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ABSTRACT We introduce Fulcrum, a network coding framework that achieves three seemingly conflicting
objectives: 1) to reduce the coding coefficient overhead down to nearly n bits per packet in a generation
of n packets; 2) to conduct the network coding using only Galois field GF(2) operations at intermediate
nodes if necessary, dramatically reducing computing complexity in the network; and 3) to deliver an end-
to-end performance that is close to that of a high-field network coding system for high-end receivers, while
simultaneously catering to low-end receivers that decode in GF(2). As a consequence of 1) and 3), Fulcrum
has a unique trait missing so far in the network coding literature: providing the network with the flexibility
to distribute computational complexity over different devices depending on their current load, network
conditions, or energy constraints. At the core of our framework lies the idea of precoding at the sources
using an expansion fieldGF(2h), h > 1, to increase the number of dimensions seen by the network. Fulcrum
can use any high-field linear code for precoding, e.g., Reed-Solomon or Random Linear Network Coding
(RLNC). Our analysis shows that the number of additional dimensions created during precoding controls the
trade-off between delay, overhead, and computing complexity. Our implementation and measurements show
that Fulcrum achieves similar decoding probabilities as high field RLNC but with encoders and decoders
that are an order of magnitude faster.

INDEX TERMS Decoding probability, random linear network coding (RLNC), resource-constrained
devices, throughput.

I. INTRODUCTION
A. NETWORK CODING OVERVIEW
Ahlswede et al. [2] proposed network coding (NC) as ameans
to achieve network capacity of multicast sessions as deter-
mined by the min-cut max-flow theorem [3], a feat that was
provably unattainable using standard store-and-forwarding
of packets (routing). NC breaks with this store-and-forward
packet routing paradigm, encouraging intermediate network
nodes to mix (recode) data packets. Thus, network coding

proposed a store-code-forward paradigm to network opera-
tion, essentially extending the set of functions assigned to
intermediate network nodes to include coding [4], [5]. Linear
network codes were shown to be sufficient to achieve multi-
cast capacity [6]. RLNC provides an asymptotically optimal
and distributed approach to create linear combinations using
random coefficients at intermediate network nodes [7].

Network coding has shown significant gains in a mul-
titude of settings, from wireless networks [8]–[22] and
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multimedia transmission [23]–[27], to distributed storage
and content distribution [28]–[33] and Peer-to-Peer (P2P)
networks [34]–[36]. Practical implementations have also con-
firmed the gains and capabilities of NC [37]–[39]. The reason
behind these gains lies in two facts. First, the network does
not need to transport each packet without modification, which
opens more opportunities and freedom to deliver the data to
the receivers and increases the impact of each transmitted
coded packet (a linear combination of the original packets).
Second, receivers no longer need to track individual packets,
but instead accumulate enough independent linear combina-
tions in order to recover (decode) the original packets. These
relaxations have a profound impact on system designs and
achievable gains.

B. MOTIVATION: HETEROGENEOUS NETWORKING
SCENARIOS AND DEVICES
After more than a decade of research and in spite of NC’s
theoretical gains in throughput, delay, and energy perfor-
mance, its widespread assimilation remains elusive. One,
if not the most, critical weakness of the NC technology is the
inherent complexity that NC introduces into network devices.
This complexity is driven by two factors. First, devices must
perform additional processing, which may limit the energy
efficiency gains or even become a bottleneck in the system’s
overall throughput if processing is slower than the incoming/
outgoing data rates [40]–[42]. This additional effort can be
particularly onerous if we consider that the conventional
wisdom dictates that large field sizes are needed to provide
high reliability, throughput, and delay performance [43], [44].
In addition to the computational burden, the use of high field
sizes comes at the cost of a high signaling overhead to com-
municate the coefficients used for coding the data packets.
Other alternatives, e.g., sending a seed for a pseudo-random
number generator, are relevant for end-to-end communica-
tion, but do not allow for a simple recoding mechanism in
intermediate network nodes. Interestingly, [43] showed that
using small to moderate field sizes, e.g., GF(2) (whereby we
denote GF(q) and Fq for finite fields of size q), is key to
achieving a reasonable trade-off among computational com-
plexity, throughput performance, and total overhead, espe-
cially when recoding data packets in intermediate network
nodes. This is encouraging since GF(2) encoding/decoding
could be as fast as 160Mbps and 9600Mbps in a 2009mobile
phone and laptop [45], respectively, while in 2013 the speeds
increased by five-fold in high-end phones [46]. Even limited
sensors, e.g., TelosB motes, can generate packets in GF(2) at
up to 500 kbps [47]. The GF(2) decoding goodput can reach
up to 100 Mbps and over 1000 Mbps on the Samsung S3 and
S5, respectively [48], while 20 Mbps and 110 Mbps can be
reached with the Raspberry Pi 1 and 2, respectively [49].

Second, devices must support different configurations,
e.g., different field sizes, for each application or data flow,
to achieve a prescribed target performance. Supporting dis-
parate configurations translates into high costs in hard-
ware, firmware, or software. In computationally constrained

devices, e.g., sensors, the support for encoding, recod-
ing, or decoding in higher fields is prohibitive due to the
required processing complexity. On the other end of the
spectrum, computationally powerful devices may also be
unable to support multiple configurations. For example, high-
load, high-speed Internet routers would require deep packet
inspection to determine the coding configuration, followed
by a different treatment of each incoming packet. This trans-
lates into additional expensive hardware to provide high
processing speeds. Additionally, intermediate network nodes
are typically heterogeneous, which limits the system’s viable
configurations.

A separate, yet related practical issue is that receivers
interested in the same data flow may have widely differing
computational, display, and battery capabilities as well as
different network conditions. This end-device heterogeneity
may restrict service quality at high-end devices when support
is required for low-end devices, may deny service to low-end
devices for the benefit of high-end devices, or may require the
system to invest additional resources supporting parallel data
flows, each with distinct characteristics matching different
sets of end devices.

A straightforward option to solve the compatibility and
complexity challenges is to limit sources, intermediate nodes,
and receivers to use only GF(2). However, using only GF(2)
may prevent high-end devices from achieving high reliabil-
ity and throughput performance. Is it possible to develop a
single, easily implementable, and compatible network cod-
ing framework that supports flows with different end-to-end
requirements?

C. CONTRIBUTION: FULCRUM NETWORK
CODING FRAMEWORK
We address the need for a flexible network coding framework
by developing and evaluating the Fulcrum network coding
framework. The name Fulcrum is derived from the meaning
of ‘‘fulcrum’’ as the point on which a mechanical lever pivots
in a simple mechanical machine. The Fulcrum network cod-
ing framework combines an outer and an inner network code
and achieves its flexibilities by pivoting between different
operational modes of the outer and inner network codes.

More specifically, Fulcrum uses only GF(2) operations
(inner network coding) in the network (see Fig. 1), to reduce
overhead and computational cost, as well as to ensure com-
patibility for heterogeneous devices and data flows. At the
same time, Fulcrum provides the opportunity to employ
higher fields end-to-end via a tunable and straightforward
precoding (outer network coding) mechanism for higher
performance. Fig. 1 shows a Fulcrum example, where two
sources operate using different fields GF(2h) and GF(2b) for
source 1 and 2, respectively. The intermediate nodes in the
network use only GF(2) operations. With Fulcrum network
codes, the left-most receiver of flow 2 (the nature image
from source 2) can choose to decode using GF(2) only as
it has limited computation capabilities. Since the left-most
receiver of flow 1 (the Lena image from source 1) has a better

VOLUME 6, 2018 77891



D. E. Lucani et al.: Fulcrum: Flexible Network Coding for Heterogeneous Devices

FIGURE 1. Fulcrum network codes allow sources and receivers to operate
at higher field sizes to achieve high performance but maintain
compatibility with the GF (2)-only network. Receivers can choose to trade
off delay with decoding effort by choosing to decode with GF (2) or in
higher fields.

channel than the other devices and the router may have to
broadcast for a longer time due to the other receiver, this left-
most receiver can choose to save energy on computation by
accumulating additional packets and decoding using GF(2).
Furthermore, this left-most receiver can also recode packets
and send them to a neighbor interested in the same content,
thus increasing the coverage of the system and reducing the
number of transmissions needed to deliver the content.

II. SPECIFICATION OF FULCRUM NETWORK
CODING FRAMEWORK
The key goals of the Fulcrum network coding framework are:

1) Reduce the overall overhead of network coding (a) by
reducing the overhead due to coding coefficients per
packet, and (b) by reducing the overhead due to trans-
mission of linearly dependent packets.

2) Provide simple operations at the routers/devices in the
network. The key is to make recoding at these devices
as simple as possible, without compromising network
coding capabilities.

3) Enable a simple and adaptive trade-off between perfor-
mance and complexity.

4) Support compatibility with any end-to-end linear era-
sure code in GF(2h), h > 1.

5) Control and choose desired performance and effort for
a variety of applications in end devices, while providing
intermediate nodes with simple compatible network
coding.

A. GENERAL UNDERLYING PRINCIPLES
The key technical idea of Fulcrum is to introduce a dimension
expansion step. In particular, a batch of n source packets,
typically called a generation, from the original file or stream
is expanded into n + r coded packets, whereby the r coded
packets contain redundant information and are called expan-
sion packets. After the expansion, each resulting coded packet
is treated as a new packet that will be coded inGF(2) and sent
through the network, see Fig. 2.

Since addition in any field of the type GF(2k ), k ≥ 1,
is simply a bit-wise Exclusive OR (XOR) operation,
the underlying linear mapping in higher fields can be
reverted at the receivers. The reason for the expansion is
related to the performance of GF(2), which can introduce
non-negligible overhead in some settings [15], [44]. More
specifically,GF(2) coded packets have a relatively high prob-
ability of being linearly dependent when large data sets are
available at the receiver. Increasing dimensions addresses this
linear dependency problem by mapping back to the high field
representation after receiving n linearly independent coded
packets and decoding before the probability of receiving
independent combinations in GF(2) becomes prohibitively
low, as analyzed in detail in Section III. The number r
of additional dimensions (expansion packets) controls the
decoding probability. The larger r , the higher the decoding
probabilities achieved by the receivers while still usingGF(2)
in the network.

Our approach naturally divides the problem into the design
of inner and outer codes, using the nomenclature of concate-
nated codes [50]. Concatenating codes is a common strategy
in coding theory, but has typically only been used for increas-
ing throughput performance point-to-point [50] or end-to-
end, e.g., Raptor codes [51]. Some recent NC studies have
considered the idea of using concatenation (i) to create over-
lapping generations (with the same field size in the inner
and outer code) so as to make the system more robust to
time-dependent losses [52], [53]; (ii) to decompose the net-
work into small sub-networks in order to simplify coopera-
tive relaying [54]; (iii) to connect NC and error correcting
channel coding, e.g., [55]; or (iv) to design subspace codes
for noncoherent network coding [56]. Fulcrum is fundamen-
tally disruptive in two important ways. First, we allow the
outer code to be agreed upon by the sources and receivers
(dimension expansion), while the inner code is created in
the network by recoding packets. Thus, we provide a flexi-
ble code structure with controllable throughput performance.
Second, Fulcrum provides a conversion from higher field
(GF(2h), h > 1) arithmetic toGF(2) to reduce computational
complexity.

The division into two separate codes has an added advan-
tage, not envisioned in previous approaches. This advantage
comes from the fact that the senders can control the outer
code structure to accommodate heterogeneous receivers. The
simplest way to achieve this is by using a systematic structure
in the outer code. This systematic outer coding structure
provides the receivers with the alternative to decode inGF(2)
after receiving n+r coded packets instead of mapping back to
higher fields after receiving n coded packets. This decoding
in GF(2) has low decoding complexity, as GF(2) operations
are computationally simple, but incurs higher delay since r
additional packets must be received.

If the precoding uses a systematic structure, the system can
support three main types of receivers, see Fig. 2. First, a com-
putationally powerful receiver can decode inGF(2h) by map-
ping back from the received GF(2) combinations. We call
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FIGURE 2. Illustration of Fulcrum network coding framework with outer GF (2h), h > 1, and inner GF (2) code structures. The outer code is typically
established end-to-end. The inner GF (2) recoder has low computational complexity and supports a wide range of functionalities. (Some applications
could use outer recoders at intermediate nodes for higher efficiency.) The sinks can choose from three main types of decoders: the inner, the outer, and
the combined decoders. The outer decoder can operate with any configuration of outer/inner codes, while the inner and combined decoders require a
specific structure of the outer code, i.e., a systematic code.

this the outer decoder. The mapping back procedure is simple
because the addition in any extension field GF(2h), h ≥ 1,
is the same as that in GF(2), namely, a bit-by-bit XOR.
We show that accumulating n linearly independent GF(2)
coded packets is sufficient to decode in the higher field.
A receiver that decodes in GF(2) reduces its decoding com-
puting complexity but needs to gather n + r independent
linear combinations. Finally, we show that a hybrid decoder
is possible, which can maintain the high decoding probability
when receiving n coded packets as in the high-field decoder,
while having similar decoding computing complexity to that
of the inner decoder. We call this hybrid decoder the com-
bined decoder.

Our work is inspired in part by Thomos and Frossard [57],
who attempted to limit the overhead to a single symbol per
packet. Thomos and Frossard carefully designed the packet
coding at the source; however, only a small number of packets
could be transmitted while maintaining the overhead at one
symbol per packet. In contrast, we argue that the careful
code construction is not really needed. Through our Fulcrum
network coding framework, we break free from the constraint
of a single symbol overhead and open up the potential (i) to
reduce the overhead per packet in the network to roughly that
of an end-to-endGF(2) RLNC system (which is equivalent to
the overhead reported in [57]), (ii) to trade off performance
in the presence of heterogeneous receivers exploiting a family
of precoders, and (iii) to exploit any generation size without
introducing a synthetic constraint due to the field size at the
precoder. Thus, the approach in [57] is a special subcase of
our general Fulcrum framework.

B. FULCRUM ENCODING AT THE SOURCE
1) ENCODING SPECIFICATION
a: OUTER ENCODING
Using n original (input) source packets P1,P2, . . . ,Pi, . . . ,
Pn, the source generates n+r coded packets�1, �2, . . . , �j,

. . . , �n+r using GF(2h) operations, see Fig. 2-Source [7].
We refer to the additional r coded packets as expansion
packets. We denote the outer coding coefficients as ωj,i, j =
1, 2, . . . , n + r; i = 1, 2, . . . , n. The outer encoding lin-
early combines the n source packets Pi, i = 1, 2, . . . , n,
‘‘weighed’’ by the outer coding coefficients ωj,i to form the
outer coded packet

�j =

n∑
i=1

ωj,iPi, j = 1, 2, . . . , n+ r . (1)

We refer to the vector of outer coding coefficients ωj,i, i =
1, 2, . . . , n, denoted by {ωj,i}i=1,2,...,n, that are utilized to
generate encoded packet�j, j = 1, 2, . . . , n+ r , as the outer
encoding vector of packet �j.
For systematic outer encoding, the outer encoding vectors

for coded packets�j, j = 1, 2, . . . , n, form an identitymatrix
of dimension n × n, i.e., coded packets Cj, j = 1, 2, . . . , n,
are identical to the source packets Pj. However, the outer
coding coefficients ωj,i, j = n + 1, n + 2, . . . , n + r; i =
1, 2, . . . , n for the r expansion packets are randomly selected
from GF(2h), i.e., the r expansion packets are linear combi-
nations of the n source packets formed with random GF(2h)
coding coefficients.

For non-systematic outer coding, all outer coding coeffi-
cients ωj,i, j = 1, 2, . . . , n+r; i = 1, 2, . . . , n, are randomly
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selected from GF(2h), i.e., all n + r outer coded packets are
linear combinations of the n source packets.

b: INNER ENCODING
The source takes the outer coded packets �j, j =

1, 2, . . . , n+ r , as input for the inner encoding, which is con-
ducted in GF(2). The source randomly selects inner coding
coefficients ιk,j, k = 1, 2, . . . ; j = 1, 2, . . . , n + r , from
GF(2) and forms inner coded packet Ck as

Ck =
n+r∑
j=1

ιk,jCj. (2)

Generally, the coding overGF(2) is performed in accordance
with the network’s supported inner code. For example, if the
network nodes support RLNC, then the source generates
GF(2) RLNC inner coded packets.We refer to the set of inner
coding coefficients ιk,j, j = 1, 2, . . . , n+ r , that are utilized
to generate the inner coded packet Ck , k = 1, 2, . . ., as the
inner encoding vector of packet Ck and denote this vector
by {ιk,j}j=1,2,...,n+r . This inner encoding vector is included
in the header of the encoded inner packet so as to enable
recoding in intermediate network nodes. Note that for a Ful-
crum coding structure with n source packets followed by r
expansion packets, the first n coding coefficients ιk,j, j =
1, 2, . . . , n correspond to the n source packets (in uncoded
form for a systematic outer encoding or coded form for a non-
systematic outer coding). The next r coefficients correspond
to the expansion packets.

Our main design constraint is that the receivers should
(i) be able decode with the n + r coded packets, and more
importantly (ii) be able to decode with high probability after
the reception of n coded packets. Given that the source con-
trols the structure of the outer coding (and the positioning of
the expansion packets), we could use a Reed-Solomon (RS)
outer code, which is known end-to-end, or we could send
the seed that was used to generate the random outer coding
coefficients ωj,i, j = 1, 2, . . . , n + r; i = 1, 2, . . . , n to the
receivers. The Fulcrum coding framework assumes that the
parameters generation size n, number of expansion packets
r , and the outer coding coefficients ωj,i, j = 1, 2, . . . , n+ r;
i = 1, 2, . . . , n are exchanged between source and receivers
during the flow setup.

In order to cater to the capabilities of heterogeneous
receivers, we recommend the use of a systematic outer encod-
ing, which guarantees condition (i), but also provides inter-
esting advantages for computationally constrained receivers
as explained in more detail in Section II-D. With system-
atic outer encoding, the source and receivers only need
to exchange outer coding coefficients ωj,i, j = n + 1,
n + 2, . . . , n + r; i = 1, 2, . . . , n, during flow
setup.

2) ENCODING IMPLEMENTATION
In this section we describe our actual implementation of the
Fulcrum encoder in the Kodo network coding library [58].

For our initial implementation, we utilized two RLNC codes
with the outer code operating in GF(28) or GF(216) and the
inner code operating in GF(2). The encoder implementation
in the Fulcrum framework is quite simple. Essentially, the two
encoders can be implemented independently, whereby the
outer encoder uses the n original source symbols to produce
n+r input symbols for the inner encoder. In general, the inner
encoder can be oblivious to the fact that the input symbols
may already contain encoded data.

For the initial implementation we required all source sym-
bols to be available before any encoding could take place.
This is however not necessary in cases where both encoders
support systematic encoding. In such cases, it would be
possible to push the initial n symbols directly through both
encoders without any coding operations or adding addi-
tional delay. An illustration of this systematic encoding is
shown in Fig. 3(a), where n = 8 original symbols are sent
with the outer encoder configured to build an expansion
of r = 2.

As both encoders in Fig. 3(a) are systematic, no coding
takes place until steps 9 and 10, when the outer encoder
produces the first encoded symbols. At this point, the inner
encoder is still in the systematic phase and therefore passes
the two symbols directly through to the network. In step 11,
the inner encoder also exits the systematic phase and starts
to produce encoded symbols. At this stage, the inner encoder
is fully initialized and no additional symbols are needed from
the outer encoder, all following encoding operations therefore
take place in the inner encoder.

As shown in this simple example, the systematic struc-
ture in both encoders can be very beneficial for low delay
applications because packets can be sent as they arrive at
the encoder [59]–[63]. Systematic encoding is not always
required for attaining this low delay. Alternatively, the inner
encoder could be a standard RLNC encoder, only generating
non-zero coefficients for the available symbols, i.e., using an
on-the-fly encoding mechanism.

In the case of a non-systematic inner code, this low delay
performance is typically not possible. However, there are
several applications where non-systematic encoding may be
more beneficial, e.g., for security, multiple-source and/or
multi-hop networks. For data confidentiality, a systematic
outer code can become a system vulnerability. A dense high
field outer code is key to providing high levels of confiden-
tiality.

As an example, Fig. 3(b) shows the use of a non-
systematic outer encoder. Assuming the outermapping is kept
secret, only nodes with knowledge of the secret would be
able to decode the actual content. Whereas all other nodes
would still be able to operate on the inner code. Fig. 3(b)
shows that it is also possible to use a non-systematic inner
encoder. A non-systematic inner encoder can minimize the
risk of transmitting linear dependent information in net-
works which may contain multiple sources for the same data,
e.g., in peer-to-peer systems, or if the state of the sinks is
unknown.
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FIGURE 3. Illustrative examples of outer and inner encoders in Fulcrum
framework with n = 8 source packets and r = 2 expansion packets
generated by the outer encoder. (a) Systematic outer encoder and
systematic inner encoder. (b) Non-systematic outer encoder and non-
systematic inner encoder.

C. RECODING AT INTERMEDIATE NETWORK NODES
The operations at the intermediate network nodes are quite
simple, see Fig. 2-Network. Essentially, the network nodes

receive coded packets inGF(2) of the form
∑n+r

j=1 ιk,j�j, store
them in their buffers, and send recoded versions to the next
hops, typically implementing an inner recoder as described in
the following. The recoding mechanism defines the structure
of the inner code of our Fulcrum system. Recoding can be
done as a standard GF(2) RLNC system would do, i.e., each
packet in the buffer has a probability of 1/2 to be XORed
with the others to generate the recoded packet. However,
the network can also support other recoding mechanisms,
such as recoding for perpetual network codes [64] and for
tunable sparse network coding [65], [66], or even no recoding.

In some scenarios, it may be possible to allow intermediate
network nodes to know and to exploit the outer code, see
Fig. 2-Network. In particular, when an intermediate node
gathers n linearly independent coded packets in the inner
code, then the node can map back to the higher field in order
to decode the data and improve the quality of the recoded
packets. The rationale is that, at that point, the node could
recreate the original code structure and generate the addi-
tional dimensions r that are missing in the inner code, thus
speeding up the transmission process. Although not required
for the operation of the system, this optional mechanism
can be useful if the network nodes are allowed to trade off
throughput performance with complexity. This option is not
examined in detail in this paper and is left for future research.

D. FULCRUM DECODING AT THE RECEIVERS
We initially assume a systematic outer code, which allows for
three main types of receivers. In particular, the outer decoder
can operate with arbitrary outer encoding, while the inner and
combined decoder require a systematic outer encoding.

1) INNER DECODER
a: SPECIFICATION
Receivers using an inner decoder decode n + r received
GF(2) coded packets using GF(2) operations, see Fig. 4-left.
The GF(2) decoding is computationally fast, although there
is some additional cost for decoding an (n + r) × (n + r)
matrix. If the outer encoding had used a systematic structure,
then the inner decoding provides the original packets without
additional decoding in GF(2h). The penalty for this reduced
computational effort is the additional delay incurred by wait-
ing for n+r independent linear combinations inGF(2). Thus,
there is no benefit over standard GF(2); however, Fulcrum
provides compatibility with other receivers that utilize higher
GF(2h) field sizes.

b: IMPLEMENTATION
The inner decoder’s implementation is very similar to a
standard RLNC GF(2) decoder configured to receive n + r
symbols, see Fig. 5. The only difference is that only n of the
decoded symbols contain the original encoded source data.

2) OUTER DECODER
a: SPECIFICATION
Receivers using an outer decoder map back to the original
linear combination in GF(2h), see Fig. 4-middle. This means
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FIGURE 4. Overview of components of the three types of Fulcrum decoders. Each decoder operates on
the same data stream coming from the network. This makes it possible to support heterogeneous
receivers using some mix of the three decoding types.

FIGURE 5. Illustration of coding coefficient vector processing for Fulcrum
inner decoder: n+ r = 6+ 2 linearly independent GF (2) coded packets
are decoded using GF (2) decoding and the r = 2 (right-most) coding
coefficient columns corresponding to the expansion packets are
discarded to obtain the original source data (provided the outer encoding
was systematic).

that after receiving n independent coded packets in GF(2),
the receiver can decode an n × n matrix in the original field
GF(2h) with high probability. More specifically, coded pack-
ets inGF(2) arrive to the receivers. Utilizing their knowledge

of the positioning of the r expansion packets relative to the
n source packets in the outer encoding, as well as the outer
coding coefficients ωi,j, each receiver converts (maps back)
the received GF(2) coded packets to GF(2h).

For ease of understanding, we specify this mapping back
in the context of a concrete example with n = 4 source
packets Pi, i = 1, 2, 3, 4, and r = 2 expansion packets.
Suppose the outer coding is systematicGF(28) RLNC and the
outer coding coefficient vector (outer encoding vector) for the
first expansion packet is {ωn+1,i}i=1,2,3,4 = {ω5,i}i=1,2,3,4 =

{192, 0, 95, 148}, while the outer encoding vector for the sec-
ond expansion packet is { ωn+2,i}i=1,2,3,4 = {ω6,i}i=1,2,3,4 =

{116, 0, 1, 86}. Suppose that the inner coding linearly com-
bines the outer coded packets�j, j = 1, 2, . . . , 6 withGF(2)
RLNC with inner encoding vectors

{ιk=1,j}j=1,2,...,6 = {1, 0, 0, 0, 1, 1}, (3)

{ιk=2,j}j=1,2,...,6 = {1, 1, 0, 1, 0, 0}, (4)

{ιk=3,j}j=1,2,...,6 = {0, 0, 1, 1, 1, 0}, (5)

{ιk=4,j}j=1,2,...,6 = {1, 0, 1, 1, 0, 0}. (6)

The decoder receives the inner coded packet k = 1, including
the inner encoding vector {ιk=1,j}j=1,2,...,6, and notes that both
inner coding coefficients corresponding to the two expansion
packets are one, i.e., ιk=1,j=5 = 1 and ιk=1,j=6 = 1. Accord-
ingly, the decoder maps back to the outer code by XORing
(denoted by ⊕) the inner coding vector corresponding to the
n source packets as well as the two outer encoding vectors:

{ιk=1,j}j=1,2,3,4 ⊕ {ω5,i}i=1,2,3,4 ⊕ {ω6,i}i=1,2,3,4

= {181, 0, 94, 194}. (7)

In the encoding vector for the second inner coded packet,
both inner coding coefficients corresponding to the r = 2
expansion packets are zero, i.e., ιk=2,j=5 = 0 and ιk=1,j=6 =
0. Accordingly, the mapping back simply takes the first n = 4
coefficients, i.e., gives

{1, 1, 0, 1}. (8)
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For the third inner coded packet the mapping back gives:

{ιk=3,j}j=1,2,3,4 ⊕ {ω5,i}i=1,2,3,4 = {192, 0, 94, 148}, (9)

while for the fourth packet (k = 4), the mapping back gives

{1, 0, 1, 1}. (10)

Thus, the full decoding matrix after the mapping back is
an n × n = 4 × 4 matrix consisting of the vectors given
in Eqns. (7), (8), (9), and (10), which can be decoded with
standard GF(28) RLNC decoding techniques to a 4 × 4
identity matrix so as to recover the original source packets.

Generally, the mapping back to GF(2h) for the outer
decoder from the decoding matrix from the received inner
encoding vectors {ιk,j}j=1,2,...,n+r;k≥1, as well as the expan-
sion packet encoding vectors {ωj,i}j=n+1,...,n+r;i=1,2,...,n,
computes the mapped back encoding vectors for received
GF(2) encoded packet k, k ≥ 1, as

{ιk,i}i=1,2,...,n ⊕
n+r
j=n+1 ιk,j{ωj,i}i=1,2,...,n. (11)

These outer-decoder receivers use computationally more
complexGF(2h) operations for decoding packets, but require
only n received packets to recover the necessary linear com-
binations to decode, while an inner decoder using onlyGF(2)
operations requires n+ r received packets.

b: IMPLEMENTATION
The outer decoder immediately maps from the inner to the
outer code, essentially decoding in GF(2h), as illustrated in
Fig. 6. In order to perform this mapping, a small lookup table
stores the outer expansion packet coding coefficients. The
size of the lookup table depends on whether the outer encoder
is systematic or not. In the case of a systematic outer encoder,
a lookup table holding the expansion packetGF(2h) encoding
coefficients ωj,i, j = n + 1, . . . , n + r; i = 1, . . . , n is
sufficient, since the initial n symbols are uncoded (i.e., using
the unit vector). However, in case of a non-systematic outer
encoder all n+r (for j = 1, . . . , n+r) outer encoding vectors
{ωj,i}i=1,...,n need to be stored. An alternative approach would
be to use a pseudo-random number generator to generate the
encoding vectors on the fly as needed. One advantage of the
lookup table is that it may be precomputed and therefore
would not consume any additional computational resources
during encoding/decoding.

3) COMBINED DECODER
a: SPECIFICATION
Receivers using a combined decoder implement a hybrid
between inner and outer decoders with the aim of approach-
ing the decoding (processing) speed of inner decoders while
retaining the high decoding probability of outer decoders, see
Fig. 4-right. This is achieved by decoding the first n coded
packets using GF(2) only. If decoding is unsuccessful in
GF(2), all coded packets are mapped to GF(2h) over which
the remaining decoding is performed. Hence, if r � n the
decoding computation cost of the last r packets is negligible

FIGURE 6. Illustration of coding coefficient vector processing in Fulcrum
outer decoder: An inner encoding vector in GF (2) is mapped directly back
to the outer field GF (2h). Then, a standard GF (2h) decoder can be used to
decode the data.

compared to the decoding computation cost of the initial n
packets and the decoding processing speed will approach that
of an inner decoder.

b: IMPLEMENTATION
The combined decoder attempts to decode as much as pos-
sible using the inner decoder before switching to the typi-
cally more computationally costly outer decoder. Note that
combined decoding in only beneficial if the outer encoder is
systematic (or, potentially, very sparse).

We explain the combined decoder implementation with the
example shown in Fig. 7. When an encoding vector arrives
at a combined decoder, it is first passed to the inner decoder.
Internally, the inner decoder is split into two stages. Stage one
attempts to eliminate the extension added in the outer encoder
(these are the symbols that when mapped to the outer decoder
will have coding coefficients from the outer GF(2h) field).
If stage one successfully eliminates the expansion, then the
symbol is passed to stage two. The stage two decoder has
only linear combinations of original source symbols. These
symbols have a trivial encoding vector when mapped to the
outer decoder. Once stage one and stage two combined have
achieved full rank, then the stored symbols are mapped to the
outer decoder. Notice in Fig. 7 how symbols coming from
stage two have coding coefficients 0 or 1, and thus require
only a few operations to be decoded. On the other hand,
the symbols coming from stage one have a dense structure
with coding coefficients ωj,i coming from the outer field
GF(2h). After mapping to the outer decoder, the final step is
to solve the linear system shown in the lower right of Figure 7.
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FIGURE 7. Illustration of coding coefficient vector processing in Fulcrum
combined decoder: A two stage inner decoder eliminates as much of the
contribution of the outer code as possible before mapping the symbols to
the outer decoder. Combined decoding requires a systematic outer code.

III. ANALYSIS OF FULCRUM PERFORMANCE
WITH RLNC AS INNER CODE
This section examines the delay, decoding probability, and
overhead, as well as encoding and decoding throughput of
Fulcrum with the outer and combined decoders. We present
both theoretical analyses as well as measurements conducted
with our Fulcrum implementation on several computing/
communication devices, including smartphones. For the the-
oretical analysis we note that receivers using an inner decoder
correspond to a conventional GF(2) receiver that needs to
gather n + r independent linear combinations before decod-
ing. The theoretical analysis of such conventional GF(2)
receivers is readily tractable [15], [44], [45].

A. PRELIMINARIES: MDS OUTER CODE PROPERTY
FOR THEORETICAL ANALYSIS
A key question for the tractability of the theoretical analysis
of receivers using the outer or combined decoders is whether
receiving n independent coded packets in GF(2) means that
the re-mapped version in GF(2h) is full rank, i.e., whether
the original data can be decoded in GF(2h). In coding theory
terms, the tractability of the outer and combined decoder

analysis requires (i) that the outer code satisfies the proper-
ties of maximum distance separable (MDS) codes [67] and
(ii) that the outer code still satisfies the MDS properties after
being combined with a restricted set of values due to the use
of GF(2) in the inner coding. For brevity, we refer to the
combination of these two conditions as the ‘‘MDS outer code
property’’, or refer to the outer code as an ‘‘MDS outer code’’.
The Appendix explicitly demonstrates that this MDS outer
code property is met for an RS outer code under some minor
conditions. In particular, Theorem 4 in the Appendix shows
that the MDS outer code property is met if the RS code
dimension n is greater than or equal to 2h−1, whereby h
characterizes the field size GF(2h). For RS code dimensions
smaller than 2h−1, Theorem 5 in the Appendix constructs a
basis that ensures that the MDS outer code property is met.

RLNC satisfies general MDS properties with increas-
ing probabilities for increasing field sizes [4], [68]–[72].
However, the analysis of the MDS properties of RLNC after
combination with a restricted set of values in the GF(2)
inner coding is beyond the scope of this study. The the-
oretical results in the following subsections apply there-
fore in an exact sense only to RS outer codes that satisfy
Theorems 4 or 5. Nevertheless, the analyses provide insights
into the dynamics of the Fulcrum system and we expect
them to be a good approximation for a Fulcrum system
with RLNC outer coding with moderately large to large
field sizes. Indeed, our comparisons of the numerical results
obtained from the theoretical analysis with measurement
results obtained from our Fulcrum implementation on real
devices in Section III-D demonstrate that the theoretical anal-
ysis is a good approximation for Fulcrum with RLNC outer
encoding.

We emphasize that the actual operation of the Fulcrum
network coding framework does not require any MDS prop-
erties of the employed codes. While large RLNC field sizes
(and the resulting closeness to the MDS properties) generally
improve the performance of the outer coding, large RLNC
field sizes are not required for the correct Fulcrum operation.
For good performance, the outer code should be decodable
from n received outer coded packet, i.e., have rank equal to n
with high probability.

TABLE 1. Computing devices for real system measurements.

B. FULCRUM MEASUREMENT SETUP
We conducted measurements on the devices in Table 1.
We used a packet size of 1600 bytes and performed systematic
outer Fulcrum encoding over GF(28). We implemented the
Fulcrum encoder and the three decoder types in Kodo [73].
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FIGURE 8. Markov chain describing the reception process at a receiver in
(a) a classical GF (2) network, where source, intermediate network nodes,
and receivers use GF (2) operations, and (b) our Fulcrum network coding
framework which adds r expansion packets to a generation of n source
packets, i.e., the intermediate network nodes treat expanded packets as
GF (2) packets, while the source uses GF (2h) operations for the
expansion.

C. DELAY MODELLING: NUMBER OF REQUIRED
PACKET RECEPTIONS FOR DECODING
We analyze a single receiver to understand the fundamental
delay characteristics. For the analysis, let us assume that an
RS code over GF(2s) with n ≥ 2s−1 is used for the outer
encoding, so that receiving n independently coded packets
in GF(2) guarantees that the re-mapped version in GF(2h)
can be decoded, by Theorem 4. That is, we assume that the
MDS outer code property for a tractable analysis is met. We
reuse the models for RLNC coding from [15], [44]. Fig. 8 (a)
shows the Markov chain representing the process of recep-
tion of independent linear combinations over GF(2) using
an RLNC inner code. Each stage represents the number of
missing independent linear combinations in GF(2) in order
to decode using only GF(2) operations [15], [44]. Following
the inner decoder principles, see Section II-D.1, the receiver
attempts to decode in GF(2) even when the source has made
an expansion to n+ r dimensions.

Fig. 8(b) shows the process for a successful outer (and
combined) decoder. In this case, the underlying GF(2) pro-
cess needs to only run until n independent linear combina-
tions in GF(2) are received, which are mapped back to the
GF(2h) and decoded with the outer decoder. The combined
decoder performs partial decoding in GF(2), before attempt-
ing to use the highGF(2h) field; however, this does not affect
the following analysis, only the decoding complexity. Thus,
the r rightmost states, i.e., states r − 1 through 0 are not
visited, as state r became an absorbing state. If a different
precoding (without the MDS outer code property) is used,
there will be some probability of visiting the states below r .
However, if we use a sufficiently large field size, this effect
will be negligible and the process described in Fig. 8 (b) will
be a very good approximation of the expected performance.

Intuitively, in Fig. 8(b), the reduction of the number of
missing linearly independent combinations in GF(2) from
n + r to n + r − 1 (the two leftmost states in Fig. 8(b))
corresponds to the success of a Bernoulli random experiment
with success probability 1− 2−n−r ; i.e., requires on average
1/(1 − 2−n−r ) trials (received packets). For r additional
dimensions (expansion packets), the number ofmissing linear
independent combinations needs to be reduced from n + r
down to r , i.e., the last reduction step is from r+1 to r . Thus,
the total mean number of packets that needs to be received
from the network to decode using an outer (or combined)
decoder is

E
[
NGF(2)(r)

]
=

n+r∑
i=1+r

1
1− 2−i

(12)

= n+
n+r∑
i=1+r

1
2i − 1

. (13)

Lemma 1 shows that the overhead due to additional GF(2)
coded packet receptions when using an outer or combined
decoder decreases exponentially with r .
Lemma 1: For an outer or a combined decoder with an

MDS outer code,

E
[
NGF(2)(r)

]
= n+ 2−r × θ (n), (14)

for some θ (n) ∈ [1− 2−n, 2− 2−n+1].
Proof: We derive an upper and a lower bound on

E
[
NGF(2)(r)

]
described in Eq. (13). To derive the upper

bound, we use the fact that 2i−1 ≤ 2i − 1 for i ≥ 1 to
convert the sum in Eq. (13) to the sum of a set of elements
of a geometric series. Thus,

E
[
NGF(2)(r)

]
≤ n+

n+r∑
i=1+r

2−i+1 (15)

= n+ 2−r+1 − 2−n−r+1. (16)

The lower bound follows a similar argument, but using the
fact that 2i ≥ 2i − 1 for i ≥ 1. Thus,

E
[
NGF(2)(r)

]
≥ n+

n+r∑
i=1+r

2−i (17)

= n+ 2−r − 2−n−r . (18)

�
Another interesting result for receivers with outer and com-

bined decoders is Lemma 2 which states that the variance of
NGF(2)(r) decreases exponentially with r .
Lemma 2: For a receiver using an outer or combined

decoder with an MDS outer code,

V
(
NGF(2)(r)

)
= O(2−r ). (19)

Proof: The proof follows by bounding the variance of
NGF(2)(r). Defining Pi = 1 − 2−n−r+i−1 and exploiting the
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independence properties of Markov chains, it is straightfor-
ward to derive

V
(
NGF(2)(r)

)
=

n∑
i=1

1− Pi
P2i

. (20)

Elementary summation index manipulation gives∑n
i=1 1/Pi = E

[
NGF(2)(r)

]
given in Eq. (12). Thus,

V
(
NGF(2)(r)

)
=

n∑
i=1

1(
1− 2−n−r+i−1

)2 − E [NGF(2)(r)]
(21)

≤

n∑
i=1

1(
1− 2−r−1

)2 − E [NGF(2)(r)] (22)

≤
n(

1− 2−r−1
)2 − E [NGF(2)(r)] (23)

≤
n(

1− 2−r−1
)2 − n (24)

=
n
(
2 · 2r+1 − 1

)(
2r+1 − 1

)2 (25)

=
2n
(
2r+1 − 1

)
+ n(

2r+1 − 1
)2 (26)

=
2n

2r+1 − 1
+

n(
2r+1 − 1

)2 (27)

≤
2n

2r+1 − 1
+ n, (28)

whereby (22) follows since 2−r−1 ≥ 2−n−r+i−1 for
1 ≤ i ≤ n and (24) follows from (13).Moreover, (25) through
(27) follow through elementary algebra and (28) follows by
noting that 1/(2r+1 − 1)2 ≤ 1 for r ≥ 0. �

D. DECODING PROBABILITY
We denote K for the number of received inner coded packets.
We analyze the decoding probability Pdec(K , n, r) at a single
receiver with an outer decoder or a combined decoder.

For K ≤ n, we can follow the analysis strategies for
conventional RLNC decoding that have led to [15, Eq. (13)],
[74, Eq. (2)], and [75, Eq. (7)]. Specifically, we briefly
outline the analysis steps that retrace the analysis leading
to [75, Eq. (7)]. For the inner encoding of n + r packets
(produced by the outer encoder), there are 2n+r possible
inner coding vectors {ιk,j}j=1,...,n+r for a given inner coded
packet k (whereas there are qn possible coding vectors for the
conventional GF(q) RLNC considered in [75]). Similar to a
conventional RLNC over n source packets and following the
Markov chain model in Fig. 8(b), Fulcrum outer or combined
decoding requires the receipt of n linearly independent coded
packets.

Following the reasoning leading to [75, eq. (2)], we thus
obtain for the Fulcrum outer or combined decoder for the

case K = n:

Pdec(K , n, r) =
n−1∏
i=0

(
1−

2i

2n+r

)
=

n∏
i=1

(
1−

1
2i+r

)
. (29)

Following the subsequent analysis steps leading to
[75, eq. (7)], we obtain Pdec(K , n, r) = 0 for K < n and

Pdec(K , n, r) =
n∏
i=1

(
1−

1
2i+r

)
for K = n. (30)

We note that for K = n received inner coded packets and
r = 0 expansion packets, the Fulcrum decoding probability
Pdec (30) is equivalent to the conventional RLNC decoding
probability PRLNCdec [75, Eq. (7)] for K = n. Furthermore, for
K = n with r = 1 expansion packet, the Fulcrum decoding
probability

Pdec =

(
1− 1

2n−1

)
PRLNCdec

1− 1
21

≈ 2PRLNCdec (31)

for moderate to large n. Intuitively, the one (r = 1) expansion
packet doubles the number of possible inner coding vectors
from 2n to 2 · 2n; consequently halving the probability of
linearly dependent coding vectors (which would prevent suc-
cessful decoding).

For K > n, i.e., when the number K of received coded
packets exceeds the number n of source packets in a gen-
eration, the analytical strategies from the preceding studies,
e.g., [75], do not directly apply to the Fulcrum decod-
ing. Therefore, it becomes necessary to directly analyze the
numbers mj, mj ≥ 1, of visits to the states j = n +
r, n+r-1, . . . , 1 + r of the Markov chain in Fig. 8(b). The
event of successful decoding with K received coded packets
corresponds to the union of the mutually exclusive events
where the numbers of visits to theMarkov chain states sum to
K , i.e., the events for whichmn+r+mn−1+r+· · ·+m1+r = K .
We note from Fig. 8(b) that the transition from a state i, i =
n + r, n − 1 + r, . . . , 1 + r , ‘‘down’’ to the adjacent state
i − 1 occurs with probability 1 − 2−i. When mj = 1, then
state j is visited only once, i.e., the next received coded packet
transitions the Markov chain to state j − 1. However, when
mj > 1, e.g., mj = 2, then the next received coded packet
is linearly dependent (which occurs with probability 2−j) and
the packet received thereafter is linearly independent (causing
the transition to state j − 1); effectively, for mj = 2 there is
one ‘‘extra’’ visit to state j. Generally, for a givenmj, there are
mj−1 ‘‘extra’’ visits to state j (due tomj−1 received linearly
dependent packets), which occur with probability 2−j(mj−1).
Thus,

Pdec(K , n, r)

=

 n+r∏
i=1+r

(1− 2−i)

 ∑
mn+r≥1

· · ·

∑
m1+r≥1

 n+r∏
j=1+r

2−j(mj−1)


for

n+r∑
j=1+r

mj = K , (32)

77900 VOLUME 6, 2018



D. E. Lucani et al.: Fulcrum: Flexible Network Coding for Heterogeneous Devices

which can be readily evaluated with standard numerical
techniques.

An alternative numerical approach is to let P denote the
transition probability matrix of the Markov chain in Fig. 8(b),
including the absorbing state r , and let u(k) denote the prob-
ability distribution vector for residing in the states n + r,
n + r − 1, . . . , r after k received coded packets. Clearly,
the starting distribution is u(0) = [1 0 0 . . . 0] since initially
there is no knowledge about the data at the receiver. The
probability of residing in each specific state after k transi-
tions, i.e., k coded packet receptions, is u(k) = u(0)Pn. The
last element of the vector u(k) corresponds to the absorbing
state, i.e., provides the probability of having reached the
absorbing state after k transitions, which in turn corresponds
to the cumulative probability of successful decoding after k
transitions. The probability of reaching the absorbing state
after exactly k transitions is obtained by computing u(k) −
u(k − 1) and reading the value in the vector corresponding to
the absorbing state.

We initially compare the decoding probabilities obtained
from the theoretical analysis of the Fulcrum approach for
an MDS outer code with measurements of our real imple-
mentation of Fulcrum for a GF(28) systematic RLNC outer
code, while the inner encoder at the source and the inter-
mediate network nodes operates with GF(2). The reported
measurement results are the average of 1000 independent
replications of the encoded packet transmission in the real
system. The outer encoding adds r = 1, 2, or 4 expansion
packets. Figure 9 shows the cumulative distribution function
(CDF) and the probability mass function (PMF) of successful
decoding of n = 64 original source packets after receiv-
ing K = 64, 65, . . . , 74 inner GF(2) coded packets. We
observe from Figure 9 that the theoretical decoding proba-
bility values match the measurements from the real system
quite closely. This verifies that theGF(28) field is sufficiently
large so that the real coding performance of GF(28) RLNC
closely approximates the MDS outer code property defined
in Section III-A.
We proceed to more comprehensively examine the

Fulcrum decoding probability based on the theoretical
analysis and compare with conventional GF(2) RLNC
in Figure 10. We observe from Figure 10 that standardGF(2)
RLNC achieves only a decoding probability of approximately
0.3 when no additional coded packets have been received;
five or more additional coded packets are required to decode
with a probability exceeding 0.95. For standard GF(2), there
is no outer encoder; instead we have effectively only an
inner encoder that operates in GF(2) and encodes n source
packets to generate n + 10 coded packets in GF(2). Due
to the small GF(2) field size, the coding coefficient vectors
have relatively high correlations. Specifically, there is only a
relatively low probability of 0.3 that n received coded packets
are all linearly independent so as to permit decoding. With
n+5 received packets there is probability higher than 0.95 that
at least n among the n+ 5 packets have linearly independent
coding coefficient vectors.

FIGURE 9. Probability of successful decoding of n = 64 original source
packets with a Fulcrum outer or combined decoder as a function of the
number K of received inner GF (2) coded packets for different numbers
r , r = 1, 2, 4, of outer encoding GF (28) expansion packets. Comparison
of theoretical analysis for MDS outer code with measurements from real
implementation with GF (28) RLNC outer code. (a) CDF. (b) PMF.

Next, we observe from Fig. 10 for r > 0, i.e., the
outer encoder is ‘‘switched on’’, that increasing numbers
r of expansion packets substantially increase the decoding
probability. For instance, for zero additional received coded
packets, the decoding probability doubles from nearly 0.3 for
convectional GF(2) RLNC to nearly 0.6 for Fulcrum with
r = 1 expansion packet, as analyzed in (31). Intuitively,
with r outer (GF(2h)) coded expansion packets, there are
n + r dimensions in the inner coding (and correspondingly
n+r+1 states in theMarkov chain representing the decoding
in Fig. 8). Only an arbitrary subset of n out of these n + r
dimensions needs to be ‘‘recovered’’ through the receipt of
n linear independent inner coded packets; the remaining r
dimensions are recovered through the mapping back to the
outer code. Effectively, with r Fulcrum expansion packets,
relatively fewer (namely any n out of n + r) packets need
to be recovered through received inner GF(2) coded packets
versus all (n out of n) packets need to be recovered through
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FIGURE 10. Probability of successful decoding for a Fulcrum outer or
combined decoder as a function of the number of (K − n = 0, 1, . . . , 10)
additional inner GF (2) coded packets received beyond the number n of
original source packets in a generation for different numbers
r , r = 1, 2, . . . , 7, of outer encoding GF (28) expansion packets.
Benchmark is standard GF (2) RLNC without any outer coding.

receivedGF(2) coded packets in conventionalGF(2) RLNC.
These additional ‘‘degrees of freedom’’ provided by the r
expansion packets greatly increase the decoding probability.
From the coding vector perspective, the r expansion pack-
ets add r bits to the inner coding vector (which becomes
{ιk,j}j=1,2,...,n,n+1,...,n+r ), thus increasing the number of pos-
sible inner coding vectors from 2n to 2r · 2n, which in turn
decreases the probability of linear dependent coding vectors
by a factor of 2r . Thus, each additional expansion packet
essentially halves the probability of linear dependent inner
coding vectors.

TABLE 2. Decoding probability after reception of n, n+ 1, n+ 2, or n+ 3
coded packets using the outer or combined decoders for various numbers
of expansion packets r and assuming RLNC GF (2) inner encoder and
recoders.

Table 2 provides key decoding probabilities (in percent-
ages) when receiving n, n+ 1, n+ 2, and n+ 3 GF(2) RLNC
inner coded packets. Table 2 shows that the probability of
decoding after receiving exactly n coded packets using an
outer or combined decoder is quite high, even for small to
moderate r values. It also shows that the performance with
r = 7 is similar to that provided by RaptorQ codes [76], while
r > 7 can provide higher decoding guarantees.

E. DECODING PROBABILITY FOR BROADCAST
TO HETEROGENEOUS RECEIVERS
This section considers broadcast from one source to two
receivers (R1 and R2) with independent channels and packet

loss probability ei for receiver Ri. Our goal is to illustrate
the effect of using different decoders at receivers with het-
erogeneous channel qualities as well as to compare the per-
formance of Fulcrum to that of standard RLNC for different
finite fields.

We exploit the Markov chain model presented in [15] to
provide an accurate representation of the field size effect
when broadcasting to two receivers. This model is also easily
adapted to incorporate the use of the outer decoding capabili-
ties of Fulcrum. The model in [15] relies on a state definition
that incorporates three variables, the number of independent
linear combinations at each receiver and the common linear
combinations between the two. The key change in the model
is similar to the change introduced in the Markov chain in
Section III, that is, considering that the dimensions in the
Markov chain in [15] have to be increased effectively from
n + 1 to n + r + 1. Then, if one (or both) receivers use
the outer (or combined) decoder, gathering n linearly inde-
pendent combination will effectively correspond to gathering
n + r linearly independent combinations. In other words,
the required number of linearly independent combinations
is effectively reduced from n + r (for the inner decoder) to
n for the outer or combined decoder. Modifying the result
from [15] and the numerical matrix approach outlined for the
single receiver in Section III-D allows the computation of the
probabilities of successful decoding for broadcasting, even in
the presence of losses in the system.

Figure 11(a) shows the CDF for the number of
required packet transmissions to complete the delivery of
n = 10 packets to two receivers. We observe from
Fig. 11(a), that the Fulcrum approach with r = 7
outer expansion packets and with both receivers exploit-
ing the outer decoder requires essentially the same num-
ber of packet transmissions (i.e., completes as quickly)
as GF(216) RLNC. We further observe that Fulcrum with
r = 2 and two receivers with outer decoder achieves
nearly the same performance as GF(216) RLNC; however,
the GF(28) Fulcrum outer decoder has substantially lower
computational complexity than GF(216) RLNC.

Additionally, we observe from Fig. 11(a) that when one of
the receivers employs the inner decoder, i.e., uses onlyGF(2)
operations, the Fulcrum approach with r = 2 expansion
packets gives substantially shorter completion times than
conventional GF(2) RLNC. However, Fulcrum with r = 7
expansion packets gives lower probabilities of completing the
packet delivery than conventional GF(2) RLNC with 20 or
less transmitted packets; while for 21 or more transmitted
packets, Fulcrum with r = 7 achieves higher completion
probabilities thanGF(2) RLNC. The plotted completion time
is the mean of the two receivers. The receiver employing
the inner decoder requires at least n + r transmissions for
decoding. Thus, with r = 7, the inner decoder requires at
least 17 inner coded packets for decoding; whereas, for r = 2
the inner decoder requires at least 12 packets.

Figure 11(b) provides the corresponding PMF, demonstrat-
ing that the Fulcrum framework reduces the variance of the
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FIGURE 11. Probabilities of successful decoding for broadcast channel
with two receivers showing the performance of standard RLNC for GF (2)
and GF (216), the performance of Fulcrum when one receiver exploits the
outer code and the other only the inner code, and Fulcrum when both
receivers exploit the outer code. Parameters e1 = 0.1, e2 = 0.5, n = 10
packets, GF (28) RLNC Fulcrum outer encoding. (a) CDF. (b) PMF.

number of required packet transmissions, particularly when
increasing the number r of expansion packets. The variance
reduction is particularly pronounced for Fulcrum with one
inner and one outer decoder for r = 7 compared to con-
ventional GF(2) RLNC. This numerical result illustrates the
theoretical result in Lemma 2.

Overall, the results in Figure 11(b) indicate that Fulcrum
coding with a small to moderate number r of outer coded
expansion packets appears well suited for networks with
heterogenous receivers. For the specific example considered
in Figure 11(b), r = 2 expansion packets strike a good com-
promise between reasonably high decoding probabilities and
requiring only few (r) additional packet receptions beyond
the number n of source packets to enable decoding.

F. OVERHEAD
We define the overhead for a generation consisting of n
source packets as the number of additional bits transmit-

ted to successfully deliver the n packets to the receiver.
The overhead includes the coding coefficients, i.e., the
additional header information, and the overhead caused by
retransmissions due to linearly dependent packets (while
neglecting retransmissions due to channel losses). We con-
sider the standard coding vector representation, i.e., a coef-
ficient per packet is sent attached to the coded packet.
We analyze receivers with outer and combined decoders.

For sufficiently large h with negligible probabilities of
linearly dependent coding vectors, the overhead of standard
GF(2h) RLNC is proportional to hn2 bits [44], [62].

The mean Fulcrum overhead due to coding coefficients
with a standard coding vector representation is proportional to

(n+ r)E
[
NGF(2)(r)

]
≤ (n+ r)

(
n+ 2−r+1 − 2−n−r+1

)
,

(33)

wherebyE
[
NGF(2)(r)

]
was upper bounded by (16). Typically,

r � n; thus, the coding coefficient overhead will be dom-
inated by n2. This Fulcrum coding coefficient overhead of
n2 bits for a generation of n source packets is by a factor of
h smaller than the GF(2h) RLNC overhead. Regarding the
impact of the number r of expansion packets, note that the
coding coefficient vector overhead in Eqn. (33) grows with r .

The mean Fulcrum overhead due to additional GF(2)
packet receptions needed due to linearly dependent coding
vectors for data packets of length L bits is(

E
[
NGF(2)(r)

]
− n

)
L ≤

(
2−r+1 − 2−n−r+1

)
L. (34)

In particular, Lemma 1 showed that this mean overhead
due to additional GF(2) packet receptions needed due to
linearly dependent coding vectors decreases exponentially
with r . Importantly, the numerical evaluations of the decoding
probability in Fig. 10 and Table 2 demonstrate that r values
in the range 7 to 10, which keep the coding coefficient
overhead in Eqn. (33) reasonably small, achieve very high
decoding probabilities without or only very few additional
packet receptions and should be sufficient for a wide range
of practical applications.

G. ENCODING AND DECODING
THROUGHPUT MEASUREMENTS
This section presents Fulcrum encoding and decoding
throughput results obtained with the measurement setup in
Section III-B. The benchmark RLNC encoders and decoders
in GF(2) (‘‘Binary’’ in the Figures) and GF(28) (‘‘Binary8’’
in the Figures) use the standard Kodo RLNC implementations
with and without Single Instruction Multiple Data (SIMD)
operations for hardware speed up. The GF(2) RLNC bench-
mark represents the fastest dense code. The GF(28) RLNC
benchmark represents a commonly used dense code with the
same field size as the Fulcrum outer code; whereby, GF(28)
RLNC decoding probabilities approach one when n packets
have been received.

Figure 12(a) shows the Fulcrum decoding throughput
for different numbers r of expansion packets and different
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FIGURE 12. Processing speed (throughput) of an i7 without SIMD
optimizations for decoding and encoding of Fulcrum compared to RLNC
decoding and encoding as a function of generation size n. The encoding
speed of Fulcrum does not depend on the decoder type (combined,
inner, or outer). (a) Decoding. (b) Encoding.

decoder types. When only the inner code over GF(2) is
utilized for decoding in Fulcrum (inner decoder), Fulcrum
is similar to RLNC over GF(2). When only the outer code
over GF(28) is utilized in Fulcrum (outer decoder), Fulcrum
becomes similar to GF(28) RLNC. Thus, in these two cases
the decoding throughput for Fulcrum is expected to be equiv-
alent to GF(2) RLNC and GF(28) RLNC, respectively. The
measurement results in Fig. 12(a) confirm that the decoding
implementation performs as expected in these two known
cases. The throughput results for the combined decoder show
gains compared to GF(28) RLNC. Not only is the Fulcrum
combined decoder always faster than GF(28) RLNC, but
the throughput also approaches that of GF(2) RLNC as the
generation size n grows. For n = 1024 packets, the combined
decoder is 20 times faster thanGF(28) RLNCwhile achieving
similar decoding probabilities, see Fig. 9a.

We observe from Figure 12(a) that for the outer code with
r = 1, the throughput of the Fulcrum outer decoder is higher

than for the standard GF(28) RLNC decoder. The reason is
that each inner coded packet has a probability of 1/2 to have
a contribution of the expansion packet, i.e., a packet with high
field GF(28) coefficients different from zero or one (namely
when the inner coding coefficient ιk,n+1 = 1). Thus, when
mapping back in the outer decoder, roughly half of the rows
will have only zeros and ones while the other half will have
other elements in GF(28). The rows with only zeros and
ones require fewer multiplication operations in the decoding
process than rows with high field coefficients, speeding up
the processing. This speed-up could bemore pronounced than
depicted in Figure 12(a) if we tried to exploit this particular
structure. However, the probability of obtaining rows with
only zeros and ones after mapping back decreases dramati-
cally as r increases, as indicated by the throughput results for
r = 4.
Figure 12(a) shows that the combined decoder has some

performance dependence for small generation size n for dif-
ferent numbers r of expansion packets, namely, the higher
the r , the lower the throughput, (whereby the combined
decoder has still higher throughput than the outer decoder).
However, this difference in performance becomes negligible
as the number n of data packets per generation increases.
For increasing n, most of the processing effort will be spent
decoding in the inner code, and the effect of the r expansion
packets diminishes.

Decoding throughput is usually given a higher priority than
the encoding speed, e.g., if there are more decoders than
encoders, or because the decoding process tends to be slower
than the encoding process. However, encoding speed can be
critical in some cases, e.g., a satellite transmitting to an earth
station, or sensor nodes collecting and sending data to a base
station, because there is an inherent constraint on the sender’s
computational capabilities or energy. Figure 12(b) shows the
encoding speed compared to the baseline (full vector [62])
GF(2) andGF(28) RLNC. For the case of n = 16 packets in a
generation, the Fulcrum encoder runs 6.6 times and 3.2 times
faster for r = 1 and r = 4, respectively, compared to the
GF(28) RLNC encoder. As the generation size n increases,
so does the gain over GF(28) RLNC, while the impact of the
number r of expansion packets decreases. For example, for
n = 128 packets, the Fulcrum encoder is approximately 14
times faster than theGF(28) RLNC encoder, and for n = 256
the encoding speed is close to GF(2) RLNC.

Figure 13 studies the effect of SIMD instructions on the
Fulcrum decoding throughput on the i7 processor. The SIMD
optimization only speeds upGF(28) operations, whichmeans
that the throughput of the GF(2) RLNC decoder and the
inner decoder remain unchanged fromFigure 12(a). Figure 13
shows similar trends as Figure 12(a), but with reduced gains
with respect to GF(28) RLNC as SIMD greatly speeds up
the GF(28) RLNC operations. Nonetheless, for n = 128 the
Fulcrum decoding throughput is 2.8 times higher thanGF(28)
RLNC and close to the GF(2) RLNC throughput.
Finally, Figures 14(a) and 14(b) show the performance of

the combined decoder on various commercial devices without
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FIGURE 13. Decoding processing speed (throughput) of i7 with SIMD
optimization for Fulcrum and conventional RLNC as a function of
generation size n.

FIGURE 14. Processing speed (throughput) of combined decoder
(a) without SIMD and (b) with SIMD for different devices.

and with SIMD optimizations, respectively. SIMD achieves
two- to four-fold speed ups on all devices for small generation
sizes n. We observe that the benefit of SIMD is slightly more

pronounced for mobile devices at high n (up to five times the
speed-up), while for desktops the gains over no SIMD have
essentially disappeared. This does not mean that SIMD in
desktops is not improving computation of GF(28), but rather
that the main limitation becomes the processing of GF(2)
operations at high speeds. Importantly, mobile devices, which
are typically energy and computationally limited, can signif-
icantly benefit from the combination of Fulcrum and SIMD
instructions over a wide range of n.

IV. CONCLUSIONS
This paper has presented the Fulcrum network coding frame-
work, an advanced network coding structure that preserves
RLNC’s ability to recode seamlessly in the network while
providing key mechanisms for practical deployment of net-
work coding. Fulcrum addresses several of the standing prac-
tical problems with existing RLNC codes and rateless codes,
by employing a concatenated code design. This concatenated
code design is highly flexible, tunable, and intuitive. This
paper has described the design of Fulcrum network codes
and their practical benefits over previous network coding
designs. The paper has also provided mathematical analyses
of the performance of Fulcrum network codes. The paper has
also presented a first implementation of Fulcrum in the Kodo
C++ network coding library as well as benchmarking results
for the Fulcrum encoding and decoding throughput on a wide
range of computational devices.

Our evaluations demonstrate that Fulcrum achieves much
higher encoding and decoding processing speeds (through-
put) than conventional GF(28) RLNC. In fact, the Fulcrum
processing speeds approach those ofGF(2) RLNC as the gen-
eration size grows. Importantly, Fulcrum maintains the high
decoding probabilities ofGF(28) RLNC,while increasing the
processing speed by up to a factor of 20 in some scenarios
with our initial implementation. Furthermore, in Fulcrum,
the trade-off between coding processing speed and decoding
probability can be easily adjusted through the number r of
outer code expansion packets to meet the requirements of a
given application.

Fulcrum solves several long-standing problems for existing
RLNC codes. First, Fulcrum enables an adjustable trade-
off between coding throughput and decoding probability.
Second, it provides a higher coding processing speed when
compared to the existing RLNC codes. Third, it reduces the
overhead associated with the coding vector representation
necessary for recoding, while maintaining a high decoding
probability. Fourth, it reduces the type of operations and logic
that the network needs to support while allowing end-to-
end devices to tailor their desired service and performance,
making a key step to widely deploying network coding in
practice. This has an added advantage of allowing the network
to support future designs seamlessly and naturally providing
backwards compatibility.

There are several interesting directions for future research
on the Fulcrum coding framework. One future work direc-
tion is to study optimal solutions to use the Fulcrum
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structure to spread computation complexity over the net-
work. Another interesting future research direction is secu-
rity; more specifically, Fulcrum provides a simple way to
implement some of the ideas in Secure Practical Network
Coding (SPOC) [77]. With Fulcrum, the mapping of the outer
decoder constitutes the secret key (or part of it) that the source
and destinations share and that, in contrast to [77], does not
need to be sent over the network alongwith the coded packets.
Using Fulcrum, wewould not incur the large SPOC overhead,
which consists of two coding coefficients per original packet
(one encrypted, one without encryption). In fact, the end
points (source and receivers) can choose very large field sizes
in the outer code while maintaining 1+ r/n bits per packet in
the generation as overhead. Fulcrum can also provide security
without the need to run Gaussian elimination twice at the time
of decoding [78]. As a consequence Fulcrum does not need
to trade off field size and generation size (and thus security)
for overhead in the network and complexity.

APPENDIX
REED-SOLOMON OUTER CODE: PROOF OF FULL RANK
PROPERTY OF REMAPPED PACKETS
We have B, anm×(n+r)-matrix over F2, andG, an (n+r)×n
matrix over F2s = Fq. Suppose that G is the generator matrix
of an RS code with length n + r ≤ q − 1 = 2s − 1. The
value of m is related to the length of the incoming messages,
e.g., if it is a single F2s symbol, then m = s bits. We remark
that vectors are column vectors and that we multiply on the
right.

An RS code C , with dimension n, can be defined as the
vector space generated by the evaluation of the monomials
1,X , . . . ,Xn−1 at the points Fq \ {0}. Namely, let α be a
primitive element of Fq and let

ev : Fq[X ] → Fn+rq , (35)

with ev(f ) = (f (α0), f (α1), . . . , f (αq−2). (36)

Thus, C = 〈{ev(X i) : i = 0, . . . , n − 1}〉. A generator
matrix G is given by considering as columns the evaluation
of a monomial at Fq \ {0}. The dual code of an RS code is
given by Lemma 3.
Lemma 3 (Lemma 5.3.1 [79]): Let C be a Reed-Solomon

code with dimension n, then the dual code of C is
given by

C⊥ = 〈{ev(X1), . . . , ev(Xq−1−n)}〉. (37)
We consider them×n-matrix BG and denote the associated

linear function by ϕ. We assume that B and G have full rank
and ask whether dim(ϕ(V )) < dimV for a vector subspace
V ⊆ Fnq. Since ϕ is a linear function, the dimension of
the image plus the dimension of the kernel is equal to the
dimension of the original space. Therefore, we ask whether
dim(ker(ϕ)) > 0.
In order to prove the main result, we shall introduce

the cyclotomic coset containing a in Fq = F2s , Ia =
{a, 2a mod q − 1, 22 a mod q − 1, . . . , 2s−1a mod q − 1}.
For instance, for q = 24, the different cyclotomic cosets are

I0 = {0}, I1 = {1, 2, 4, 8}, I3 = {3, 6, 12, 9}, I5 = {5, 10},
and I7 = {7, 14, 13, 11}. One has that I1 = I2 = I4 = I8, but
usually one denotes the coset by the smallest number. We can
now characterize when dim(ker(ϕ)) = 0.
Theorem 4: Let C ⊆ F2s = Fq be a Reed-Solomon code

with dimension n and the linear map ϕ defined above. Then,
dim(ker(ϕ)) = 0 if and only if n ≥ 2s−1.

Proof: The linear function ϕ is the composition of
two linear maps, namely the maps associated with G and
B. G is a generator matrix; therefore, G is injective. Hence,
BGx = 0 if and only if c = Gx ∈ ker(B). That is,
dim(ker(ϕ)) > 0 if the rows of B are orthogonal to c, which
is a word of C . Therefore, the rows of B are words in the dual
code of C .
By Lemma 3, the dual code of C is given by C⊥ =
〈{ev(X1), . . . , ev(Xq−1−n)}〉. Thus, C⊥ ⊆ Fn+rq , but the rows
of B are over F2. Hence, we should consider the subfield
subcode of C⊥, i.e.,

SubfSubc2(C⊥) = {c ∈ Fn+r2 : c ∈ C⊥}. (38)

The columns of the generator matrix of SubfSubc2(C⊥) are
the rows of B which reduce the dimension of the image.
By [80] and [81, Th. III.8],

dim(SubfSubc2(C⊥)) = #{Ij : Ij ⊆ {1, . . . , q− 1− n}}.

(39)

That is, we shall only consider exponents that are in a cyclo-
tomic coset that is contained in {1, . . . , q − 1 − n}. Clearly,
I0 6⊆ {1, . . . , q−1−n}. Let k ≥ 2s−1, then q−1−n < 2s−1;
therefore, the cyclotomic coset I1 = {1, 2, 22, . . . , 2s−1} is
not contained in {1, . . . , q − 1 − n}. Finally, let j > 2s−1,
then Ij 6= I0, I1, and Ij 6⊆ {1, . . . , q − 1 − n} since j ∈ Ij
and q− 1− n < 2s−1. Therefore, SubfSubc2(C⊥) = {0} and
dim(ker(ϕ)) = 0.

Let us now consider n < 2s−1, then I1 =

{1, 2, 22, . . . , 2s−1} is contained in {1, . . . , q − 1 − n} and
dim(SubfSubc2(C⊥)) ≥ s. Thus, dim(ker(ϕ)) > 0. �
Explicit generators of SubfSubc2(C⊥) to identify cases of

linear dependence for n < 2s−1 can be obtained by using
results in [80], [81, Theorem III.8] as follows.
Theorem 5: Let C be a Reed-Solomon code with

dimension n, then the dimension of SubfSubc2(C
⊥) is∑

Ia⊆{1,...,q−1−n} #Ia, and a basis is given by {ev(fIa,β j ) : j ∈
{0, . . . , #Ia − 1}}, where

β = α(2
s
−1)/(2#Ia−1), (40)

i.e., a primitive element of F2#Ia ⊆ F2s , and

fIa,β = βX
a
+ β2X2a

+ · · · + β2
#Ia−1

X2#Ia−1a. (41)
As an example, let C8 be the Reed-Solomon code

with dimension n = 23 in F15
24
. We have that C8 =

〈{ev(X0), . . . , ev(X7)}〉, C⊥8 = 〈{ev(X
1), . . . , ev(X7)}〉 and

SubfSubc2(C⊥8 ) = {0} because Ia 6⊆ {1, . . . , 7} for any a and
dim(ker(ϕ)) = 0. Consider another example with a Reed-
Solomon code C7 with dimension n = 7 in F15

24
. We have that
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C7 = 〈{ev(X0), . . . , ev(X6)}〉, C⊥7 = 〈{ev(X
1), . . . , ev(X8)}〉

and dim(SubfSubc2(C⊥7 )) = 4 because I1 = {1, 2, 4, 8} ⊆
{1, . . . , 8}. A basis for SubfSubc2(C⊥7 ) is given by
{ev(fI1,1), ev(fI1,α), ev(fI1,α2 ), ev(fI1,α3 )}, that is

{ev(X + X2
+ X4

+ X8),

ev(αX + α2X2
+ α4X4

+ α8X8),

ev(α2X + α4X2
+ α8X4

+ αX8), (42)

ev(α3X + α6X2
+ α12X4

+ α9X8)}.

Therefore, a generator matrix for SubfSubc2(C⊥7 ) is
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
1 0 1 1 1 0 1 0 1 1 1 1 0 0 0


T

. (43)

Future work shall consider exploiting such generators to
improve the efficiency of the decoder in these corner cases.
In order to consider β as a primitive element of F2#Ia in F2s ,
one may consider to use Conway polynomials for defining
finite fields [82].
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