2} at time t1 and changes to {p2, p4} at time t3.

Table 2
Indoor Uncertain Positioning Table

oid , X , t oid , X , t
o1 , {(p4, 1.0)} , t1 o1 , {(p8, 1.0)} , t4
o2 , {(p1, 0.5), (p2, 0.5)} , t1 o2 , {(p5, 0.3), (p6, 0.6), (p8, 0.1)} , t5
o3 , {(p2, 0.6), (p3, 0.4)} , t2 o3 , {(p2, 0.4), (p3, 0.6)} , t5
o1 , {(p9, 1.0)} , t3 o2 , {(p5, 0.2), (p6, 0.3), (p8, 0.5)} , t6
o2 , {(p2, 0.7), (p4, 0.3)} , t3 o3 , {(p3, 1.0)} , t8

2.3 Problem Formulation
Given a particular indoor S-location q, it is interesting to know
how many objects appeared in it during a past time interval [ts, te].
As objects are captured in uncertain mobility data, it is not possible
to count objects directly or precisely for q. To this end, appropriate
alternatives are needed. For simplicity, we assume that ts and te
are aligned with sampling time in the indoor positioning.

First, we define the uncertainty-aware object presence through
the following steps.
1) We obtain the sequence of an object o’s sample sets X =

(X1, . . . , Xn) during the time interval [ts, te], where X1

corresponds to ts and Xn corresponds to te (n ≥ 2).
2) We consider possible paths in the Cartesian product of all

relevant P-location sets, i.e., πl(X1) × . . . × πl(Xn). The
total number of such paths can be large in theory, but we
can quickly rule out those invalid candidates according to the
indoor topology and obtain a set P of valid possible paths. The
details are to be given in Section 3.3.

3) For each possible path φi = (loci1, . . . , loc
i
n) ∈ P , we

calculate its probability as pri =
∏

1≤j≤n prob
i
j where probij

is the probability associated with P-location locij in the corres-
ponding sample set Xj .

4) Given an S-location q ∈ LS , we use prφi q to denote the
pass probability that a path φi passes q. Subsequently, for the
object o, its object presence in q is calculated as

Φts,te(q, o) =

∑
φi∈P (prφi q · pri)∑

φi∈P pri
(1)

For an S-location q and a path φ = (loc1, . . . , locn), we
calculate the pass probability prφ q through the following steps.
1) For each sequential P-location pair (locj , locj+1) from φ, we

find a set C of cells in which each cell covers a direct connec-
tion from locj to locj+1. The probability that (locj , locj+1)

passes q is defined as prlocj ,locj+1 q = |{c∈C|c covers q}|
|C| .

Section 3.1.2 presents the data structure for finding such set C
for a given P-location pair (locj , locj+1).

2) Excluding the probability that none of the sequential P-location
pairs in path φ passes q, φ’s pass probability with respect to
q is calculated as

prφ q = 1−
∏

1≤j≤n−1
(1− prlocj ,locj+1 q) (2)

In Equation 2, the pass probability prφi q ≤ 1 always holds.
Consequently, for any S-location q and any object o, we have the
object presence Φts,te(q, o) ≤ 1 according to Equation 1.

Example 2. Referring to Table 2, an object o3 has 4 possible
paths during the time interval [t1, t8], i.e., φ1 = (p2, p2, p3),
φ2 = (p2, p3, p3), φ3 = (p3, p2, p3) and φ4 = (p3, p3, p3),
with respective probabilities 0.24, 0.36, 0.16 and 0.24. In
particular, φ1’s probability is 0.6×0.4×1.0 = 0.24. Moreover,
φ1 contains two sequential P-location pairs (p2, p2) and
(p2, p3). Considering (p2, p2), two direct connections (the
two arrows around p2 in Figure 1) are found: one is covered
by r6 and the other by r4. Therefore, we have prp2,p2 r6 =
prp2,p2 r4 = 1/2. Likewise, for pair (p2, p3), prp2,p3 r4 =
1 and prp2,p3 r6 = 0. According to Equation 2, prφ1 r6 =
1 − (1 − 1/2) · (1 − 0) = 0.5. Likewise, we have prφ2 r6
= prφ3 r6 = prφ4 r6 = 0. According to Equation 1, the
presence Φt1,t8(r6, o3) = 0.5 · 0.24 = 0.12. Given another
S-location r1, we have Φt1,t8(r1, o3) = 0 as none of o3’s
possible paths has chance to pass the S-location r1.

Based on the concept of object presence, we estimate the
expected number of objects that have been in an S-location and
define indoor flow accordingly.

Definition 1 (Indoor Flow). Given an S-location q ∈ LS , a set
O of indoor moving objects, and a time interval [ts, te], the
indoor flow for q is Θts,te,O(q) =

∑
o∈O Φts,te(q, o).

Example 3. From Table 2, we find 3 objects o1, o2, o3 ∈ O.
Following the example to process o3 in Example 2, we calcu-
late o1’s and o2’s presence respectively. For o1, we find only
one valid path (p4, p9, p8), and have Φt1,t8(r1, o1) = 0.5 and
Φt1,t8(r6, o1) = 1 according to Equations 1 and 2. Likewise,
for o2, we have Φt1,t8(r1, o2) = 0 and Φt1,t8(r6, o2) = 0.85
by calculating on all its valid paths. As a result, S-location
r6’s indoor flow is Θt1,t8,O(r6) =

∑
1≤i≤3 Φt1,t8(r6, oi) =

1 + 0.85 + 0.12 = 1.97, and S-location r1’s indoor flow is
Θt1,t8,O(r1) =

∑
1≤i≤3 Φt1,t8(r1, oi) = 0.5 + 0 + 0 = 0.5.

Our research problem is defined as follows.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

4

Problem 1 (Top-k Popular Location Query, TkPLQ). Given
a set Q of indoor semantic locations, an indoor uncertain
positioning table IUPT for a set O of indoor moving objects,
and a time interval [ts, te], an indoor top-k popular loca-
tion query returns k S-locations in a k-subset Qk such that
∀q ∈ Qk,∀q′ ∈ Q \Qk,Θts,te,O(q) ≥ Θts,te,O(q′).

Example 4. Referring to the example in Figure 1, given a query
set Q = {r1, r6}, as Θt1,t8,O(r1) = 0.5 < Θt1,t8,O(r6) =
1.97, a top-1 query during the time interval [t1, t8] returns a
room r6 as the most popular indoor semantic location.

3 COMPUTING INDOOR FLOWS FOR INDIVIDUAL
S-LOCATIONS

This section presents the techniques for efficiently computing
indoor flows for individual S-locations. Section 3.1 details the data
structures that facilitate the relevant computations, Section 3.2
gives a method to reduce the scale of data to process, and
Section 3.3 elaborates on the overall flow computing algorithm.

3.1 Data Structures
Our problem definition (Section 2.3) involves possible paths that
consist of P-locations, whereas the query set is defined on the S-
locations. To enable the estimation of the probability that a path
passes an S-location, we should properly capture the relationship
between those two types of indoor locations in the context of
indoor topology. To this end, we first devise an indoor space
location graph in Section 3.1.1 that organizes the P-locations,
S-locations, and cells into an indoor space topological model.
Subsequently, we design an indoor location matrix in Section 3.1.2
in order to facilitate searching the relevant cells and S-locations of
two sequential P-locations in a path.

3.1.1 Indoor Space Location Graph
The indoor space location graph GISL generalizes the concept of
RFID deployment graph [17] to accommodate the indoor locations
discussed in this paper. Representing the topological connectivity
of the indoor space at the level of indoor cells, GISL is defined as
a labeled graph (C, E, `e) where:
1) C is the set of the vertices. Each vertex corresponds to an

indoor cell c that results from the partitioning P-location(s) as
described in Section 2.1.

2) E is the set of edges, i.e., E = {〈ci, cj〉 | ci, cj ∈ C}.
3) `e : E → 2LP maps an edge to a set of P-locations. In

particular, if ci 6= cj , edge 〈ci, cj〉 ∈ E indicates that cells
ci and cj are connected in that an object can move from ci to
cj (or the opposite way) without getting into a third cell. In
this case, `e(〈ci, cj〉) gives the set of partitioning P-locations
that lead to the dividing of cells ci and cj . For a loop edge
〈ci, ci〉 ∈ E, `e(〈ci, ci〉) gives the set of presence P-locations
that are fully covered by the cell ci.
Figure 2 shows the indoor space location graph for the example

floor plan in Figure 1. We use two mappings to facilitate the search
between the cells and the S-locations. C2S : C → 2LS maps a
cell to the set of S-locations it contains, whereas Cell : LS → C
maps an S-location to the parent cell that contains it. Given an
object’s possible path φ, we consider that it passes an S-location q
if we know it passes q’s parent cell Cell(q). This way simplifies
the computation of the probability that an object passes an S-
location q. Here, we assume that an S-location corresponds to one

parent cell. Nevertheless, our mappings and relevant techniques
can be extended to support an S-location involving multiple cells.

c1c6

c5 c4 c3

p4, p9p6, p8

p1

p5

p3

p2
p7

{ r1, r2 }
r3

r4

r5

r6

Cells S-locations

c4

c5

c6

Figure 2. Indoor Space Location Graph

Our data structure gives access to both S-locations and cells.
S-locations support application-level specifications while cells fa-
cilitate generic indoor flow computing. An advantage of the design
is the separation of the specific user needs and the fundamental
flow computations on indoor mobility data. Users are allowed to
define a set of S-locations for a new task by only reconstructing
the corresponding mappings without getting to the underlying flow
computing approach.

The indoor space location graph can be defined as a directed
graph in order to support door directionality. Here we omit such
details and use the undirected graph only. The techniques proposed
in this paper can easily be adapted to handle door directionality.

3.1.2 Indoor Location Matrix
In order to determine if an S-location (or its parent cell) is passed
by a given P-location sequence (i.e., a path), we define the indoor
location matrix MIL as follows. It is a N -by-N upper triangular
matrix 2, where N = |LP | is the total number of P-locations.
Given two different P-locations pi, pj ∈ LP , the following
properties hold:
1) MIL[pi, pi] gives the adjacent cells to pi if pi is a partitioning

P-location. Otherwise, MIL[pi, pi] gives the cell that contains
pi.

2) MIL[pi, pj] gives the cells through which one can reach pj
from pi without involving any other cells or P-locations.

3) MIL[pi, pj] = ∅ if pi and pj are not connected by a common
cell. In other words, one can reach pi from pj only by going
through more than one cell.
Referring to the example in Figure 1, the corresponding indoor

location matrix is shown in Figure 3. Here, MIL[p4, p9] =
{c1, c6} as cell c1 connects P-locations p4 and p9, and so does
cell c6. One can reach p9 from p4 (or in the opposite way) without
leaving cell c1 or c6. In other words, if we see two positioning
samples involving p4 and p9 sequentially, we can tell that the
object is in either cell c1 or c6. For presence P-location p8, we
have MIL[p8, p8] = c6 as p8 is inside cell c6. On the other hand,
MIL[p3, p4] = ∅ indicates that there is no immediate path from
p3 to p4. Indeed, one has to go through cells c4 and c6 to reach
p4 from p3. The indoor location matrix can be easily built by
utilizing the connectivity information captured in GISL. We omit
such details due to the space limit.

We further discuss how to downsize MIL as its dimensionality
is as large as |LP |. Recall that in Section 3.1.1, the mapping
`e(〈ci, cj〉) maps an edge of graph GISL to a set of P-locations,
let the set be locs. Indeed, ∀pk ∈ LP and ∀pi, pj ∈ locs,
MIL[pk, pi] = MIL[pk, pj] always holds, i.e., pi and pj are
logically equivalent in constructing MIL. We say pi and pj are
equivalent P-locations, denoted by pi ≡ pj . Referring to the
example in Figure 1, for a given P-location p4, we find p6 ≡ p8

2. It is a non-triangular matrix if door directionality is considered.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

5
55




p1 p2 p3 p4 p5 p6 p7 p8 p9

p1 {c4,c5} c4 c4 ∅ c5 ∅ ∅ ∅ ∅
p2 {c4,c6} c4 c6 ∅ c6 ∅ c6 c6
p3 {c3,c4} ∅ ∅ ∅ ∅ ∅ ∅
p4 {c1,c6} c6 c6 c1 c6 {c1,c6}
p5 {c5,c6} c6 ∅ c6 c6
p6 c6 ∅ c6 c6
p7 c1 ∅ c1
p8 c6 c6
p9 {c1,c6}




Figure 3. Indoor Location Matrix

constructing MIL, we say pi and pj are equivalent P-locations,
denoted by pi ≡ pj . Referring to the example in Figure 1, for
a given P-location p4, we find p6 ≡ p8 in searching c6 and
p4 ≡ p9 in searching {c1, c6}. To eliminate such redundancy, we
can merge those equivalent P-locations sharing a common edge in
GISL, and construct a new M -by-M matrix 3, where M = |E|
is the number of edges in GISL and M ≤ N . By this merge, we
can downsize MIL and consequently reduce the scalability of the
possible paths to be generated. More details of this merge are to
be given in Section 3.4.

3.3 Algorithm

Now we are able to compute the indoor flow values for individual
S-locations. We use a B+-tree to index the indoor uncertain
positioning table on its time attribute (see Table 2). Given an S-
location q and a time interval [ts, te], Algorithm 1 fetches the
positioning records within [ts, te] (line 1), inserts them into a
hash table (lines 2–4), and obtains q’s flow by going through all
object positioning records that are temporally relevant (lines 5–
21). In particular, for each object, the algorithm forms the path
set P using all the sample sets (lines 7–15) according to the way
described in Section 2.3. It uses the indoor location matrix MIL to
determine those possible indoor paths (lines 14–15). Afterwards,
the algorithm computes the object’s presence and adds it to q’s
overall flow (lines 16–21).

Algorithm 1 Flow(Indoor semantic location q, B+-tree tree,
Query time interval [ts, te])

1: LeafEntrySet les← tree.RangeQuery([ts, te])
2: initialize a hash table HO : {oid} → {X}
3: for each leaf entry le ∈ les do
4: append le.X to HO[le.oid]

5: flow ← 0
6: for each key oid ∈ HO.keys do
7: (X1, . . . , Xn)← HO[oid]
8: path set P ← {〈(loc, prob)〉 | (loc, prob) ∈ X1}
9: if n > 1 then

10: for i from 2 to n do
11: for each path φ ∈ P do
12: remove φ from P
13: for each sample e ∈ Xi do
14: if MIL[φ.tail.loc, e.loc] 6= ∅ then
15: φ′ ← append(φ, e); add φ′ to P
16: pr ← 0; prsum ← 0
17: for each path φ ∈ P do
18: prφ ← Π1≤j≤|φ|φ[j].prob; prsum ← prsum + prφ
19: if prφ q > 0 then . φ has chance to pass Cell(q)
20: pr ← pr + (prφ q · prφ)

21: flow ← flow + pr
prsum

22: return flow

3. For readability, we still use the original MIL to explain our algorithms.

3.4 Data Reduction
In Algorithm 1, the path set P formed by Cartesian product can
have an explosive increasing size with the length of query time
interval. Large P s can lead to slow computation of flows and make
Algorithm 1 a performance bottleneck. Given a sequence X =
(X1, . . . , Xn) of sample sets, the number of generated paths can
be as big as

∏
1≤i≤n |πl(Xi)|. An example of constructing object

o2’s paths is shown in Figure 4(a), 4 sample sets within [t1, t8] are
searched from IUPT, incurring a number of 32 generated paths to
be processed.

(a) raw sequence |P| = 32 (b) after inner-merge |P| = 16 (c) after inter-merge |P| = 8

p1

0.5

p1

0.5

p2

0.5

p2

0.5

p1

0.5

p2

0.5

p2

0.7

p2

0.7

p4

0.3

p4

0.3

p2

0.7

p4

0.3

p5

0.3

p5

0.3

p6

0.6

p6

0.6

p8

0.1

p8

0.1

p5

0.3

p6

0.6

p8

0.1

p5

0.2

p5

0.2

p6

0.3

p6

0.3

p8

0.5

p8

0.5

p5

0.2

p6

0.3

p8

0.5

p1

0.5

p1

0.5

p2

0.5

p2

0.5

p1

0.5

p2

0.5

p2

0.7

p2

0.7

p4

0.3

p4

0.3

p2

0.7

p4

0.3

p5

0.3

p5

0.3

p6

0.7

p6

0.7

p5

0.3

p6

0.7

p5

0.2

p5

0.2

p6

0.8

p6

0.8

p5

0.2

p6

0.8

p1

0.5

p1

0.5

p2

0.5

p2

0.5

p1

0.5

p2

0.5

p2

0.7

p2

0.7

p4

0.3

p4

0.3

p2

0.7

p4

0.3

p5

0.25

p5

0.25

p6

0.75

p6

0.75

p5

0.25

p6

0.75

inner-merge

inter-merge

X1 X2 X3 X4X1 X2 X3 X4 X1 X2 X3 X4X1 X2 X3 X4 X1 X2 X3

_
X1 X2 X3

_

t1 t3 t5 t6t1 t3 t5 t6 t1 t3 t5 t6t1 t3 t5 t6 t1 t3 t5 - t6t1 t3 t5 - t6

Figure 4. Example of Data Reduction on Object o2’s Positioning Se-
quence

We bring up two operations to reduce the number of generated
paths. On the one hand, the path construction can benefit from
a smaller location set πl(Xi) at each Xi. This is done by
merging the samples of those equivalent P-locations (discussed
in Section 3.2) inside each sample set. We call it inner-merge.
On the other hand, it is useful to reduce the sequence length
n. People may stay around the same place for a long time and
their positions only have slight changes, resulting in a sequence
of sample sets that contain the identical set of P-locations. 4 By
an inter-merge, such sample sets can be sequentially merged to
reduce the sequence length.

Figure 4 illustrates inner-merge and inter-merge operations.
Referring to Figure 4(a), P-locations p6 and p8 included in πl(X3)
are equivalent in searching the relevant cells from MIL, thus p8’s
probability is merged with p6’s 5. The same operation is applied to
X4. The probability after an inner-merge is the sum of all original
probabilities involved in the merge. Subsequently, the consecutive
X3 (at time t5) and X4 (at time t6) in Figure 4(b) can be merged
into one sample set since they contain two same P-locations p5
and p6. For each common P-location, we compute the mean of its
probabilities in different sets, and obtain a new merged sample set
X3 where it has probp5 = (0.3 + 0.2)/2 = 0.25 and probp6 =
(0.7 + 0.8)/2 = 0.75. Finally, the size of generated paths in
Figure 4(c) decreases to 8 from 32.

In addition to the merges, we also accelerate the process by
avoiding unnecessary computations of the paths irrelevant to a
query location set. Referring to the example in Figure 1, we can
find out all of object o3’s possible semantic locations (PSLs) as r3,
r4 and r6 according to its positioning records in Table 2. Thus,
if a query location set is {r1, r2, r5} or one of its subsets, o3’s
sequence can be ruled out before flow computing. To find out all
the PSLs of an object, we shall perform a scan over the sample
set sequence. Such procedure can be easily integrated with the
aforementioned merge operations. Note that Algorithm 1 filters
those invalid paths that do not satisfy the indoor spatial topology

4. The flow values defined in this study are independent of the dwell time
of an object at a particular location.

5. To maintain the consistency in search, we keep the P-location with a
smaller subscript after a merge.

Figure 3. Indoor Location Matrix

constructing MIL, we say pi and pj are equivalent P-locations,
denoted by pi ≡ pj . Referring to the example in Figure 1, for
a given P-location p4, we find p6 ≡ p8 in searching c6 and
p4 ≡ p9 in searching {c1, c6}. To eliminate such redundancy, we
can merge those equivalent P-locations sharing a common edge in
GISL, and construct a new M -by-M matrix 3, where M = |E|
is the number of edges in GISL and M ≤ N . By this merge, we
can downsize MIL and consequently reduce the scalability of the
possible paths to be generated. More details of this merge are to
be given in Section 3.4.

3.3 Algorithm

Now we are able to compute the indoor flow values for individual
S-locations. We use a B+-tree to index the indoor uncertain
positioning table on its time attribute (see Table 2). Given an S-
location q and a time interval [ts, te], Algorithm 1 fetches the
positioning records within [ts, te] (line 1), inserts them into a
hash table (lines 2–4), and obtains q’s flow by going through all
object positioning records that are temporally relevant (lines 5–
21). In particular, for each object, the algorithm forms the path
set P using all the sample sets (lines 7–15) according to the way
described in Section 2.3. It uses the indoor location matrix MIL to
determine those possible indoor paths (lines 14–15). Afterwards,
the algorithm computes the object’s presence and adds it to q’s
overall flow (lines 16–21).

Algorithm 1 Flow(Indoor semantic location q, B+-tree tree,
Query time interval [ts, te])

1: LeafEntrySet les← tree.RangeQuery([ts, te])
2: initialize a hash table HO : {oid} → {X}
3: for each leaf entry le ∈ les do
4: append le.X to HO[le.oid]

5: flow ← 0
6: for each key oid ∈ HO.keys do
7: (X1, . . . , Xn)← HO[oid]
8: path set P ← {〈(loc, prob)〉 | (loc, prob) ∈ X1}
9: if n > 1 then

10: for i from 2 to n do
11: for each path φ ∈ P do
12: remove φ from P
13: for each sample e ∈ Xi do
14: if MIL[φ.tail.loc, e.loc] 6= ∅ then
15: φ′ ← append(φ, e); add φ′ to P
16: pr ← 0; prsum ← 0
17: for each path φ ∈ P do
18: prφ ← Π1≤j≤|φ|φ[j].prob; prsum ← prsum + prφ
19: if prφ q > 0 then . φ has chance to pass Cell(q)
20: pr ← pr + (prφ q · prφ)

21: flow ← flow + pr
prsum

22: return flow

3. For readability, we still use the original MIL to explain our algorithms.

3.4 Data Reduction
In Algorithm 1, the path set P formed by Cartesian product can
have an explosive increasing size with the length of query time
interval. Large P s can lead to slow computation of flows and make
Algorithm 1 a performance bottleneck. Given a sequence X =
(X1, . . . , Xn) of sample sets, the number of generated paths can
be as big as

∏
1≤i≤n |πl(Xi)|. An example of constructing object

o2’s paths is shown in Figure 4(a), 4 sample sets within [t1, t8] are
searched from IUPT, incurring a number of 32 generated paths to
be processed.

(a) raw sequence |P| = 32 (b) after inner-merge |P| = 16 (c) after inter-merge |P| = 8

p1

0.5

p1

0.5

p2

0.5

p2

0.5

p1

0.5

p2

0.5

p2

0.7

p2

0.7

p4

0.3

p4

0.3

p2

0.7

p4

0.3

p5

0.3

p5

0.3

p6

0.6

p6

0.6

p8

0.1

p8

0.1

p5

0.3

p6

0.6

p8

0.1

p5

0.2

p5

0.2

p6

0.3

p6

0.3

p8

0.5

p8

0.5

p5

0.2

p6

0.3

p8

0.5

p1

0.5

p1

0.5

p2

0.5

p2

0.5

p1

0.5

p2

0.5

p2

0.7

p2

0.7

p4

0.3

p4

0.3

p2

0.7

p4

0.3

p5

0.3

p5

0.3

p6

0.7

p6

0.7

p5

0.3

p6

0.7

p5

0.2

p5

0.2

p6

0.8

p6

0.8

p5

0.2

p6

0.8

p1

0.5

p1

0.5

p2

0.5

p2

0.5

p1

0.5

p2

0.5

p2

0.7

p2

0.7

p4

0.3

p4

0.3

p2

0.7

p4

0.3

p5

0.25

p5

0.25

p6

0.75

p6

0.75

p5

0.25

p6

0.75

inner-merge

inter-merge

X1 X2 X3 X4X1 X2 X3 X4 X1 X2 X3 X4X1 X2 X3 X4 X1 X2 X3

_
X1 X2 X3

_

t1 t3 t5 t6t1 t3 t5 t6 t1 t3 t5 t6t1 t3 t5 t6 t1 t3 t5 - t6t1 t3 t5 - t6

Figure 4. Example of Data Reduction on Object o2’s Positioning Se-
quence

We bring up two operations to reduce the number of generated
paths. On the one hand, the path construction can benefit from
a smaller location set πl(Xi) at each Xi. This is done by
merging the samples of those equivalent P-locations (discussed
in Section 3.2) inside each sample set. We call it inner-merge.
On the other hand, it is useful to reduce the sequence length
n. People may stay around the same place for a long time and
their positions only have slight changes, resulting in a sequence
of sample sets that contain the identical set of P-locations. 4 By
an inter-merge, such sample sets can be sequentially merged to
reduce the sequence length.

Figure 4 illustrates inner-merge and inter-merge operations.
Referring to Figure 4(a), P-locations p6 and p8 included in πl(X3)
are equivalent in searching the relevant cells from MIL, thus p8’s
probability is merged with p6’s 5. The same operation is applied to
X4. The probability after an inner-merge is the sum of all original
probabilities involved in the merge. Subsequently, the consecutive
X3 (at time t5) and X4 (at time t6) in Figure 4(b) can be merged
into one sample set since they contain two same P-locations p5
and p6. For each common P-location, we compute the mean of its
probabilities in different sets, and obtain a new merged sample set
X3 where it has probp5 = (0.3 + 0.2)/2 = 0.25 and probp6 =
(0.7 + 0.8)/2 = 0.75. Finally, the size of generated paths in
Figure 4(c) decreases to 8 from 32.

In addition to the merges, we also accelerate the process by
avoiding unnecessary computations of the paths irrelevant to a
query location set. Referring to the example in Figure 1, we can
find out all of object o3’s possible semantic locations (PSLs) as r3,
r4 and r6 according to its positioning records in Table 2. Thus,
if a query location set is {r1, r2, r5} or one of its subsets, o3’s
sequence can be ruled out before flow computing. To find out all
the PSLs of an object, we shall perform a scan over the sample
set sequence. Such procedure can be easily integrated with the
aforementioned merge operations. Note that Algorithm 1 filters
those invalid paths that do not satisfy the indoor spatial topology

4. The flow values defined in this study are independent of the dwell time
of an object at a particular location.

5. To maintain the consistency in search, we keep the P-location with a
smaller subscript after a merge.

Figure 3. Indoor Location Matrix

in searching c6 and p4 ≡ p9 in searching {c1, c6}. Consequently,
we can merge all such equivalent P-locations in an edge of GISL

to eliminate their redundancy on searching the identical set of
cells. As a result, MIL is reduced to an M -by-M matrix, where
M = |GISL.E| is the number of GISL’s edges 3. Note that
M � |LP | as the number of P-locations is usually much greater
than that of vertices (or edges) in the corresponding GISL. By this
merging, we can downsize MIL and consequently reduce the scale
of possible paths to be generated. More details for the merging are
to be given in Section 3.2.

3.2 Data Reduction Method
Recall the object presence defined in Section 2.3, the set of
possible paths formed by Cartesian product can have an explosive
increasing size with the length of query time interval. Large
path sets can lead to slow computation of indoor flows and thus
become the performance bottleneck. Given a positioning sequence
X = (X1, . . . , Xn), the maximum number of generated paths is
as large as

∏
1≤i≤n |πl(Xi)|. An example of constructing object

o2’s paths is shown in Figure 4(a), 4 sample sets within [t1, t8]
are searched from IUPT, incurring up to 32 generated paths to
process. To reduce the number of possible paths to be involved in
the flow computing, we propose a data reduction method.

(a) raw sequence |P| = 32 (b) after intra-merge |P| = 16 (c) after inter-merge |P| = 8

X2

t3

X1

t1

X3

t5

X4

t6

intra-merge

p2

0.7

p4

0.3

p1

p2

0.5

p5

0.3

p6

0.6

p8

0.1

p5

0.2

p6

0.3

p8

0.5

0.5

X2

t3

X1

t1

X3

t5

X4

t6

intra-merge

p2

0.7

p4

0.3

p1

p2

0.5

p5

0.3

p6

0.6

p8

0.1

p5

0.2

p6

0.3

p8

0.5

0.5

X2

t3

X1

t1

X3

t5

X4

t6

intra-merge

p2

0.7

p4

0.3

p1

p2

0.5

p5

0.3

p6

0.6

p8

0.1

p5

0.2

p6

0.3

p8

0.5

0.5

X2

t3

X1

t1

X3

t5

X4

t6

inter-merge

p2

0.7

p2

0.7

p4

0.3

p4

0.3

p2

0.7

p4

0.3

p1

0.5

p1

0.5

p2

0.5

p2

0.5

p1

0.5

p2

0.5

p5

0.3

p5

0.3

p6

0.7

p6

0.7

p5

0.2

p5

0.2

p6

0.8

p6

0.8

X2

t3

X1

t1

X3

t5

X4

t6

inter-merge

p2

0.7

p4

0.3

p1

0.5

p2

0.5

p5

0.3

p6

0.7

p5

0.2

p6

0.8

X2

t3

X1

t1

X3

t5

X4

t6

inter-merge

p2

0.7

p4

0.3

p1

0.5

p2

0.5

p5

0.3

p6

0.7

p5

0.2

p6

0.8

_
X2

t3

X1

t1

X3

t5-t6

p2

0.7

p2

0.7

p4

0.3

p4

0.3

p2

0.7

p4

0.3

p1

0.5

p1

0.5

p2

0.5

p2

0.5

p1

0.5

p2

0.5

p5

0.25

p6

0.75

_
X2

t3

X1

t1

X3

t5-t6

p2

0.7

p4

0.3

p1

0.5

p2

0.5

p5

0.25

p6

0.75

Figure 4. Example of Data Reduction on Object o2’s Positioning Data

We bring up two operations to reduce the number of paths
generated. On the one hand, the path construction can benefit
from a smaller P-location set πl(Xi) at each Xi. This is done
by merging the samples of those equivalent P-locations (discussed
in Section 3.1.2) inside each sample set. We call it intra-merge.

On the other hand, it is useful to reduce the length of the
sequence X . People may stay in the same place for a long time
and their positions only change slightly, resulting in a sequence of
sample sets that contain the identical set of P-locations. In this
case, we should merge such consecutive sample sets into one
because they point to almost the same underlying whereabouts
within a time period 4. We call this operation inter-merge. Particu-
larly, for each common P-location, we approximately estimate its
substituted probability in the new merged sample set as the mean
of its probabilities in all original sample sets. Our approximate
probability estimation simplifies the information held by the
original sample sets we merged; However, it can avoid generating

3. For readability, we still use the original MIL to explain our algorithms.
4. The indoor flow defined in this study is independent of the dwell time of

an object at a particular S-location.

a huge number of repetitious paths that result from the repeated
positioning reports in the same place.

Figure 4 illustrates the intra-merge and inter-merge operations.
Referring to Figure 4(a), P-locations p6 and p8 included in πl(X3)
are equivalent in searching the relevant cells from MIL, thus
p8’s probability is merged with p6’s 5. The same operation is
applied to X4. The probability after an intra-merge is the sum of
all original probabilities involved in the merge. Subsequently, the
consecutive X3 (at time t5) and X4 (at time t6) in Figure 4(b) can
be merged since they contain the identical P-location set {p5, p6}.
By computing each common P-location’s mean of probabilities in
different sets, we obtain a new merged sample set X3 where the
substituted probabilities are probp5 = (0.3 + 0.2)/2 = 0.25 and
probp6 = (0.7 + 0.8)/2 = 0.75. Finally, the maximum size of
generated paths in Figure 4(c) decreases to 8 from 32.

In addition to the merge operations, we also reduce the whole
positioning sequence for the objects whose location reports are
irrelevant to all S-locations in the query set. Taking object o3 in
Table 2 as an example, its P-location sets are {p2, p3}, {p2, p3}
and {p3} during the interval [t1, t8]. By checkingMIL in Figure 3,
we get three cells c3, c4 and c6 that involve p2 and/or p3.
Furthermore, from the mapping in Figure 2, we get the possible
semantic locations (PSLs) that o3 may have passed are r3, r4 and
r6. If a query location set contains none of its PSLs, object o3 can
be safely excluded from flow computing. Therefore, using PSLs
can quickly prune those irrelevant objects (and indirectly all its
paths) that cannot pass the semantic locations in the query set. To
find all PSLs for an object, we can perform a quick scan over its
sample set sequence without constructing any path. This procedure
can be easily integrated with the merge operations.

The data reduction method in Algorithm 1 obtains a sequence
X of sample sets (line 1) and returns the reduced sequenceX ′ with
its PSLs psls (initialized in line 2). Also, a temporary sequence
Xmerge is used to hold those consecutive sample sets for the
inter-merge (initialized in line 3). The algorithm iterates through
each sample set Xi and first calls IntraMerge for it (lines 4–
5). After each intra-merge, all PSLs found for Xi are added to
psls (lines 6–7). Next, the previous sample set Xtail is obtained
from Xmerge (line 8) and compared to Xi. If their P-location
sets are not identical (line 9), i.e., Xmerge can no longer include
any subsequent sample set for a merge, function InterMerge
is called for Xmerge and the resultant sample set is added to X ′
(line 10). The sequence Xmerge is emptied as long as the inter-
merge is done (line 10). No matter whether an inter-merge for
the current Xmerge is conduct or not, Xi is added to Xmerge

for further determination (line 11). An inter-merge should also be
performed at the end of the whole iteration (line 12) since there
are no more succeeding sample sets.

The IntraMerge procedure handles the samples inside each
sample set X (lines 14–21). If a subset X̃ contains equivalent P-
locations that refer to identical cells in MIL (line 16), the subset
X̃ is removed from X (line 17), a P-location with the smallest
subscript from πl(X̃) is chosen as the representative l̃oc (line 18),
and the sample probabilities in X̃ are summed up to p̃r (line 19).
Afterwards, a new sample ẽ(l̃oc, p̃r) is added back to X (line 20).

The InterMerge procedure works as follows (lines 22–30).
If the sequence Xmerge to be merged has only one sample set,
it just returns that sample set (lines 23–24). Otherwise, for each

5. To maintain the consistency in search, we keep the P-location with a
smaller subscript after a merge.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

6

Algorithm 1 ReduceData(Sample set sequence X , Indoor se-
mantic locations Q)

1: (X1, . . . , Xn)← X
2: initialize a sample set sequence X ′; initialize a set psls← ∅
3: initialize a sample set sequence Xmerge

4: for i from 1 to n do
5: Xi ← IntraMerge(Xi)
6: psls′ ← ⋃

loc∈πl(Xi)
C2S(MIL[loc, ∗] ∪MIL[∗, loc])

7: psls← psls ∪ psls′
8: Xtail ← Xmerge .tail()
9: if Xtail 6= null and πl(Xi) 6= πl(Xtail) then

10: add InterMerge(Xmerge) to X ′; Xmerge .empty()
11: add Xi to Xmerge

12: if i = n then add InterMerge(Xmerge) to X ′
13: if psls∩Q 6= ∅ then return 〈X ′, psls〉 else return 〈null, null〉
14: function IntraMerge(Sample set X)
15: for each subset X̃ ⊆ X do
16: if |X̃| ≥ 2 and πl(X̃) are equivalent P-locations then
17: X ← X \ X̃
18: l̃oc← loc with smallest subscript in πl(X̃)
19: p̃r ←∑

e∈X̃ e.prob

20: add the merged sample ẽ(l̃oc, p̃r) to X
21: return X
22: function InterMerge(Sample set sequence Xmerge)
23: if |Xmerge | = 1 then . One sample set, return directly
24: return Xmerge .front()
25: else . To merge the consecutive sample sets
26: initialize a new sample set X ← ∅
27: for each P-location loc in πl(Xmerge .front()) do
28: pr ←

∑
X′∈Xmerge

X′[loc].prob

|Xmerge |
29: add the formed sample e(loc, pr) to X
30: return X

common P-location loc (line 27), it computes the mean of probab-
ilities pr from all corresponding samples X ′[loc], X ′ ∈ Xmerge

(line 28), and adds the formed sample e(loc, pr) to the new set X
(line 29). When all locs have been processed, X is returned as the
merged sample set (line 30).

At the end, if none of the S-locations in psls is included in the
query set, null is returned to indicate that this sequence will not be
used in the flow computing. Otherwise, psls is returned together
with X ′ (line 13). By calling Algorithm 1, we can significantly
reduce the number of objects (sample set sequences) and their
generated paths to be processed further in flow computing.

3.3 Flow Computing Algorithm

We are now able to compute indoor flow values for individual
S-locations. We use a one-dimensional R-tree (termed the 1DR-
tree) [28] to index the IUPT on its time attribute. Given an
S-location q and a time interval [ts, te], Algorithm 2 fetches
the positioning records within [ts, te] (line 1), inserts them into
an object hash table HO (lines 2–4), and obtains q’s flow by
going through all object positioning records temporally relevant
(lines 5–21). In particular, for each object, the algorithm calls
ReduceData (see Algorithm 1) to obtain its reduced positioning
sequence (line 7). Objects whose psls does not overlap with q
are excluded from subsequent processing (line 8). The reduced
sequence is used to form the path set P described in Section 2.3
(lines 9–15). Specifically, the indoor location matrix MIL is
checked to determine if the current path to be generated is valid
or not (line 14), and only the valid ones are added to P (line 15)

to involve with the succeeding path generation. This way, we can
avoid generating many branches of invalid candidates. Afterwards,
the algorithm computes the object’s presence in the way described
in Section 2.3 and adds it to q’s overall flow (lines 16–21).

Algorithm 2 Flow(Indoor semantic location q, 1DR-tree tree,
Query time interval [ts, te])

1: LeafEntrySet les← tree.RangeQuery([ts, te])
2: initialize a hash table HO : {oid} → {X}
3: for each leaf entry le ∈ les do
4: append le.X to HO[le.oid]

5: flow ← 0
6: for each key oid ∈ HO.keys do
7: 〈(X1, . . . , Xn), psls〉 ← ReduceData(HO[oid], {q})
8: if psls is null then continue
9: path set P ← {〈(loc, prob)〉 | (loc, prob) ∈ X1}

10: for i from 1 to n do
11: for each path φ ∈ P do
12: remove φ from P
13: for each sample e ∈ Xi do
14: if MIL[φ.tail.loc, e.loc] 6= ∅ then
15: φ′ ← append(φ, e); add φ′ to P
16: pr ← 0; prsum ← 0
17: for each path φ ∈ P do
18: prφ ← Π1≤j≤|φ|φ[j].prob; prsum ← prsum + prφ
19: if prφ q > 0 then . φ has chance to pass Cell(q)
20: pr ← pr + (prφ q · prφ)

21: flow ← flow + pr
prsum

22: return flow

4 ALGORITHMS FOR TkPLQ
On the top of the data structures and techniques for computing
object presences and indoor flows in Section 3, this section
presents the algorithms for processing the TkPLQ. As illustrated
in Figure 5, a naive algorithm computes the indoor flow of each

Flow

(Algorithm 2)

Full Ranking Full Ranking

Naive Nested-Loop Best-First

Intermediate

Result Sharing

(Algorithm 3) (Algorithm 4)

Data

Pruning

max-heap

R-trees on

objects and

S-locationshash table

Object Presence Computation

indoor

location

matrix

Possible Path

Construction

Data Reduction

(Algorithm 1)
indoor space

location graph

Figure 5. Naive, Nested-Loop, and Best-First Algorithms for TkPLQ

query S-location in Q by calling Algorithm 2, and returns the
query S-locations with the top-k highest flow values. This is
inefficient as the blind call of Algorithm 2 may process the
positioning samples and the relevant paths of the same object
repeatedly. Suppose that an object o has gone through two query
S-locations qi, qj ∈ Q during the query time interval. In the two
calls of Algorithm 2 for qi and qj , o’s samples and paths are
processed twice. To avoid such re-computations, in Section 4.1,
we present a nested-loop algorithm that improves the efficiency
by sharing the intermediate results. In Section 4.2, we further
introduce a best-first algorithm that prunes unpromising query
locations and irrelevant moving objects rather than using a full
ranking. Figure 5 depicts the relations and differences among the
three algorithms.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

7

4.1 Nested-Loop Algorithm

Algorithm 3 Nested-Loop(Indoor semantic locations Q, 1DR-
tree tree, Query time interval [ts, te])

1: LeafEntrySet les← tree.RangeQuery([ts, te])
2: initialize a hash table HO : {oid} → {X}
3: for each leaf entry le ∈ les do
4: append le.X to HO[le.oid]

5: initialize a hash table HQ : Q→ {score}
6: for each key oid ∈ HO.keys do
7: 〈(X1, . . . , Xn), psls〉 ← ReduceData(HO[oid], Q)
8: if psls is null then continue
9: path set P ← {〈(loc, prob)〉 | (loc, prob) ∈ X1}

10: initialize a hash table Hφ : {path} → 2Q

11: for i from 1 to n do
12: for each path φ ∈ P do
13: remove φ from P
14: listQ ← remove Hφ[φ] from Hφ
15: for each sample e ∈ Xi do
16: if MIL[φ.tail.loc, e.loc] 6= ∅ then
17: φ′ ← append(φ, e); add φ′ to P
18: list′Q ← (C2S(MIL[φ.tail.loc, e.loc]) ∩Q)
19: Hφ[φ′]← listQ ∪ list′Q
20: initialize a hash table Hls : Q→ {score}
21: prsum ← 0
22: for each path φ ∈ P do
23: pr = Π1≤j≤|φ|φ[j].prob; prsum ← prsum + pr
24: for each query S-location q ∈ Hφ[φ] do
25: Hls[q]← Hls[q] + (prφ q · pr)
26: for each query S-location q ∈ Hls.keys do
27: HQ[q]← HQ[q] + Hls[q]

prsum

28: return the top-k from HQ.keys with the highest scores

The way to process the TkPLQ in the nested-loop join
paradigm is formalized in Algorithm 3. Initially, object positioning
records falling in the query time interval are found via a 1DR-tree
(line 1), and the positioning sequence of each object is constructed
by concatenating all its records (lines 2–4). Subsequently, the
algorithm iterates on each object (lines 6–27). In each iteration,
the algorithm first calls ReduceData to reduce a positioning
sequence (line 7) and filters out the irrelevant object with regard
to Q (line 8), then forms all valid possible paths upon the reduced
sequence (lines 9–19). The valid path generation is ensured by
checking MIL (line 16). Meanwhile, the query locations on each
path are recorded in a hash table Hφ that is local to each
encountered object (lines 10 and 18–19). After all valid paths
are generated for the current object, the algorithm continues to
process each path (lines 20–25), calculating the local temporary
scores for each S-location with respect to the current object in
process. The local scores are stored in a hash table Hls that maps
a query location q to its local score across the current object’s
all valid paths (lines 20 and 25). Furthermore, according to the
definitions in Section 2.3, the local score for the current object
is aggregated with the global score obtained from all objects that
have been seen so far (lines 26–27). Finally, the algorithm returns
the top-k S-locations with highest global scores in HQ (line 28).

Algorithm 3 returns the top-k results as long as the complete
set of objects in HO have been processed. In fact, the returned
top-k query locations usually cover only parts of the whole
indoor space, meaning that some objects do not contribute to
any of the top-k query locations. Thus, identifying and skipping
such objects can accelerate our query processing. We proceed
to present a best-first algorithm that gives priority to a set of

promising query locations with greater flow estimates, and that
can avoid some unnecessary but complex computations only for
unpromising query locations.

4.2 Best-First Algorithm

Algorithm 4 Best-First(R-tree RQ for indoor semantic locations
Q, 1DR-tree tree, Query time interval [ts, te])

1: LeafEntrySet les← tree.RangeQuery([ts, te])
2: initialize a hash table HO : {oid} → {X}
3: for each leaf entry le ∈ les do
4: append le.X to HO[le.oid]

5: initialize an in-memory COUNT-aggregate R-tree RC
6: for each key oid ∈ HO.keys do
7: 〈X ′, psls〉 ← ReduceData(HO[oid], Q)
8: if psls is not null then . psls overlaps with Q
9: get psls’s MBR mbr

10: insert (oid ,mbr) to RC
11: initialize a max-heap H
12: for each entry eQ in RQ.root do
13: ubFlow ← 0; list← ∅
14: for each entry eC in RC .root do
15: if eQ.mbr intersects eC .mbr then
16: ubFlow ← ubFlow + eC .count
17: add eC to list
18: H.enheap(eQ, list, ubFlow)
19: result← ∅
20: while H is not empty do
21: 〈eQ, list, ubFlow〉 ← H.deheap()
22: if eQ is a leaf entry then . eQ stores a query S-location
23: if list is null then
24: add S-location eQ.object to result
25: if |result| = k then return result
26: else
27: if list contains leaf entries then
28: use all objects contained by list to compute flow

for the query S-location eQ.object
29: H.enheap(eQ, null,flow)
30: else
31: ExpandList(eQ, list)

32: else
33: if list contains leaf entries then
34: for each sub-entry e′Q ∈ eQ.node do
35: ubFlow ← 0; list2← ∅
36: for each entry eC ∈ list do
37: if e′Q.mbr intersects eC .mbr then
38: ubFlow ← ubFlow + 1
39: add eC to list2
40: if list2 6= ∅ then H.enheap(e′Q, list2, ubFlow)
41: else
42: for each sub-entry e′Q ∈ eQ.node do
43: ExpandList(e′Q, list)

44: function ExpandList(Node entry eQ from R-tree RQ, Join list
list) . To expand the join list

45: ubFlow ← 0; list2← ∅
46: for each entry eC ∈ list do
47: for each sub-entry e′ ∈ eC .node do
48: if eQ.mbr intersects e′.mbr then
49: ubFlow ← ubFlow + e′.count
50: add e′ to list2
51: if list2 6= ∅ then H.enheap(eQ, list2, ubFlow)

As formalized in Algorithm 4, the best-first algorithm consists
of three phases. In the first phase (lines 1–10), the data preparation
(lines 1–4) is the same as the counterpart in Algorithm 3. Once

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

8

the hash table HO that holds positioning sequence for each object
is constructed, the algorithm iteratively organizes these objects
into an in-memory COUNT-aggregate R-tree [32] RC (lines 5–
10). Each non-leaf node entry e in RC is augmented with a count
e.count that stores the number of objects covered in e’s child
nodes. In particular, for each object (line 6), if its obtained psls
(line 7) overlaps with Q (line 8), the MBR that contains psls
and the object itself are inserted into RC (lines 9–10). In the
implementation, we use a series of smaller, finer-grained MBRs to
represent each psls to speed up the join of trees.

The second phase (lines 11–18) prepares for the join of the
query S-location R-tree RQ and the aggregate R-tree RC . A max-
heap H is initialized to give higher priority to RQ entries (groups
of query S-locations) that potentially have higher flow values
(lines 11 and 18). For each entry eQ from RQ, an associated
join list (line 13) is built with these RC entries that intersect
with eQ’s MBR (line 17). It is noteworthy that the flow value
for any S-location in eQ can only come from such intersecting
RC entries. When the two tree roots are initially joined (lines 12-
17), the counts of those RC entries are used to upper bound the
flow estimate ubFlow (line 16), as an object’s presence in any
S-location can never exceed 1 (see Section 2.3).

The third phase (lines 20–43) carries out the join in an order
controlled by the max-heap (lines 20–21). If the current entry eQ
is a leaf entry (lines 22–31), we check its join list. If it is empty,
i.e., eQ’s concrete flow value has been computed and the value
is higher than those yet to be computed, we add it to the result
(line 24). If the result contains k S-locations, the algorithm then
terminates (line 25). Otherwise, the join list may either contain leaf
entries or non-leaf entries. For the former case (line 27), objects in
the join list are loaded in order to compute the concrete flow value
of the leaf entry eQ (line 28). Since each object’s samples and
paths may overlap different S-locations, the intermediate results of
each called object should be shared as presented in Algorithm 3.
For the latter case (line 30), ExpandList is called to join eQ
with the child entries from the join list. This function (lines 44–51)
iterates over the join list and finds out the qualified RC entries,
each of which has its MBR intersecting with eQ (line 48), and
meanwhile, the function uppers bound eQ’s flow estimate with the
sum of counts from eQ’s intersecting RC entries (line 49).

If the current entry eQ is a non-leaf entry (lines 32–43),
two cases are differentiated. If the join list contains leaf entries
(line 33), each of eQ’s sub-entries gets its flow value overestimated
(line 38) when joining with the relevant entries from the join list
(lines 34–39). A processed sub-entry e′Q is only added back to
the max-heap if its join list is not empty (line 40). If the join list
contains non-leaf entries, ExpandList is called for each sub-
entry of eQ (lines 42–43).

5 EXPERIMENTAL STUDIES

This section reports on our experimental studies. Section 5.1 intro-
duces the settings and performance metrics. Sections 5.2 and 5.3
evaluate our proposals on real and synthetic data, respectively.

5.1 Settings and Performance Metrics
All programs are in Java and run on a computer with a 3.30GHz
Core i3 CPU. The possible paths are stored in harddisk as their
number can be very large when a long query time interval is used.

We compare our search algorithms, namely Naive (introduced
at the beginning of Section 4), NL (Algorithm 3 Nested-Loop)

and BF (Algorithm 4 Best-First), with the following alternatives.
The Simple Counting method (SC) works as follows for each
positioning record. It picks the (first) sample with the highest
probability and discards all other samples. If the corresponding P-
location with the highest probability is contained by an S-location
q, q’s flow value is incremented by one. The SC-ρ differs from
SC only in that it picks all the samples whose probability exceeds
a given threshold ρ. Both SC and SC-ρ allow a P-location to
be counted in multiple S-locations that all contain it, whereas in
SC-ρ more samples and P-locations may be involved in counting.
Furthermore, an object may be involved in the same S-location at
different times. To be consistent with our indoor flow definition,
we count an object only once for each relevant S-location during
the entire query time interval. We also design the Monte Carlo
based method (MC) as follows. It executes a certain rounds of
simulations. In each round, it simulates an instance of IUPT in
which all positioning records are randomly sampled to be certain
(i.e., only a P-location is seen in a record), and computes each
query location’s flow by constructing valid object paths on the
certain records. As a result, the top-k query locations are ranked
based on their average flow values in all the simulation rounds.

We investigate both efficiency and effectiveness of the top-k
search algorithms mentioned above. For efficiency studies, we run
each algorithm for a certain times and compare them in terms of
the average running time and pruning ratio. We define the pruning
ratio as σ = (|O| − |Of |)/|O|, where O is the set of all indoor
moving objects and Of contains the objects for which the search
algorithm has to compute its presence (see Section 2.3).

We also evaluate the effectiveness of the top-k search with
respect to ground truth. We consider two effectiveness metrics:
recall and Kendall coefficient. Specifically, recall measures the
fraction of the ground truth top-k popular semantic locations that
are returned in the top-k results. The Kendall coefficient τ captures
the similarity between the ranking of the top-k search result (ϕr)
and that of the top-k ground truth (ϕg). Let cp be the number
of S-location pairs (qi, qj) whose rankings in ϕr and ϕg are
concordant, i.e., qi is ranked before (after or in tie with) qj in
both ϕr and ϕg . Let dp be the number of pairs (qi, qj) whose
rankings in ϕr and ϕg are discordant. The Kendall coefficient is
τ = (cp − dp)/(0.5k(k − 1)). If the two rankings are identical,
τ is 1; if one ranking is the reverse of the other, τ is -1. If ϕr
and ϕg do not contain the same set of locations, we extend them
to the same set in order to compare them. For example, suppose
k = 3, ϕr is 〈A,B,C〉 and ϕg is 〈B,D,E〉. We extend ϕr
to 〈A,B,C,D,E〉 and ϕg to 〈B,D,E,A,C〉. The elements
we add into either ranking have the same ordering value, e.g.,
elements A and C are ranked 4th in the modified ϕg . As Naive,
NL, BF return the same top-k results for the same query, we only
run BF when evaluating the search effectiveness.

5.2 Experiments on Real Data
We collected the real dataset from a university building, using
the Wi-Fi fingerprinting based positioning algorithm [14] that
estimates a mobile client’s current location as a small set of
pre-selected reference points with respective probabilities. Those
reference points have their Wi-Fi signal features most similar to
that of the client’s current location. Being illustrated as a to n in
Figure 6, 14 partitions (9 office rooms and 5 hallways) are selected
as S-locations from a 33.9m× 25.9m test floor. We randomly pick
20% (40%, 60%, 80%, or 100%) of all these S-locations to form a
query setQ. A total of 75 P-locations (reference points) are used in

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

9

b

c

d

a

e f g h

j

i

k m

n

l

 a partitioning P-location a partitioning P-location

 a presence P-location a presence P-location

an S-locationk an S-locationk

 a partitioning P-location

 a presence P-location

an S-locationk

AA BB

CC

DD

33.9 m

2
5
.9

 m

Figure 6. Test Floor of Real Dataset

the test floor. Consider-
ing the floor’s topology,
16 of the 75 P-locations
are used as partitioning
P-locations (blue dots),
and the others as pres-
ence P-locations (green
dots). To facilitate the
geometrical computation
for determining the topological relationships, we use an in-
memory R-tree to store the entities including S-locations, P-
locations, and doors. Moreover, our designed indoor space location
graph and indoor location matrix are also kept in main memory.
Their largest memory consumption is around 147.7 KB.

A total of 35 smartphone users participated in the data collec-
tion lasted from April 21st to April 24th, 2015. They were required
to specify their actual partitions to obtain the ground truth. We
selected a period of 150 minutes from rush hours in a day and got
an IUPT with 64,846 positioning records. Each positioning report
in IUPT contains up to 4 samples, i.e., the maximum sample-
set size [14] (mss) is 4. We also use the maximum positioning
period T to refer to the maximum value of time interval between
two consecutive positioning records for a user. According to our
survey, T is 3 seconds in our collected data, i.e., the positioning
frequency is no less than 1/3 Hz. The average positioning error in
the data is about 2.1 meters. For a query time interval, ts and te
are randomly decided for a given ∆t = te − ts. The parameter
settings are shown in Table 3, where default values are in bold.

Table 3
Parameter Settings on Real Data

Parameters Settings
k 1, 2, 3, . . . , 8

|Q| (% of S-locations) 20%, 40%, 60%, 80%, 100%
mss 1, 2, 3, 4

∆t (minute) 30, 60, 90

5.2.1 Effect of Using Data Reduction

For our proposed search methods Naive, NL and BF, we imple-
ment their corresponding versions that process the original posi-
tioning sequence without the data reduction (see Section 3.2). We
call them Naive-ORG, NL-ORG and BF-ORG. The performance
results for all alternative methods in default parameter setting
are reported in Table 4. In SC-ρ, we set ρ = 0.25 for the
best performance. We control MC’s simulation rounds at 900, for
which the Kendall coefficient almost increases to a standstill.

Table 4
Performance Comparison in Default Setting

Methods Running
time (sec.)

Pruning
ratio (%)

Kendall
coefficient τ

Recall
(%)

SC 0.6 - 0.007 62.2
SC-ρ (ρ = 0.25) 1.1 - 0.382 75.6
MC, 900 rounds 1.7× 104 - 0.712 86.7

BF 4.4 59.4 0.859 93.3
NL 9.5 19.2 same as above.

Naive 59.1 19.2 same as above.
BF-ORG 1.4× 104 50.3 0.893 95.6
NL-ORG 2.3× 104 0 same as above.

Naive-ORG 1.6× 105 0 same as above.

It is not surprising that SC and SC-ρ can return the top-
k results faster than BF and NL since they do not construct
any paths. However, their effectiveness measures are significantly

lower. The Kendall coefficient is 0.007 for SC and 0.382 for SC-
ρ, which means their rankings of results are highly different from
that of the ground truth. They also have a low capability to find the
ground truth as the recall is only 62.2% for SC and 75.6% for SC-
ρ. In contrast, by applying our uncertainty-aware flow computing,
BF and NL’s effectiveness measures are significantly higher; BF
also achieves a good balance between efficiency and effectiveness.

The results in Table 4 also show the important effect of our
data reduction method. Without it, Naive-ORG, NL-ORG and BF-
ORG are slower by orders of magnitude than their counterparts
with data reduction. Despite its heavy workloads on the original
data, BF-ORG prunes 50.3% objects, even much higher than NL.
This demonstrates the powerful pruning enabled by the design
of our BF algorithm. On the other hand, the data reduction
method has very little impact on the search result effectiveness.
This is evidenced by the highly similar Kendall coefficient val-
ues and recall values for the algorithms with and without data
reduction. Compared to our methods with data reduction, MC
incurs significantly longer time for its simulations, although it
processes on a very small set of generated paths from those certain
positioning records in each its simulation round. Besides, both of
its effectiveness measures are lower than our proposed methods.

In general, SC and SC-ρ incur little time costs but yield
very poor effectiveness. BF-ORG, NL-ORG, Naive-ORG and MC
without data reduction all incur extremely long running time.

5.2.2 Effect of Uncertainty in Real Data
Specially, here we discuss the effect of data uncertainty in finding
the top-k popular S-locations. We vary the sample capacity of the
positioning records as follows. For each a record, if the number
of its containing samples exceeds the maximum sample-set size
mss, the samples with lower probabilities are removed until only
mss samples remain. The reported location becomes certain when
mss is 1. In the real data, we do not consider the data uncertainty
related to the positioning frequency since it is very high (≥1/3Hz).
To further study the effect of data uncertainty, in Section 5.3.1 we
vary the maximum positioning period T and the indoor positioning
error µ using our synthetic data.

Using defaults for other parameters, we run BF, SC, SC-ρ,
and MC with different mss values and report their efficiency
performances in Table 5. When we increase mss from 1 to 4, SC
and SC-ρ’s running time increases steadily as more samples need
to be counted; BF’s time cost increases more rapidly as the set of
possible paths involved becomes larger. Nevertheless, BF can still
return the top-3 results within 4.42s. Compared to the others, MC
is slower by orders of magnitude. Its running time increases when
varying mss from 1 to 2 and stays almost stable with mss up
to 4, this is because MC needs more time to randomly select one
from the multiple samples in a positioning report.

Table 5
Efficiency Comparison with Different Settings of mss

Methods Running time (sec.)
mss = 1 mss = 2 mss = 3 mss = 4

BF 0.18 0.80 2.86 4.42
SC 0.14 0.42 0.53 0.60

SC-ρ (ρ = 0.25) 0.17 0.61 0.87 1.12
MC, 900 rounds 15625 17267 17532 17447

We also investigate the aforementioned methods’ effectiveness
in different settings of mss. Referring to the results reported
in Figure 7, SC’s Kendall coefficient τ and recall stay stable
when varying mss, as it only uses the sample with the highest

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

10

probability in each record and therefore its counting is not affected
by the sample capacity. In contrast, SC-ρ, MC and BF’s both
measures increase significantly when more probabilistic samples
are included in the location reports. When mss is 1, the location
reports become certain such that some useful information is
discarded and underlying positioning errors are magnified. As our
real-world location reports were estimated from a set of relatively
discrete P-locations (4.48 square meters per P-location), even BF
has a τ of 0.462 and recall of 71.1% when each location report
contains only one sample. Note that in this case, SC and SC-ρ
return the same results, and MC is equivalent to BF without the
data reduction. For mss from 2 to 4, both effectiveness measures
for SC-ρ, MC and BF increase with more samples introduced, and
BF increases more rapidly than the others. The results indicate
that our uncertain data model with probabilistic samples is more
effective than a certain data model in solving the search problem.

1 2 3 4
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 2 3 4
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0(a)

Ke
nd

all
Co

eff
icie

nt

m s s

 B F S C S C - ρ M C (b)

Re
ca

ll

m s s
Figure 7. Effectiveness vs. mss on Real Data

5.2.3 Top-k Search Efficiency
We omit the simple counting methods and those inefficient altern-
atives, and concentrate on NL and BF for efficiency studies on real
data. We issue 15 random queries and report their average results.

First, we fix |Q| to 8 (i.e., a fraction 60% of all 14 semantic
locations) and ∆t to 30 minutes, and vary k. Referring to Fig-
ure 8(a), increasing k has little impact on the running time of
NL since every object whose psls overlaps with Q is involved
in flow computing despite k. BF’s time cost increases steadily as
we increase k, but it can still return the top-5 results in less than
6.3s. In particular, when k increases to 8, i.e., all locations in Q
need to be returned, all the objects must be processed except those
that can be filtered out by the data reduction. As a result, BF even
costs slightly more time than NL due to its extra operations on
the heap and trees. As shown in Figure 8(b), when increasing k,
BF’s pruning ratio decreases steadily and degrades to that of NL at
19.2% when all S-locations need to be returned. Larger ks require
BF to compute flows for more query locations, which tends to
involve more objects. The trend is consistent with the running
time increase of BF.

1 2 3 4 5 6 7 80
2 0
4 0
6 0
8 0

1 0 0

1 2 3 4 5 6 7 80
2
4
6
8

1 0
1 2 (a)

Tim
e (

se
c.)

k

 N L B F
(b)

Pru
nin

g R
ati

o (
%)

k

 N L B F

Figure 8. Efficiency vs. k on Real Data

Next, we set k to 3 and ∆t to 30 minutes, and vary |Q|.
Referring to Figure 9(a), both algorithm’s running time increases
but their difference becomes larger as we increase |Q|. Referring
to Figure 9(b), both algorithms have to process more objects in
computing flows when a larger Q is specified. Also, when all S-
locations are included in the query set Q (|Q| = 100% × 14), all

the objects in IUPT need to be processed but BF can terminate
early as k is fixed.

2 0 4 0 6 0 8 0 1 0 00
2 0
4 0
6 0
8 0

1 0 0

2 0 4 0 6 0 8 0 1 0 00
2
4
6
8

1 0
1 2
1 4 (a)

Tim
e (

se
c.)

| Q | (%)

 N L B F
(b)

Pru
nin

g R
ati

o (
%)

| Q | (%)

 N L B F

Figure 9. Efficiency vs. |Q| on Real Data

We also set k = 3 and |Q| = 8, and vary ∆t. As shown in
Figure 10, both algorithms’s time cost increase significantly as
∆t becomes larger. On one hand, A larger ∆t involves more
samples to be considered for each object and thus incurs more
time to compute the concrete flow values. On the other hand,
a larger ∆t tends to extend the objects’ PSLs, which makes
more objects to be involved in the flow computing for a query
location. For these two reasons, the time cost grows rapidly with
an increasing ∆t. Referring to Figure 10(b), the pruning ratio of
BF decreases moderately when ∆t is varied from 30 minutes to
90 minutes. Since our real data was collected in a relatively small
space, a majority of S-locations are included in the query set Q,
and therefore the effect of increasing ∆t clearly dominates BF’s
pruning ratio. Nevertheless, when ∆t increases to 90 minutes, BF
still can prune 16% more objects than NL whose pruning is mostly
done by the data reduction. This shows that BF performs well even
when the query uses a long time interval.

3 0 6 0 9 00
2 0
4 0
6 0
8 0

1 0 0

3 0 6 0 9 01 0 0

1 0 1

1 0 2

1 0 3

(a)

Tim
e (

se
c.)

∆t (m i n .)

 N L B F
(b)

Pru
nin

g R
ati

o (
%)

∆t (m i n .)

 N L B F

Figure 10. Efficiency vs. ∆t on Real Data

5.2.4 Top-k Result Effectiveness
We compare the effectiveness measures of BF, SC, SC-ρ and MC
for each setting used in Section 5.2.3.

First, we study the effect of varying k with other parameters
fixed to default. Referring to Figure 11(a), BF’s Kendall coefficient
τ decreases moderately but stays above 0.85 with increasing k up
to 3. Overall, τ is still above 0.77. Referring to Figure 11(b), BF’s
recall is higher than 0.88 for most tested cases. These results verify
the high effectiveness of our search on real dataset. Compared

1 2 3 4 5 6 7 8- 0 . 2
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 2 3 4 5 6 7 80 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0(a)

Ke
nd

all
Co

eff
icie

nt

k

 B F S C S C - ρ M C
(b)

Re
ca

ll

k
Figure 11. Effectiveness vs. k on Real Data

to BF, SC and SC-ρ are much poorer on both measures. Also,
despite that MC has used a sufficient number of simulations for
flow computing, there is still a gap between it and BF on the two
measures. In our implementation, MC samples each positioning
record by only considering the probabilistic samples in it, which

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

11

ignores the information from contextual records and is inferior to
keeping every probable sample and computing all valid paths as
done by BF. Interestingly, as |Q| is fixed in the tests, larger ks
tend to include more ground truth query locations in the search
result, and therefore both effectiveness measures improve after k
is large enough. Eventually, all methods’ recall increases to 1 as
all locations in ground truth are returned to form the top-k results.

Next, fixing other parameters, we test |Q| in different values.
Referring to Figure 12(a), BF’s τ decreases moderately with larger
|Q| as more query locations are involved in the search. However,
it is still higher than 0.75 even though we do a complete query on
all S-locations. Referring to Figure 12(b), BF’s recall decreases as
|Q| becomes larger; but it is in general higher than 0.86 when |Q|
is increased to 80%. For both measures, BF outperforms other
alternatives in all tests and decreases more slowly. The results
show that our search is effective with large Qs on real data.

2 0 4 0 6 0 8 0 1 0 0
- 0 . 2
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

2 0 4 0 6 0 8 0 1 0 00 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0(a)

Ke
nd

all
Co

eff
icie

nt

| Q | (%)

 B F S C S C - ρ M C
(b)

Re
ca

ll

| Q | (%)
Figure 12. Effectiveness vs. |Q| on Real Data

Last, we fix other parameters and vary ∆t. Referring to Fig-
ure 13, both effectiveness measures of BF decrease with increasing
∆t. However, they only decline slightly and their performance
gaps with the other methods become larger as ∆t increases. In
all tests of BF, τ is higher than 0.82 and recall is higher than
0.88. When we extend the query time interval, objects’ PSLs
are enlarged, which involves more irrelevant S-locations in the
flow computing. At the same time, a larger ∆t tends to rule out
more invalid paths and make the constructed paths more likely
to approach the ground truth, which offsets the uncertainty in the
mobility data and improves the accuracy of our flow computing.
Due to these two conflicting reasons, BF’s recall decreases only
slightly when ∆t increases. The same reasoning applies to the
change of BF’s Kendall coefficient. Therefore, our search is still
effective when a long query time interval is used.

3 0 6 0 9 0- 0 . 2
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

3 0 6 0 9 00 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0(a)

Ke
nd

all
Co

eff
icie

nt

∆t (m i n .)

 B F S C S C - ρ M C
(b)

Re
ca

ll

∆t (m i n .)
Figure 13. Effectiveness vs. ∆t on Real Data

5.3 Experiments on Synthetic Data
We also evaluate our proposals on a very large synthetic dataset
generated by the indoor data generator Vita [24]. We compare our
methods with their alternatives in different settings, especially for
|O|, T , and the indoor positioning error µ that may differ in other
indoor mobility data.
Indoor Space and Locations. We duplicate a real-world floor
plan 6 to generate a 5-floor building, where adjacent floors are

6. https://goo.gl/wsdYys

connected by stairways and each floor takes 120m × 120m
with 100 rooms and 4 staircases. The irregular partitions in these
entities are decomposed into smaller but regular ones, yielding 645
partitions and 840 doors in total. We convert each a staircase or
a regular partition into an S-location. As a result, we have a total
of 649 S-locations. All S-locations are indexed by an R-tree in
which the root node contains 5 child nodes to distinguish different
floors. We insert the four staircase S-locations into each floor’s
corresponding child node such that we can directly search them.
The whole tree is around 5.9 MB and kept in main memory. On the
other hand, the P-locations correspond to the reference points pre-
selected for fingerprinting positioning algorithm [14]. We divide
the entire indoor space using a grid, exclude those lattice points
on the walls or outside the space, and use the remaining 5450
lattice points as P-locations. Among them, there are 4690 presence
P-locations and 760 partitioning P-locations. Our generated S-
locations and P-locations are used to build the two data structures
introduced in Section 3.1. The total memory consumption of the
data structures is up to 3.63 MB.
Moving Objects and IUPT. We generate indoor moving objects
in the 5-floor building for a lifespan of two hours. Specifically,
2.5K (5K, 7.5K, or 10K) objects are randomly distributed to the
floors, each having a lifespan varied from 30 minutes to 2 hours.
The maximum speed for all objects is Vmax = 1m/s. Object
movement in a floor follows the random waypoint model [19].
In particular, an object moves towards its destination along the
shortest indoor path, it stays in the destination for a random period
of time from 5 to 30 minutes after arrival, and then it moves again
to its next destination that is decided at random. For the entire
simulation, we record object’s exact location every second as its
spatiotemporal trajectory. The trajectories with exact locations and
timestamps form the ground truth in our experiments.

The synthetic IUPT is maintained according to the ground
truth trajectories as follows. After an object has sent an update to
IUPT, it keeps silent for at most T seconds, where T corresponds
to the maximum positioning period defined in Section 5.2. An
update for object o consists of a timestamp t and a sample set X ,
and |X| is random between 1 and mss. We set mss = 4 in the
tests. Following a typical model WkNN [14] used in fingerprint-
ing, each sample in X is a pair of P-location loci and probability
probi. In particular, loci is randomly within µ meters from o’s
current ground truth location o.loc, where µ denotes the indoor
positioning error; and probi = w(loci)/

∑
1≤k≤|X| w(lock),

where w(loci) is the weight of P-location loci and computed as
1/(Dist(loci, o.loc) · (1 + γ)), meaning the weight is inversely
proportional to the distance between loci and o.loc. We introduce
randomness in computing w(loci) by a random variable γ varying
from -0.2 to 0.2.
Other Settings. The query locations in Q are randomly picked
from S-location set LS . We vary the parameters according to
Table 6 in which default values are given in bold. We compare

Table 6
Parameter Settings on Synthetic Data
Parameters Settings

k 5, 10, 15, 20
|Q| (% of S-locations in LS) 4%, 8%, 12%

|O| 2.5K, 5K, 7.5K, 10K
T (second) 1, 3, 5, 7
µ (meter) 3, 5, 7

∆t (minute) 15, 30, 60, 120

the search methods BF (NL), SC, SC-ρ and MC. We set ρ = 0.2
in SC-ρ and simulation rounds to 25,000 in MC for an optimized

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

12

tuning in the default parameter setting. We randomly issue 20
queries in each setting and report the average measures.

5.3.1 Effect of Uncertainty in Synthetic Data
In addition to themss studied in Section 5.2.2, we also investigate
the effect of data uncertainty related to the maximum positioning
period T and the indoor positioning error µ described above. Each
of them is tested with other parameters fixed as default.
Effect of T . Referring to Figure 14(a), NL and BF’s running time
decreases clearly when we increase T from 1s to 7s. A smaller
T means that the objects report their updates more frequently,
and therefore more valid possible paths are to be processed in NL
and BF. Nevertheless, BF can finish a half-hour query within 99s
even all objects update their locations every second. Besides, the
time costs of SC and SC-ρ decrease slightly as they are already
minor. MC also decreases with an increasing T but much slower
as its cost is only linearly correlated with the number of location
reports. In each test, MC’s cost is larger than the others by orders
of magnitude since it has to use a large number of simulations to
achieve a good enough effectiveness as reported below.

1 3 5 71 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4

(a)

Tim
e (

se
c.)

T (s e c .)

 N L B F S C S C - ρ M C

3 5 71 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4 (b)

Tim
e (

se
c.)

� (m e t e r)
Figure 14. Efficiency vs. T and µ on Synthetic Data

As shown in Figure 15, when increasing T , both effectiveness
measures decrease very rapidly for SC and SC-ρ but only slightly
for BF and MC. A larger T makes the location updates less
frequent, and therefore less information is captured in the IUPT,
which causes the data uncertainty to increase and the query result
quality to degrade. Nevertheless, BF still outperforms the other
methods in the tests; its τ keeps above 0.77 for all T values and
recall is higher than 0.9 in the default setting.

1 3 5 70 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 3 5 70 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0(a)

Ke
nd

all
Co

eff
icie

nt

T (s e c .)

 B F S C S C - ρ M C
(b)

Re
ca

ll

T (s e c .)
Figure 15. Effectiveness vs. T on Synthetic Data

Effect of µ. Next, we increase the positioning error in the data by
varying µ from 3 meters to 7 meters. Referring to Figure 14(b), the
running time of NL and BF decreases with increasing µ while that
of the others is almost stable. When the positioning error becomes
larger, the number of valid paths constructed by NL and BF tends
to decline as our flow computing method can filter out more invalid
paths generated from the inaccurate positioning results.

Accordingly, we report these methods’ effectiveness results
in Figure 16. When µ increases, both measures for SC and SC-
ρ decrease clearly as these methods counting on the positioning
records are very sensitive to the positioning errors in the data.
In contrast, BF and MC perform much better as they make use
of indoor topology to generate possible paths in flow computing.
Still, BF outperforms MC because it considers the valid possible

paths thoroughly. When µ = 7m, its τ is still higher than 0.77
and its recall is over 0.87.

3 5 7
- 0 . 2
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

3 5 70 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0(a)

Ke
nd

all
Co

eff
icie

nt

� (m e t e r)

 B F S C S C - ρ M C
(b)

Re
ca

ll

� (m e t e r)
Figure 16. Effectiveness vs. µ on Synthetic Data

To sum up, those results on varying mss, T and µ altogether
verify that our top-k search algorithm BF can work both efficiently
and effectively even though the indoor mobility data is of relatively
low quality.

5.3.2 Top-k Search Efficiency
Here we omit the efficiency results for k, |Q|, ∆t that exhibit
similar trends with the counterparts of Section 5.2.3, and focus

2 . 5 K 5 . 0 K 7 . 5 K 1 0 . 0 K1 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4

Tim
e (

se
c.)

| O |

 N L B F S C S C - ρ M C

Figure 17. Efficiency vs. |O| on
Synthetic Data

on the efficiency performance
on varying |O| from 2.5K to
10K. Referring to Figure 17, it
is easy to see that more mov-
ing objects result in longer
running time in each method.
Still, MC needs significantly
more time than the others.
WhenO contains 10K objects,
NL takes around 15.2s to return the top-k results, while BF
only requires 8.1s with a higher pruning capability. Although the
simple counting methods are slightly faster, their effectiveness is
considerably poorer than BF, as to be shown in Section 5.3.3.

5.3.3 Top-k Result Effectiveness
This section presents the effectiveness results on varying a para-
meter relevant to the top-k search and using the defaults for others.
Effect of k. Referring to Figure 18(a), BF’s Kendall coefficient τ
is above 0.93 for k up to 5, showing that its top-5 results are in
good accord with ground truth. Afterwards, τ degrades since more
query locations need to be computed and sorted. Nevertheless, it
turns to improve when k grows to a certain number. Sufficiently
large ks tend to include more ground truth in search result since
|Q| is fixed in the setting. Overall, BF’s τ is higher than 0.77 and
always outperforms MC in the tests. Referring to Figure 18(b), the
recall of BF and MC decreases when increasing k, but BF’s recall
is still higher than that of MC and is above 0.89 for different k
values. Note that both effectiveness measures of SC and SC-ρ are
very low compared to those of BF and MC. This phenomenon can
still be seen in the experimental results presented below.

5 1 0 1 5 2 0- 0 . 10 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 0

5 1 0 1 5 2 00 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0(a)

Ke
nd

all
Co

eff
icie

nt

k

 B F S C S C - ρ M C
(b)

Re
ca

ll

k
Figure 18. Effectiveness vs. k on Synthetic Data

Effect of |Q|. Referring to Figure 19, for all the methods, the two
measures decrease as |Q| increases because more query locations

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

13

need to be considered. However, BF decreases more slowly than
MC; its τ is still higher than 0.74 and its recall is above 0.83 when
|Q| increases to 12%.

4 8 1 2- 0 . 3- 0 . 2- 0 . 10 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 9

4 8 1 20 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0(a)

Ke
nd

all
Co

eff
icie

nt

| Q | (%)

 B F S C S C - ρ M C
(b)

Re
ca

ll
| Q | (%)

Figure 19. Effectiveness vs. |Q| on Synthetic Data

Effect of |O|. Referring to Figure 20, the two measures of each
method are only slightly affected by varying |O|. Besides, BF
can always perform the best and both its measures stay very high,
showing that our search is still effective for large object workloads.

2 . 5 K 5 . 0 K 7 . 5 K 1 0 . 0 K- 0 . 10 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 0

2 . 5 K 5 . 0 K 7 . 5 K 1 0 . 0 K0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0(a)

Ke
nd

all
Co

eff
icie

nt

| O |

 B F S C S C - ρ M C
(b)

Re
ca

ll

| O |
Figure 20. Effectiveness vs. |O| on Synthetic Data

Effect of ∆t. Referring to Figure 21, both measures decrease as
∆t increases in each method, but BF still outperforms MC. As
discussed in Section 5.2.4, larger ∆ts tend to produce qualified
paths and thus improve the accuracy of flow computing; but larger
∆t also tends to expand the objects’ PSLs and thus deteriorates the
accuracy. As a result, both measures of our search decline slightly
when ∆t is increased. These results verify that our method BF can
still effectively process the queries with large ∆t.

1 5 3 0 4 5 6 0 7 5 9 0 1 0 5 1 2 0- 0 . 2- 0 . 10 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 0

1 5 3 0 4 5 6 0 7 5 9 0 1 0 5 1 2 00 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0(a)

Ke
nd

all
Co

eff
icie

nt

∆t (m i n .)

 B F S C S C - ρ M C
(b)

Re
ca

ll

∆t (m i n .)
Figure 21. Effectiveness vs. ∆t on Synthetic Data

Comparison with Alternatives. We compare our method with
two indoor flow computing methods [3], [4], [27] using RFID data.
One method [3], [4] is specialized for semi-constrained indoor
movement environments (e.g., convey belt systems) where each
semantic location features one entry and one exit, both having
an RFID reader. Such a strict setting enables to count objects
in a location within a past time interval. We use semi-constrained
counting (SCC) to denote this method. The other method [27] uses
uncertainty regions to capture an object’s possible locations within
a time interval, and computes the flow for an indoor location
by summing up its intersection with each object’s uncertainty
region. We use UR to denote this method. Unlike SCC, both our
method and UR work for general indoor environments. Using the
generator Vita [24], we build an RFID tracking model and generate
the corresponding tracking records7 according to the same set

7. A record (o, ri, ts, te) means that object o is in reader ri’s range from
time ts to te.

of object trajectories underlying our synthetic data. We deploy
ordinary RFID readers with 3-meter detection range [41] at doors.
Following the experimental settings in [4], [27], reader detection
ranges do not overlap in our setting. As a result, some doors are
associated with no reader. Under these constraints, we maximize
the number of readers and deploy 420 readers in total.

We vary k and |Q| and report Kendall coefficient measures
in Table 7. Overall, UR results in the lowest measure. It models
object uncertainty regions by a series of ellipses whose two foci
are decided by two readers, tending to add flows to S-locations
close to the ground truth S-location. The tendency is reinforced
when all readers are placed at doors, which always results in
large ellipses. When |Q| = 4%, SCC and BF achieve comparable
results. However, SCC’s τ deteriorates very rapidly when Q is
larger. SCC’s counting falls short when some doors have no
readers, and the effect becomes more visible when more queries
include more S-locations in ranking. Compared to SCC and UR,
our method returns the top-k results considerably consistent with
ground truth. We discuss their technical difference in Section 6.

Table 7
Kendall Coefficient Comparsion with RFID Tracking Methods

k
|Q| = 4% |Q| = 8% |Q| = 12%

SCC UR BF SCC UR BF SCC UR BF

5 0.89 0.42 0.93 0.85 0.33 0.87 0.68 0.20 0.80
10 0.80 0.31 0.79 0.75 0.22 0.78 0.64 0.17 0.75
15 0.78 0.26 0.77 0.73 0.15 0.76 0.60 0.13 0.74
20 0.77 0.25 0.81 0.73 0.21 0.75 0.57 0.13 0.74

6 RELATED WORK

Querying Indoor Space Moving Objects. In the context of
RFID-type symbolic indoor tracking, Yang et al. study continu-
ous range monitoring queries [39] and probabilistic k nearest
neighbor queries [40]. Uncertain query results are returned as
objects’ locations are unknown when they are outside any RFID
reader’s detection range. To improve the query result quality, Yu
et al. [41] use a particle filter to infer undetected object locations.
Assuming a probabilistic sample based location data format, Xie
et al. [36], [37] define indoor distance-aware spatial queries and
design query processing algorithms. Unlike these works that query
online indoor moving objects, the paper analyzes historical data.

Jensen et al. [18] study historical indoor object trajectories
and propose 2D R-tree variants on RFID readers and timestamps
to facilitate processing of specialized queries. Delafontaine et
al. [10] analyze the moving patterns within historical Bluetooth
tracking data. Given a past time or a time interval, Lu et al. define
spatio-temporal joins [28] to find moving object pairs in the same
indoor partition, and top-k queries [27] to find the most frequently
visited indoor POIs. Ahmed et al. [3], [4] define threshold density
query to find dense indoor semantic locations in a historical
time interval. The paper distinguishes from the existing works
on historical data in several aspects. First, unlike all these works,
the paper aims at indoor positioning data captured as probabilistic
samples. Second, the paper defines flows for indoor regions based
on the uncertain location samples produced in general indoor
environments, whereas the simple counting method [3], [4] is
restricted to semi-constrained indoor settings. Third, our indoor
flow computing makes full use of multiple probabilistic samples in
capturing an object’s actual movements, while work [27] employs
rigid circular ranges to derive object uncertainty regions that tend
to be too large. Consequently, the techniques in [3], [4], [27] fall
short in solving the paper’s problem.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2875096, IEEE
Transactions on Knowledge and Data Engineering

14

Indoor Semantic Location Extraction. Kang et al. [20] propose
clustering techniques to extract significant locations from coordin-
ate points captured by Wi-Fi positioning. PlaceSense [21] identi-
fies semantically meaningful places from Wi-Fi AP fingerprints.
Eigenplaces [7] segments a space into different places that feature
different Wi-Fi usage characteristics. Chen et al. [9] employs
classification to extract indoor semantics locations with different
labels. Unlike this works, our study finds the top-k locations with
the highest flows from a set of pre-known semantic locations.
Flow Analysis in Outdoor Setting. Assuming Euclidean spaces,
Tao et al. [31] propose techniques to count spatio-temporal objects
within a given spatial window during a given time interval. Cao et
al. [8] propose methods for identifying top-k significant locations
semantically from GPS data. Xue et al. [38] study the destination
prediction problem in a sparse data setting. Our work is clearly
different from these works. First, our work utilizes indoor topology
to support our search on discrete indoor mobility data, whereas
the others do not support indoor topology and are inapplicable
to computing the indoor flows. Second, to model the object
movements, our work constructs the possible paths from uncertain
indoor positioning records rather than the certain GPS sequences
studied in [8], [31]. Third, our work computes a possible path’s
probability based on the probabilistic samples reported at each
timestamp, whereas work [38] uses those transition probabilities
between the destinations that are learned from the historical data.

Wei et al. [33] conduct path inference and produce an uncer-
tain trajectory by cross-referring to other trajectories on similar
routes. Zheng et al. [42] complement uncertainty sections of road
network trajectories and plan the hottest routes for a query location
sequence. Su et al. [30] design an anchor-based calibration method
that aligns trajectories to a set of fixed anchor points in path
inference from historical trajectories. Our work also clearly differs
from these studies. First, unlike these works that only focus
on low-sampling data uncertainty, our work also considers the
positioning uncertainty in the context of complex indoor topology.
Second, our work studies on indoor spaces, where the movement
constraints [26] are modeled differently from free space [33] or
road network [30], [42]. Third, our work uses indoor topology to
enable reliable flow computing, while the other works reduce the
uncertainty by referring to other historical trajectories.

7 CONCLUSION AND FUTURE WORK

This paper tackles the problem of finding top-k popular indoor
semantic locations from indoor mobility data captured as prob-
abilistic samples. We formulate a reliable indoor flow definition
by considering both data uncertainty and indoor topology. We
design a complete set of techniques to enable efficient indoor flow
computing, and search algorithms for finding the top-k popular
semantic locations. The experimental studies on real and synthetic
data verify that our flow computing techniques work efficiently,
and our search algorithms are efficient, scalable and effective.

For future work, it is interesting to model object behaviors in
order to further improve the measuring and quantifying of indoor
flows. Also, it is possible to study historical densities for indoor
locations by considering the impact of their sizes. Furthermore,
it is relevant to consider an online and continuous version of the
top-k popular location query in similar scenarios.

REFERENCES
[1] InLocation Alliance. http://www.in-location-alliance.com/.

[2] List of countries by smartphone penetration. http://goo.gl/pdtvMM.
[3] T. Ahmed, T. B. Pedersen, and H. Lu. Finding dense locations in indoor tracking

data. In MDM, pp. 189–194, 2014.
[4] T. Ahmed, T. B. Pedersen, and H. Lu. Finding dense locations in symbolic indoor

tracking data: modeling, indexing, and processing. GeoInformatica, 21(1): 119–150,
2017.

[5] T. Becker, C. Nagel, and T. H. Kolbe. A multilayered space-event model for
navigation in indoor spaces. 3D Geo-Info, pp. 61–77, 2009.

[6] R. Broberg and F. Gadnell. Platform-independent indoor positioning system. Master’s
thesis, Uppsala University, 2013.

[7] F. Calabrese, J. Reades, and C. Ratti. Eigenplaces: segmenting space through digital
signatures. IEEE Pervasive Computing, 9(1): 78–84, 2010.

[8] X. Cao, G. Cong, and C. S. Jensen. Mining significant semantic locations from GPS
data. PVLDB, 3(1): 1009–1020, 2010.

[9] Z. Chen, Y. Chen, S. Wang, and Z. Zhao. A supervised learning based semantic
location extraction method using mobile phone data. In CSAE, 3(1): 548–551, 2012.

[10] M. Delafontaine, M. Versichele, T. Neutens, and N. Van de Weghe. Analysing
spatiotemporal sequences in Bluetooth tracking data. Applied Geography, 34: 659–
668, 2012.

[11] G. Deak, K. Curran, and J. Condell. A survey of active and passive indoor
localisation systems. Computer Communications, 35(16): 1939–1954, 2012.

[12] I. Hwang and Y. J. Jang. Process mining to discover shoppers pathways at a fashion
retail store using a WiFi-base indoor positioning system. IEEE Trans. Auton. Sci. Eng.,
14(4): 1786–1792, 2017.

[13] S. Hwang, K. Kwon, S. K. Cha, and B. S. Lee. Performance evaluation of main-
memory R-tree variants. In SSTD, pp. 10–27, 2003.

[14] V. Honkavirta, T. Perala, S. Ali-Loytty, and R. Piché. A comparative survey of
WLAN location fingerprinting methods. In WPNC, pp. 243–251, 2009.

[15] J. Hightower and G. Borriello. Location systems for bbiquitous computing. IEEE
Computer, 34(8): 57–66, 2001.

[16] P. L. Jenkins, T. J. Phillips, E. J. Mulberg, and S. P. Hui. Activity patterns
of californians: use of and proximity to indoor pollutant sources. Atmospheric
Environment, 26(12), 1992.

[17] C. S. Jensen, H. Lu, and B. Yang. Graph model based indoor tracking. In MDM,
pp. 122–131, 2009.

[18] C. S. Jensen, H. Lu, and B. Yang. Indexing the trajectories of moving objects in
symbolic indoor space. In SSTD, pp. 208–227, 2009.

[19] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless networks.
In Mobile computing, pp. 153–181, 1996.

[20] J H. Kang, W. Welbourne, B. Stewart, and G. Borriello. Extracting places from
traces of locations. In WMASH, pp. 110–118, 2004.

[21] D H. Kim, J. Hightower, R. Govindan, and D. Estrin. Discovering semantically
meaningful places from pervasive RF-beacons. In Ubicomp, pp. 21–30, 2009.

[22] N. Klepeis, W. Nelson, W. Ott, J. Robinson, A. Tsang, P. Switzer, J. Behar, S. Hern,
and W. Engelmann. The National Human Activity Pattern Survey (NHAPS): a
resource for assessing exposure to environmental pollutants. Journal of Exposure
Science, 11(3): 231, 2001.

[23] J. Lee. A spatial access-oriented implementation of a 3-D GIS topological data
model for urban entities. GeoInformatica, 8(3), 2004.

[24] H. Li, H. Lu, X. Chen, G. Chen, K. Chen, and L. Shou. Vita: A versatile toolkit for
generating indoor mobility data for real-world buildings. PVLDB, 9(13): 1453–1456,
2016.

[25] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor positioning
techniques and systems. IEEE Trans. Knowl. Systems, Man, Cybernetics, 37(6), 2006.

[26] H. Lu, X. Cao, and C. S. Jensen. A foundation for efficient indoor distance-aware
query processing. In ICDE, pp. 438–449, 2012.

[27] H. Lu, C. Guo, B. Yang, and C. S. Jensen. Finding frequently visited indoor POIs
using symbolic indoor tracking data. In EDBT, pp. 449–460, 2016.

[28] H. Lu, B. Yang, and C. S. Jensen. Spatio-temporal joins on symbolic indoor tracking
data. In ICDE, pp. 816–827, 2011.

[29] C. F. Ng. Satisfying shoppers psychological needs: From public market to cyber-
mall. Journal of Environmental Psychology, 23(4): 439–455, 2013.

[30] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou. Calibrating trajectory data for
similarity-based analysis. In SIGMOD, pp. 833–844, 2013.

[31] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias. Spatio temporal aggregation
using sketches. In ICDE, pp. 214–225, 2004.

[32] Y. Tao and D. Papadias. Range aggregate processing in spatial databases. IEEE
Trans. Knowl. Data Eng., 16(12): 1555–1570, 2004.

[33] L.-Y. Wei, Y. Zheng, and W.-C. Peng. Constructing popular routes from uncertain
trajectories. In KDD, pp. 195–203, 2012.

[34] E. Whiting, J. Battat, and S. Teller. Topology of Urban Environments. CAADFu-
tures, pp. 114–128, 2007.

[35] M.F. Worboys. Modeling indoor space. In ISA, pp. 1–6, 2011.
[36] X. Xie, H. Lu, and T. B. Pedersen. Efficient distance-aware query evaluation on

indoor moving objects. In ICDE, pp. 434–445, 2013.
[37] X. Xie, H. Lu, and T. B. Pedersen. Distance-aware join for indoor moving objects.

IEEE Trans. Knowl. Data Eng., 27(2): 428–442, 2015.
[38] A. Y. Xue, J. Qi, X. Xie, R. Zhang, J. Huang, and Y. Li. Solving the data sparsity

problem in destination prediction. The VLDB Journal, 24(2): 219–243, 2015.
[39] B. Yang, H. Lu, and C. S. Jensen. Scalable continuous range monitoring of moving

objects in symbolic indoor space. In CIKM, pp. 671–680, 2009.
[40] B. Yang, H. Lu, and C. S. Jensen. Probabilistic threshold k nearest neighbor queries

over moving objects in symbolic indoor space. In EDBT, pp. 335–346, 2010.
[41] J. Yu, W.-S. Ku, M.-T. Sun, and H. Lu. An RFID and particle filter-based spatial

query evaluation system. In EDBT, pp. 263–274, 2013.
[42] K. Zheng, Y. Zheng, X. Xie, and X. Zhou. Reducing uncertainty of low-sampling-

rate trajectories. In ICDE, pp. 1144–1155, 2012.

