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In Search of Indoor Dense Regions: An
Approach Using Indoor Positioning Data

Huan Li, Hua Lu∗, Senior Member, IEEE, Lidan Shou, Gang Chen, and Ke Chen

Abstract—As people spend significant parts of daily lives indoors, it is useful and important to measure indoor densities and find the
dense regions in many indoor scenarios like space management and security control. In this paper, we propose a data-driven approach
that finds top-k indoor dense regions by using indoor positioning data. Such data is obtained by indoor positioning systems working at a
relatively low frequency, and the reported locations in the data are discrete, from a preselected location set that does not continuously
cover the entire indoor space. When a search is triggered, the object positioning information is already out-of-date and thus object
locations are uncertain. To this end, we first integrate object location uncertainty into the definitions for counting objects in an indoor
region and computing its density. Subsequently, we conduct a thorough analysis of the location uncertainty in the context of complex
indoor topology, deriving upper and lower bounds of indoor region densities and introducing distance decaying effect into computing
concrete indoor densities. Enabled by the uncertainty analysis outcomes, we design efficient search algorithms for solving the problem.
Finally, we conduct extensive experimental studies on our proposals using synthetic and real data. The experimental results verify that
the proposed search approach is efficient, scalable, and effective. The top-k indoor dense regions returned by our search are
considerably consistent with the ground truth, despite that the search uses neither historical data nor extra knowledge about objects.

Index Terms—Indoor space, Indoor positioning data, Density queries

F

1 INTRODUCTION

Multiple studies [14], [26] disclose that people spend nearly
90% of their lives in indoor spaces such as office buildings,
shopping malls, metro stations, and airports. As a result, many
indoor spaces host large numbers of people even in a short period
of time. For example, the New Town Plaza in Hong Kong saw
weekend traffic up to 320,000 people in 2004 [31]. As the plaza
usually opens from 11 AM to 10 PM 1, its hourly traffic was
thus more than 29,000 on weekends. As another example, Beijing
Capital International Airport’s daily outbound passenger number
was more than 260,000 in 2017 2. As there are fewer flights
and passengers in late hours at night and there are also many
inbound passengers, the peak hour passenger number must be tens
of thousands in that airport. Moreover, as it is very usual for a
person to spend more than an hour in a mall or an airport, the
peak number of people at an instant of time should be of the same
order of magnitude in the above examples.

When many people are inside an indoor space, it is useful
and important to measure indoor densities and find the dense
indoor regions in scenarios like space or flow management and
security control. Considering a large airport, it is very useful for
the authority to effectively determine which regions in a terminal
are currently most crowded so that actions, e.g., to open more fast
tracks, can be taken timely at the right place to help passengers in
need. As another example, the security managers of a mall need
to find the most crowded regions where currently there are high
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needs for extra services, e.g., more security guards for patrolling
and diverging, in order to guarantee shoppers’ safety.

At first thought, indoor density can be resolved by installing
counting sensors at all the doors of each indoor partition, a basic
topological unit (e.g., a room) connected to other units via doors.
However, this naive approach in general is unattractive due to three
reasons. First, it demands considerable investment on specialized
hardware. Second, it entails appropriate redeployment of sensors
whenever the indoor topology is changed, e.g., when a large
conference hall is temporally divided into several smaller rooms
or vice versa. Third, it is hardly possible to find a good position to
install a sensor for a region in question that lacks doors or physical
boundaries, e.g., open exhibition booths in a large exhibition hall.

In this research, we propose a low-cost, data-driven approach
to the indoor density that harvests needed values from indoor
positioning data. Such data is increasingly available, thanks to
the advance in indoor positioning [1] and the high smartphone
penetration in many countries3. In contrast to the naive approach,
our approach demands no specific hardware to be installed, it is
not bothered by indoor topology variations, and it works well for
user-defined indoor regions.

Assuming GPS data or the like, techniques for outdoor density
queries in Euclidean spaces [8], [9], [13], [15], [25] or road
networks [18], [20], [34] fall short in indoor settings. Indoor
spaces feature distinct entities such as rooms, walls, doors and
staircases, which altogether form complex indoor topology that
enables and constrains movements. Therefore, indoor spaces are
modeled [4], [16], [19], [23], [28], [29] differently from outdoor
Euclidean spaces or road networks. We must take into account
the particularities of indoor topology appropriately when com-
puting indoor densities. Unlike GPS that reports longitude and
latitude continuously, indoor positioning systems [7] offer lower

3. http://goo.gl/pdtvMM
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sampling frequency and only report discrete indoor locations (see
Section 2.1 for more details), thus leaving considerable uncertainty
in indoor positioning data to be used to compute indoor densities.
This issue becomes even more challenging to deal with in the
context of complex indoor topology. Thus, we must handle indoor
positioning data appropriately in order to find indoor dense regions
effectively and efficiently. Also, many indoor spaces host large
numbers of people as mentioned above. Therefore, computing
indoor densities is not a trivial task.

We formulate the problem of finding top-k indoor dense
regions by using indoor positioning data. In our setting, a user
is allowed to customize the set of query regions from which
the k densest ones are returned. To enable the search, the latest
positioning information for indoor moving objects is maintained
in an online indoor positioning table (OIPT ), where a record
(o, loc, t) means the object o was reported to be at location loc
at a past time t and there is no more recent information available
from the indoor positioning system.

When a search is triggered at the current time, the object
positioning information in OIPT is already out-of-date due to
the relatively low frequency and discrete nature of indoor po-
sitioning, and thus object locations are uncertain—an object’s
current location is within an uncertainty region. Due to the location
uncertainty, directly counting the objects in an indoor region
does not work for computing the region’s density. To this end,
we integrate object uncertainty regions into the definitions for
counting objects in an indoor region and computing its density.
Subsequently, we propose the novel concepts of indoor buffer
region and indoor core region to derive the upper and lower
bounds of a region’s density. By using the density bounds, the
density computation is able to concentrate on the relevant objects
only and thus can be done more efficiently. It is non-trivial to
compute indoor buffer (core) regions because they involve not only
location uncertainty but also complex indoor topology. Based on
the indoor buffer (core) regions, we derive effective upper (lower)
bounds for indoor densities that enable aggressive data pruning in
the top-k search. When computing concrete indoor densities, we
consider the realistic distance decaying effect instead of assuming
a uniform distribution of an object’s possible locations in its
uncertainty region. Moreover, we design search algorithms for
finding the current top-k indoor dense regions using the upper and
lower bounds. Experimental studies on synthetic and real data sets
demonstrate that our search algorithms are efficient, scalable and
effective. The returned top-k indoor dense regions are significantly
consistent with ground truth although only the most recent indoor
positioning data is used in the search.

We make the following contributions in this paper.

• We design an indoor density definition amenable to indoor
object location uncertainty, and formulate the problem of
finding top-k indoor dense regions.

• We analyze the indoor location uncertainty, derive bounds
of indoor densities, and introduce distance decaying effect
into indoor density computing.

• By making use of the uncertainty analysis outcomes, we
design efficient algorithms to search for the current top-k
indoor dense regions.

• We conduct extensive experimental studies to evaluate our
proposals on synthetic and real data sets.

The paper is organized as follows. Section 2 formulates the
problem. Section 3 gives the uncertainty analysis. Section 4 details

the search algorithms. Section 5 reports on the experimental
studies. Section 6 reviews literature. Section 7 concludes and
discusses future work.
2 PRELIMINARIES

Table 1 lists the notations used throughout this paper.

Table 1
Notations

Symbol Meaning
oi An indoor moving object
O The set of all indoor moving objects
r, ri Indoor regions
Q The set of indoor regions in a query
tc The current time when a query is issued
tmin min{rec.t | rec ∈ OIPT}
∆t tc − tmin

URI(loc) The indoor uncertainty region of object location loc
τO(r) Indoor region r’s density with respect to O
ΘB
I (r) Indoor region r’s indoor buffer region

ΘC
I (r) Indoor region r’s indoor core region

2.1 Indoor Positioning Data
In our indoor setting, a positioning system emits positioning
reports in the format of (objectID , loc, t), where objectID
identifies an object, loc is an indoor location and t is a time
stamp, meaning the object’s location is estimated to be loc at
time t. In our abstraction, a location loc is generic in that it can
either be a point or a small (circular) region. It is able to model
data obtained by different positioning approaches. For example,
in fingerprinting based Wi-Fi indoor positioning [11], a loc is
one of the preselected reference locations in an indoor space. In
proximity based indoor positioning [10], a loc is the detection
range of a sensor like RFID reader. For the sake of simplicity and
conciseness, we use a point to represent loc in our solution which
nevertheless can also accommodate a region representation of loc.

Due to limited storage and low throughput, an indoor position-
ing system may choose not to store historical data. Therefore, we
focus on online indoor positioning data without using historical
data. Our experimental studies show that our solution using online
data only is able to find the top-k indoor dense regions consider-
ably consistent with ground truth. In particular, we only keep the
latest report for an object and store such reports for all objects
in an online indoor positioning table (OIPT ), as exemplified in
Table 2.

Table 2
Example of OIPT

objectID location t
o1 l1 t1
o2 l3 t1
o3 l6 t6

The positioning system pro-
duces such reports aperiodically
for an object, and therefore the
time stamps in OIPT are unne-
cessarily the same across objects.
We use tmin to denote the min-
imum time stamp in OIPT , i.e., tmin = min{rec.t | rec ∈
OIPT}. In the example shown in Table 2, tmin = t1. Further,
Vmax denotes the maximum speed of all objects moving in the
indoor space under discussion.

It is noteworthy that the indoor positioning data is of low ac-
curacy [21] compared to outdoor GPS. For example, fingerprinting
based indoor positioning only snaps to a fixed set of preselected
indoor locations when making location estimates. The proximity
based indoor positioning does not report object presence if it is
outside of any sensor’s detection range. Thus, indoor positioning
and the data generated are not continuous but discrete. This is
a significant distinction compared to outdoor GPS where the
location reports are in nature continuous as longitude and latitude
coordinates.
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2.2 Problem Formulation
Our problem formulation starts with indoor regions. Basically,
an indoor region4 refers to a continuous part of indoor space
covered by a geometric shape. For simplicity, we use rectangles
to represent indoor regions when the context is clear throughout
the paper. Nevertheless, our definitions and relevant techniques
support arbitrary shapes.

In a certain data context where we know each object’s exact
location when a density query is issued at time tc, the density of a
region r is simply the number of objects in r divided by r’s area.
However, this simple calculation does not work in our setting.
The difficulty is mainly due to the difference between objects’
positioning time and the query time tc. For any record rec ∈
OIPT , we have rec.t ≤ tc. In general, the reported locations in
OIPT are very likely to be already out-of-date and the objects
may have left their reported locations when the query is issued at
time tc.

The discrete nature of indoor positioning (see Section 2.1)
renders it impossible to know an object’s exact position at an
arbitrary query time tc. We derive an object’s uncertain where-
about at query time tc and quantify indoor region density as
follows. Given an indoor location loc reported at a latest sampling
time tl, its indoor uncertainty region URI(loc, tc, tl) describes
the indoor portions where the object can reach at the current
time tc under the maximum speed constraint Vmax. When the
time context is clear we use URI(loc) for simplicity. Form-
ally, URI(loc) = RangeI(loc, Vmax · (tc − tl)).5 That said,
URI(loc) consists of the indoor portions that are within the

r1

r3

r2

Vmax·(tc-tl)

l1

l2

Figure 1. Indoor Uncer-
tainty Regions

indoor distance Vmax · (tc− tl) from in-
door location loc. Note that this distance
is the maximum distance an object can
move from time tl to time tc.

Example 1. In Figure 1, URI(l1) for loc-
ation l1 is the circular region fully inside
the indoor space, whereas URI(l2) for
location l2 is the shaded part of such a
circular region.

Accordingly, we define object presence that stipulates how an
object should be counted for an indoor region r at time tc.

Definition 1 (Object Presence). For an indoor object o with
a record (o, loc, t) in OIPT , o’s presence in a region r is
defined as φr(o) = Area(URI(loc)∩r)

Area(URI(loc)) .

Object o’s presence φr(o) is zero if its URI(loc) does not
overlap region r. Clearly, φr(o) ≤ 1 always holds for an arbitrary
region r and an arbitrary object o.

So far we have assumed that the object’s possible location in a
given uncertainty region URI(loc) follows a uniform distribution.
However, this straightforward assumption does not capture the
reality well. A more realistic consideration is that the object is
more likely to be close to the reported location loc. In other words,
the probability that the object is located at loc′ ∈ URI(loc) at
time tc decreases if loc′ is farther away from loc. Such a distance
decaying effect reflects the locality of object movement and it is
consistent with the observed evidence in human geography [5].

4. The space context throughout this paper is indoor unless it is explicitly
stated otherwise. Therefore, term region alone may refer to an indoor region
when the context is clear.

5. Indoor range query RangeI(l, δ) returns all indoor portions within the
indoor distance δ from location l [23]; the search may involve multiple doors.

There exist multiple functions to characterize the distance decay-
ing effect for an uncertainty region URI(loc). The computations
of URI(loc)’s area and its intersection with an indoor query
region r depend on the concrete definition of such a distance
decaying function. We give the generic definitions in this section
and detail the distance decaying functions and pertinent object
presence computation in Section 3.3.

With the concept of object presence, we define load that
“counts” the objects for an indoor region.
Definition 2 (Load). Given a set O of indoor moving objects, a

region r’s load is defined as λO(r) =
∑
o∈O φr(o).

Let m ≤ |O| be the number of objects whose uncertainty
regions overlap region r. Note that λO(r) ≤ m always holds,
because each object o ∈ O contributes at most 1 to λO(r).

Now we are ready to define density for an indoor region.
Definition 3 (Density). Given a set O of indoor moving objects,

an indoor region r’s density is τO(r) = λO(r)
Area(r) .

Problem 1 (Top-k Indoor Dense Region Search). Given an
online set O of indoor moving objects, whose latest position-
ing records are captured in an OIPT , and a query set Q of
indoor regions, the top-k indoor dense region search returns
k densest indoor regions in a k-subset Qk ⊆ Q such that
∀r ∈ Qk,∀r′ ∈ Q \Qk, τO(r) ≥ τO(r′).

Our problem formulation does not restrict query regions in set
Q to be indoor partitions. As users like building officers usually
know well what kinds of query regions to be included in Q,
our top-k search allows users to customize semantic-dependent
query regions according to their practical needs. For example,
a query region in Q can be defined as a part of an indoor
partition or a combination of several partitions, as to be discussed
in Section 3.1.3. This flexibility renders the top-k indoor dense
region search very useful in special cases, e.g., to find the densest
zones in a large, open exhibition hall that is a single indoor
partition.

3 UNCERTAINTY ANALYSIS

This section presents a thorough analysis of the uncertainties
involved in our research problem. In Section 3.1, we propose
the concepts of indoor buffer region and indoor core region to
address the uncertainty regions associated with indoor objects.
The concepts are used to derive bounds of indoor region density
in Section 3.2. In Section 3.3, we introduce distance decaying to
uncertainty regions.

3.1 Indoor Buffer Region and Indoor Core Region
3.1.1 Indoor Buffer Region
In the context of free-moving objects, suppose that an object’s
last (or latest) positioning report (objectID , loc, tl) is received
at a past time tl. At the current time tc, the object may be still
at the location loc, or has left. This results in object location
uncertainty—the object’s current location is constrained by a
circular region centered at loc with a radius Vmax · (tc − tl)
where Vmax is the object’s maximum possible speed. Due to the
object location uncertainty, a region r where there was no object
at a past time can contain objects at the current time. However,
such objects cannot come from locations too far away due to the
maximum speed constraint. Instead, they can only come from an
extended region that contains region r. We call such an extended
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region general buffer region or simply buffer region, and give its
definition first in the general context below.

Definition 4 (Buffer Region). Given a past time tp, the current
time tc (tc ≥ tp), and the maximum speed constraint Vmax
for moving objects, a region r’s buffer region ΘB(r, tc, tp) is
a δ-Minkowski region [6] where δ = Vmax · (tc − tp).

In our analysis, both tp and tl represent past time but they
carry different meanings. Put it simply, tl is always associated with
a particular object whereas tp is not. In this sense, a buffer region
ΘB(r, tc, tp) is generic and independent of particular objects. If
we know an object’s tl, we can infer whether the object is currently
in ΘB(r, tc, tp) or not.

Example 2. An example of buffer region is shown in Figure 2(a).
Let object o’s latest position report be (o, loc, tl). If loc 6∈
ΘB(r, tc, tp) and tl > tp, i.e., object o was last seen outside
ΘB(r, tc, tp) at time tl that is later than tp, then object o
cannot be in region r at the current time tc.

Next, we define indoor buffer region as follows.

Definition 5 (Indoor Buffer Region). Given a past time tp, the
current time tc, and the maximum speed constraint Vmax,
an indoor region r’s indoor buffer region ΘB

I (r, tc, tp) is
composed of indoor portions fully contained by r’s buffer
region ΘB(r, tc, tp), and the shortest indoor path from any
point in such a portion to r is fully contained by ΘB(r, tc, tp).

r

Vmax·(tc-tp)

Vmax·(tc-tl) o

r1

Vmax·(tc-tp)

r4

r3r5
r2

(a) General Buffer Region (b) Indoor Buffer Region

Figure 2. Buffer Regions

Generally speaking, r’s indoor buffer region ΘB
I (r, tc, tp) is

the intersection of r’s buffer region ΘB(r, tc, tp) and those indoor
parts from where one can reach r within time interval [tp, tc].

3.1.2 Indoor Core Region

Opposite to indoor buffer regions, we define an indoor region r’s
indoor core region as a reduced region of r from where one cannot
leave r within time interval [tp, tc]. The definition is given as
follows.

Definition 6 (Indoor Core Region). Given a past time tp, the
current time tc, and the maximum speed constraint Vmax,
an indoor region r’s indoor core region ΘC

I (r, tc, tp) is the
portion of r such that the shortest indoor path from any point
in the portion to any of r’s doors is no less than Vmax·(tc−tp).

If we know an object was seen in ΘC
I (r, tc, tp) at a past time tl

after tp, i.e., tl > tp, we can infer that it cannot reach any door of
r and thus is still inside r at the current time tc.

When the time stamps are not of particular interest, we simply
use ΘB

I (r) and ΘC
I (r) to denote r’s indoor buffer region and in-

door core region, respectively. Next, we present how to determine
ΘB
I (r, tc, tp) and ΘC

I (r, tc, tp) for an indoor region r.

3.1.3 Determination
Lemmas 1 and 2 quickly prune irrelevant portions when we
determine an indoor buffer region.
Lemma 1. Given two indoor regions r1 and r2, if r2 is outside

r1’s general buffer region ΘB(r1, tc, tp), r2 cannot be a part
of r1’s indoor buffer region, i.e., r2 6∈ ΘB

I (r1, tc, tp).

Proof 1. Note that ΘB
I (r1, tc, tp) ⊆ ΘB(r1, tc, tp), therefore

r2 6∈ ΘB
I (r1, tc, tp) if r2 6∈ ΘB(r1, tc, tp).

Lemma 2. For indoor regions r1 and r2, if all r2’s doors are
outside r1’s general buffer region ΘB(r1, tc, tp), r2 cannot be
a part of r1’s indoor buffer region, i.e., r2 6∈ ΘB

I (r1, tc, tp).

Proof 2. (Sketch) If all r2’s doors are outside ΘB(r1, tc, tp), they
must be outside ΘB

I (r1, tc, tp) too (Lemma 1). For any point
pt in r2 to reach point pt′ in room r1, it must go through one
of r2’s doors, say dr. As dr is already outside ΘB

I (r1, tc, tp),
pt cannot reach pt′ via dr by time tc.

Example 3. An example is given in Figure 2(b). When we consider
region r1’s indoor buffer region, we first exclude room r3

according to Lemma 1 since it is outside r1’s general buffer
region. Furthermore, we also exclude room r4 according to
Lemma 2 although r4 overlaps r1’s general buffer region.
A moving object cannot reach r1 from r4 within the time
length tc − tp, as r4’s only door is outside ΘB(r1, tc, tp).
In contrast, we include the intersection part of ΘB(r1, tc, tp)
and room r2 since r2 is connected to r1 by a door fully inside
ΘB(r1, tc, tp).

In the example above, excluding rooms r3, r4, and part of
r2 and r5 gives us the shaded portion as shown in Figure 2(b).
However, this does not give r1’s precise indoor buffer region.
Actually, region r1’s indoor buffer region ΘB

I (r1, tc, tp) is the
union of room r1 and part of the shaded portion in the figure.

Next, we elaborate on which parts of the shaded portion
should be included in ΘB

I (r1, tc, tp). We assume that all doors
are bidirectional. Nevertheless, the techniques proposed in this
paper can be extended to handle unidirectional doors. We use
P2D(r) [23] to get the set of doors associated to an indoor
partition r. If a given query region r is exactly an indoor partition,
Lemma 3 tells that it is sufficient to consider r’s doors when we
determine its indoor buffer region ΘB

I (r1, tc, tp).
Lemma 3. An indoor partition r’s indoor buffer region is the

union of r and all indoor portions within indoor distance δ =
Vmax · (tc − tp) from each door associated to r. Formally,
ΘB
I (r, tc, tp) = r ∪

⋃
d∈P2D(r)RangeI(d, δ).

Proof 3. (Sketch) This lemma can be proved by Lemmas 1 and 2,
and the fact that an indoor distance cannot be shorter than the
corresponding Euclidean distance.

Given an indoor partition r, Lemma 4 utilizes the shortest
indoor path to r’s doors to determine its indoor core region
ΘC
I (r1, tc, tp).

Lemma 4. An indoor partition r’s indoor core region is the part
of r that excludes all indoor portions within indoor distance
δ = Vmax ·(tc−tp) from each door associated to r. Formally,
ΘC
I (r, tc, tp) = r \

⋃
d∈P2D(r)RangeI(d, δ).

Proof 4. (Sketch) For any point pt ∈ r and any door d ∈ P2D(r),
if pt /∈

⋃
d∈P2D(r)RangeI(d, δ), pt cannot reach d within

tc − tp and is still contained by r at time tc.
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The precise indoor buffer region for room r1 in Figure 2(b) is
illustrated as the union of r1 and the shaded parts in Figure 3(a).
The precise indoor core region of r1 is illustrated as the shaded
part in Figure 3(b).

r1 r4

r3r5
r2

Vmax·(tc-tp) Vmax·(tc-ti)

o1

o2

o3

o4

r1

Vmax·(tc-tp)

Vmax·(tc-ti)

o3

o4

(a) Indoor Buffer Region (b) Indoor Core Region

Figure 3. Precise Indoor Buffer Region and Indoor Core Region

On the other hand, an indoor region r in a query may
not be equal to an indoor partition. Instead, a query region r
may be a combination of complete and/or incomplete indoor
partitions. Our approach supports user-defined shapes of indoor
query regions. For the simplicity of presentation, we consider
a rectangular indoor region r. A side of r can be: i) a wall
without a door, ii) a wall with a door(s), iii) an open segment
fully inside an indoor partition, or iv) combination of i) to iii).

r1 r4

r3r5
r2

ra

Figure 4. Example of Com-
plex Query Region

Example 4. Figure 4 illustrates a com-
plex query region ra. It is the shaded
region composed of a part of room r1,
a part of room r5, and the whole room
r4. Its left, right and bottom sides are
all walls without doors, whereas its
top side consists of three parts: an
open segment inside room r1, an open
segment inside room r5, and a wall
with a door from room r4.

Algorithm 1 determines an arbitrary region r’s indoor buffer
and core regions. Here, δ is still Vmax · (tc − tp). For r’s each
door d (line 3), variable rm that contains the indoor portion within
indoor distance δ from d (line 4) is included for indoor buffer
region ΘB

I and excluded from indoor core region ΘC
I , respectively

(line 5). For r’s each open segment g (line 6), let rm be the
intersection of g′s δ-Minkowski region (M(g, δ) in line 8) and
g′s containing indoor partition p (line 9). Then rm is included for
ΘB
I and excluded from ΘC

I (line 10). Expansion for determining
ΘB
I is done further outwardly through all accessible doors within

the range of general buffer region ΘB(g) (lines 11–13).

3.2 Bounds of Indoor Density
The inherent uncertainty in indoor positioning data renders it
complex to compute indoor densities. Therefore, we derive upper
and lower bounds of indoor densities by making use of the
concepts of indoor buffer and core regions detailed in Sections 3.1.

We use function COUNT(r) to obtain the number of objects
whose last reported location is contained by an indoor region r.
The following lemma gives the upper and lower bounds (ULB in
short) that involve moving objects within r’s indoor buffer region
ΘB
I (r) and indoor core region ΘC

I (r).
Lemma 5 (Indoor Density ULB).

COUNT(ΘC
I (r))

Area(r) ≤ τO(r) ≤ COUNT(ΘB
I (r))

Area(r) .

Algorithm 1 DetermineIbcRs(Region r, Distance δ)
1: ΘB

I ← r; ΘC
I ← r

2: for r’s each side λ do
3: for each door d on λ do
4: rm ← RangeI(d, δ)
5: ΘB

I ← ΘB
I ∪ rm; ΘC

I ← ΘC
I \ rm

6: for each open segment g on λ do
7: find the indoor partition p that contains g
8: get g’s general buffer region ΘB(g)←M(g, δ)
9: rm ← p ∩ΘB(g)

10: ΘB
I ← ΘB

I ∪ rm; ΘC
I ← ΘC

I \ rm
11: for each door d ∈ P2D(p) and in ΘB(g) do
12: get the shortest indoor distance δ′ from d to g
13: ΘB

I ← ΘB
I ∪RangeI(d, δ − δ′)

14: return ΘB
I , ΘC

I

Proof 5. The ULB is equivalent to COUNT (ΘC
I (r)) ≤ λO(r) ≤

COUNT (ΘB
I (r)). As each object o last seen in ΘC

I (r)
cannot leave r by the current time, such an o’s presence
in region r must be 1. Based on Definition 2, we have
COUNT (ΘC

I (r)) ≤ λO(r). On the other hand, for any
object o last seen at time tl no later than tp, i.e., tl ≥ tp, if o
has contributed to λO(r), its shortest indoor distance to region
r must be shorter than Vmax · (tc− tl). Based on Definition 5,
such an o must be inside ΘB

I (r) at time tl and thus we have
λO(r) ≤ COUNT (ΘB

I (r)). So the lemma is proved.

Lemma 6 loosens the indoor density ULB by using a longer
temporal interval that ends with the current time tc.
Lemma 6 (Temporal Loose ULB). For two past time stamps ti

and tp, if ti ≤ tp we have
COUNT(ΘC

I (r,tc,ti))
Area(r) ≤ COUNT(ΘC

I (r,tc,tp))
Area(r) ≤ τO(r) ≤

COUNT(ΘB
I (r,tc,tp))

Area(r) ≤ COUNT(ΘB
I (r,tc,ti))

Area(r) .

Proof 6. Since ti is older than tp, ΘB
I (r, tc, ti) expands fur-

ther away from region r and ΘB
I (r, tc, ti) is larger than

ΘB
I (r, tc, tp). Likewise, ΘC

I (r, tc, ti) shrinks more inwardly
and is smaller than ΘC

I (r, tc, tp). As a result, we have the
following inequalities λO(r) ≤ COUNT (ΘB

I (r, tc, tp)) ≤
COUNT (ΘB

I (r, tc, ti)) and COUNT (ΘC
I (r, tc, ti)) ≤

COUNT (ΘC
I (r, tc, tp)) ≤ λO(r). So the lemma holds.

Example 5. In Figure 3(a), there are six moving objects and
their most recent location reports and uncertainty regions
are indicated by small dots and dashed circles, respectively.
Suppose that the drawing precisely reflects the situation
at the current time tc, and room r1’s area is ten square
meters. There are two objects o3 and o4 whose uncertainty
regions are fully in r1, and half of object o1’s is in r1.
Therefore, r1’s density is τO(r1) = 2.5/10 = 0.25.
Moreover, r1’s indoor buffer region ΘB

I (r1, tc, tp) is the
union of r1 and the shaded parts. As a result, the indoor
density upper bound is COUNT (ΘB

I (r1, tc, tp))/Area(r1)
= 5/10 = 0.5 > τO(r1). Indicated by the outer rounded
rectangle ΘB(r1, tc, ti) in Figure 3(a), r1’s indoor buffer
region ΘB

I (r1, tc, ti) is larger and contains o2’s reported
location. Thus, we have the temporal loose upper bound as
COUNT (ΘB

I (r1, tc, ti))/Area(r1) = 6/10 = 0.6 >
COUNT (ΘB

I (r1, tc, tp))/Area(r1) = 0.5 > τO(r1) =
0.25. Take a close look at r1 in Figure 3(b), the indoor
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density lower bound indicated by r1’s indoor core region
is COUNT (ΘC

I (r1, tc, tp))/Area(r1) = 2/10 = 0.2 <
τO(r1). Also, the smaller indoor core region ΘC

I (r1, tc, ti)
excludes o4’s reported location, thus we have the temporal
loose lower bound as COUNT (ΘC

I (r1, tc, ti))/Area(r1) =
1/10 = 0.1 < COUNT (ΘC

I (r1, tc, tp))/Area(r1) = 0.2.

3.3 Distance Decaying in Uncertainty Regions
As discussed in Section 2.2, distance decaying is a phenomenon
commonly observed in object movements—the farther a destin-
ation location is, the less likely an object moves to it from its
current location. Such a decaying effect is formally characterized
by a distance decaying function (DDF).
Definition 7 (Distance Decaying Function). Given a reported

location loc, an arbitrary location l, and their indoor distance
δ = distI(loc, l), a distance decaying function (DDF) Γ(δ)
decreases as the indoor distance δ increases.

Example 6. A DDF usually is a monotone nonincreasing function.
Table 3 lists commonly used DDFs. Linear Decay Law (LDL)
describes the functions that decrease linearly as the variable
increases. Function Γ(δ) = 1− δ/D is a basic form of LDL,
where D = maxl∈URI(loc) distI(loc, l) is the maximum
indoor distance that an object can move from loc to an
arbitrary location l inside URI(loc). Inverse 1st Power Law
(I1PL), Inverse 2nd Power Law (I2PL) and Exponential Decay
Law (EDL) are three typical non-linear decaying functions that
decrease rapidly with increasing variables. The Constant Law
(CL) function Γ(δ) = C is insensitive to the variable and
always returns a constant C. CL assumes that object locations
follow a uniform distribution in URI(loc).

Table 3
Example of DDFs

Notation Basic Form Law Name
LDL Γ(δ) = 1− δ/D Linear Decay Law
I1PL Γ(δ) = 1/(δ + 1) Inverse 1st Power Law
I2PL Γ(δ) = 1/(δ + 1)2 Inverse 2nd Power Law
EDL Γ(δ) = e−δ Exponential Decay Law
CL Γ(δ) = C Constant Law

A DDF Γ(δ) differentiates an object’s presence at each
possible location inside URI(loc). Accordingly, we define the
distance decaying version of the object presence (c.f. Definition 1).
Definition 8 (Distance Decaying Object Presence). Given an

indoor query region r, an object o’s indoor uncertainty region
URI(loc) with the distance decaying function Γ, o’s presence

in r is rewritten as φΓ
r (o) =

∫
l∈(URI (loc)∩r) Γ(distI(loc,l))dl∫

l∈URI (loc) Γ(distI(loc,l))dl
.

As φΓ
r (o) ≤ 1, the ULBs derived in Section 3.2 still hold

when φΓ
r (o) is used for computing indoor density.

Discussion Our uncertainty analysis presented in this section is
orthogonal to the detailed shapes of indoor regions and buffer
(core) regions. Algorithm 1 can be adapted to handle an arbitrary
indoor region shape given that its geometry and the door locations
are specified. The density ULBs work for any shapes whose areas
can be calculated. Hence, the search algorithms to be detailed
in Section 4 are also independent of the concrete shapes. In our
implementation, we employ integration techniques to handle the
geometry related computations, e.g., the areas and intersections
of complex indoor regions, and the distance decaying related

computations. Briefly, an indoor (uncertainty) region is divided
into a number of primitive shapes like circles, triangles, and/or
sectors, to which the integral equation method is then applied. We
omit the low-level details here as they are not the focus of our
research.

4 ALGORITHMS FOR TOP-k INDOOR DENSE RE-
GION SEARCH

This section details the algorithms that search for the current top-k
indoor dense regions. Section 4.1 gives the overall framework for
the search. Sections 4.2 and 4.3 propose a one-pass search method
and an improved method, respectively. Section 4.4 compares the
costs of the two methods.

4.1 Overall Framework
We use an R-treeRP to index indoor partitions. For each partition,
a bucket contains the IDs of all objects whose latest reported
location in OIPT overlaps that partition. The OIPT is organized
as a hash table with object IDs as the key. It is noteworthy
that the R-tree RP itself is constructed only once, i.e., it is not
reconstructed for every query since there is no change on the
indoor partitions. In our implementation, we use another thread
to update the OIPT and the object ID buckets corresponding to
indoor partitions, which runs in parallel to the query processing
thread. Upon receiving a positioning report of an object, the
updating thread checks if the object has moved to another indoor
partition since its last positioning report was recorded, and moves
the object ID to the new corresponding bucket if necessary.

Algorithm 2 is the overall framework for finding the top-
k indoor dense regions. It uses a max-heap H to control the
processing order of indoor regions in the query set (line 1), and a
hash table hQ (line 2) to maintain the set of objects involved in
the density computation for a query region r. More importantly,
it makes use of the following pruning rule that is enabled by
Lemmas 5 and 6 in Section 3.
Pruning Rule 1 (Bound Pruning). Given two indoor regions r1

and r2, the following two properties hold:
1) If LowerBound(τO(r1)) > UpperBound(τO(r2)), then
τO(r1) > τO(r2). Moreover, if r1’s lower bound density
LowerBound(τO(r1)) is the k-th biggest in all regions,
region r2 can be safely pruned without having its density
τO(r2) calculated.

2) If τO(r1) > UpperBound(τO(r2)), then τO(r1) > τO(r2).
If r1’s density τO(r1) is the lowest in the top-k results so far,
region r2 can also be safely pruned.

Specifically, Algorithm 2 overestimates as well as underes-
timates a query region r’s density τO(r) both spatially and
temporally. According to Lemma 6, we get the oldest time stamp
tmin = min{rec.t | rec ∈ OIPT} in OIPT , and use tmin
to derive region r’s indoor buffer region ibr and indoor core
region icr (lines 4–7). According to Lemma 5, we overestimate
(underestimate) r’s load by counting all the objects whose last
reported location is in ibr (icr) (line 8 calling Algorithm 3). All
other objects are pruned due to the property of an indoor buffer
region. Subsequently, Algorithm 2 stores the overestimated object
set set> as well as the underestimated object set set⊥ in the hash
table hQ for a query region r (line 9). Also, each lower bound
density is calculated as |set⊥|

Area(r) and added to the set S⊥ (lines 3
and 10). After that, according to the first property in Pruning
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Rule 1, only the regions whose upper bound density |set>|
Area(r) is

no less than the k-th biggest lower bound density in S⊥ should
be further processed (lines 11–14). For each such r, a flag value
OE IBR, and r’s upper bound density are pushed as a single
element into a max-heap H (line 15). The flag value OE IBR is
to indicate that r’s associated density is an overestimate from its
indoor buffer region. This information is needed for subsequent
process, to be detailed in Sections 4.2 and 4.3.

Algorithm 2 TopkIDRs(Indoor query region set Q, Partition R-
tree RP , Online indoor positioning table OIPT , Current time tc)

1: initialize a max-heap H
2: initialize a hash table hQ : Q→ {(2ObjectID , 2ObjectID)}
3: initialize a lower bound density set S⊥
4: tmin ← min{rec.t | rec ∈ OIPT}
5: δ ← Vmax · (tc − tmin)
6: for each region r ∈ Q do
7: ibr, icr ← DetermineIbcRs(r, δ)
8: (set>, set⊥)← COUNT4ibcRs(ibr, icr, RP )
9: hQ[r]← (set>, set⊥)

10: add |set⊥|
Area(r) to S⊥

11: kbound← the k-th biggest in S⊥
12: for each region r ∈ Q do
13: (set>, set⊥)← hQ[r]

14: if |set>|Area(r) ≥ kbound then
15: enheap(H, 〈r,OE IBR, |set>|Area(r) 〉)
16: return Search(H,hQ)

After all unpruned regions have been pushed into the max-heap
H (lines 12–15), the framework calls a search algorithm to find
the top-k dense regions (line 16). We design two versions for the
search. Both versions use the max-heap in the further processing
of query regions, giving priority to the query regions with higher
overestimated density values. For a region r and the set of objects
set> in r’s indoor buffer region, Section 4.2 presents a one-pass
search algorithm that checks all objects in set> in a single pass to
derive the object load for r, and Section 4.3 presents an improved
version that searches in two passes and only derives the object
loads when necessary.

Algorithm 3 overestimates (underestimates) a query region r’s
load based on its indoor buffer (core) region. It uses a depth-first
search (line 2) via the R-tree for the indoor partitions. The load is
overestimated as the count of all objects that are either in a leaf
node fully in ibr (lines 7–9) or having their own reported locations
in ibr (lines 12–15). Also, the load is underestimated as the count
of all objects whose last reported location is in icr (lines 10–11
and 16–17). Algorithm 3 returns the set set> of overestimated
objects and the set set⊥ of underestimated objects (line 3).

4.2 One-Pass Search
One-pass search is formalized in Algorithm 4. It keeps processing
the query regions through the max-heap until the top-k regions are
found. If the query region r deheaped from H is associated with
a density overestimated by counting for its indoor buffer region
(indicated by flag value OE IBR on line 4), the search algorithm
gets the overestimated object set set> and underestimated object
set set⊥ from the hash table hQ (line 5). Note that the involved
objects in set⊥ are certainly in r, and their counts are directly
added to the object load count (line 6). Afterwards, Algorithm 4

Algorithm 3 COUNT4ibcRs(Indoor buffer region ibr, Indoor
core region icr, Partition R-tree RP )

1: set> ← ∅; set⊥ ← ∅; node← RP .root
2: DFS(node)
3: return (set>, set⊥)
4: function DFS(Partition R-tree node node). Depth-first search
5: if node is a leaf node then
6: for each leaf entry le in node do
7: if le is fully contained in ibr then
8: for each object o in le do
9: add o to set>

10: if o.loc falls in icr then
11: add o to set⊥
12: else if le overlaps ibr then
13: for each object o in le do
14: if o.loc falls in ibr then
15: add o to set>
16: if o.loc falls in icr then
17: add o to set⊥
18: else
19: for each child node child in node do
20: if child.mbr overlaps ibr then
21: DFS(child)

continues to update the object load inside region r by only going
through the variable part of objects in set> \ set⊥ (lines 6–11).
Specifically, it calculates the count value according to Definition 1,
by including the presences from all objects whose uncertainty
region overlaps or fully contains region r. After the count value
is obtained for the query region r, the algorithm enheaps region
r to H with a flag value IR and r’s density (line 12). Flag value
IR indicates that the density is already computed for r. When
such a query region r is deheaped in a future iteration (line 13),
r is directly added into the result (line 14). If the result already
contains k regions, the algorithm returns the result (line 15) as
no other query regions can have higher density according to the
second property in Pruning Rule 1.

Algorithm 4 Search1Pass(Max-heap H , Hash table hQ)
1: result← ∅
2: while H is not empty do
3: 〈r, flag, density〉 ← deheap(H)
4: if flag is OE IBR then . Overestimate for ΘB

I (r)
5: (set>, set⊥)← hQ[r]
6: count← |set⊥|
7: for each object o ∈ set> \ set⊥ do
8: if URI(o.loc) is fully contained in r then
9: count← count+ 1

10: else if URI(o.loc) ∩ r 6= ∅ then
11: count← count+ φΓ

r (o)

12: enheap(H, 〈r, IR, count
Area(r) 〉)

13: else . flag is IR and the density is computed for r
14: add r to result
15: if |result| = k then return result

For an encountered query region r, Algorithm 4 checks the
variable part of objects in set>\set⊥ associated to r. It computes
r’s density (lines 4–12) directly in a single pass, which is time-
consuming and may not pay off in case that r’s density is not
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sufficiently high to qualify it for the top-k result. Motivated as
such, we proceed to design an improved search algorithm that
computes density for region r in two passes and the second pass,
which computes the concrete density, is evoked for r only when
the first pass does not rule out r from the top-k result.

4.3 Improved Search
The improved search is formalized in Algorithm 5. For an en-
countered query region r with overestimated density based on its
indoor buffer region (line 4), the improved search algorithm calls
Algorithm 6 to get a tighter upper bound from the count of objects
that may be in r at query time tc (line 6).

We use function OverCount(r) to obtain the number of objects
whose uncertainty region overlaps with a region r. The following
lemma gives a tighter upper bound of r’s indoor density.
Lemma 7 (OverCount Upper Bound).

τO(r) ≤ OverCount(r)
Area(r) ≤ COUNT(ΘB

I (r))
Area(r) .

Proof 7. Based on Definitions 1 and 2, we have λO(r) ≤
OverCount(r). For any object o whose uncertainty region
overlaps with r, given its last report time tl, its shortest
indoor distance to r must be shorter than Vmax · (tc − tl).
Due to Definition 5 and the fact that tl is no older than the
minimum time in OIPT , such an o must be inside ΘB

I (r)
at time tl. As ΘB

I (r) may contain other objects, we have
OverCount(r) ≤ COUNT (ΘB

I (r)). Thus, the lemma is
proved.

Algorithm 5 SearchImproved(Max-heap H , Hash table hQ)
1: result← ∅
2: while H is not empty do
3: 〈r, flag, density〉 ← deheap(H)
4: if flag is OE IBR then . Overestimate for ΘB

I (r)
5: (set>, set⊥)← hQ[r]
6: (count, setu)← OverCount(r, set>, set⊥, tc)
7: if setu = ∅ then
8: enheap(H, 〈r, IR, count

Area(r) 〉)
9: else

10: hQ[r]← (setu,∅)
11: enheap(H, 〈r,OE IR, count

Area(r) 〉)
12: else if flag is OE IR then . Overestimate for r
13: (setu,∅)← hQ[r]
14: count← density ·Area(r)− |setu|
15: count← count+ COUNTu(r, setu, tc)
16: enheap(H, 〈r, IR, count

Area(r) 〉)
17: else . flag is IR and the density is computed for r
18: add r to result
19: if |result| = k then return result

In particular, Algorithm 6 works on the objects returned by the
indoor buffer region based overestimation (Algorithm 3). It adds
the count of objects in set⊥ to the certain counting part (line 1)
and processes each object in set>\set⊥ in a nested loop (lines 2–
6). If an object o’s uncertainty region URI(o.loc) at query time tc
is fully contained in query region r, the counting is incremented by
1 (lines 3–4). If URI(o.loc) only overlaps with r, o’s is counted
in the uncertain part of the counting and o is put into a set setu
that contains all objects that need further processing (lines 5–6).
Last, the sum of the two counts and setu are returned (line 7).

Algorithm 6 OverCount(Indoor region r, Object set set>, Object
set set⊥, Current time tc)

1: countc ← |set⊥|; countu ← 0; setu ← ∅
2: for each object o ∈ set> \ set⊥ do
3: if URI(o.loc) is fully contained in r then
4: countc ← countc + 1
5: else if URI(o.loc) ∩ r 6= ∅ then
6: countu ← countu + 1; add o to setu
7: return (countc + countu, setu)

Back in the improved search (Algorithm 5), if no uncertain
object set is returned (line 7), query region r, a flag value IR, and
r’s density are pushed into the max-heap (line 8). The flag IR
indicates that the density computation is finished for r. Otherwise,
the uncertain object set setu is added into the hash table (line 10),
∅ is included here in order to keep a uniform format in hQ.
After that, r is enheaped with a flag value OE IR (line 11) to
indicate that r’s current enheaped density is an overestimate and
it still has some uncertainty to process. When such a query region
r is deheaped in a future iteration (line 12), Algorithm 5 gets
the certain counting part in order to avoid duplicated counting
(line 14), and calls Algorithm 7 to further process the uncertain
objects.

Algorithm 7 handles those objects whose uncertainty regions
only overlap a given query region r. For each such an object o, the
object calculates how much o’s uncertainty region URI(o.loc) is
inside the query region r (line 3). Finally, the sum of all such
uncertain counts is returned (line 4).

Algorithm 7 COUNTu(Indoor region r, Object set set, Current
time tc)

1: countu ← 0
2: for each object o ∈ set do
3: countu ← countu + φΓ

r (o)

4: return countu

Back in Algorithm 5, the two parts of counts are summed
(line 15) and the query region r is enheaped to H with a flag value
IR and its density (line 16). Flag IR indicates that the density is
already computed for the indoor region r. When r is deheaped
in a future iteration, the process (lines 17–19) is the same as the
counterpart in Algorithm 4.

In summary, Algorithm 5 overestimates the object count for a
query region r in two passes. The two passes call Algorithms 6
and 7 to count the objects whose uncertainty regions are contained
by and overlap r, respectively. Between the two passes, a tighter
overestimated density enabled by Lemma 7 is assigned to r
(line 11 in Algorithm 5) that is between a coarser overestimate
(enabled by Algorithm 3 for r’s indoor buffer region) and r’s
final density. In this two-pass way, we expect to avoid part of
the expensive counting for more uncertain objects as the tighter
overestimated density may be lower than other query regions’ final
densities that are either already computed or to be computed soon.

4.4 Performance Gain by Improved Search

We use TopkIDRs1Pass and TopkIDRsImprd to denote the overall
process that employs the one-pass search and the improved search,
respectively. The crucial part of both processes is the density com-
putation for indoor regions in the query set Q. For conciseness,
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we assume that each query region incurs approximately the same
computational cost, and we useCp to denote such a unit cost in the
search. We intend to capture the performance difference between
these two processes.

Let q = |Q|. Suppose that TopkIDRs1Pass computes the
density for x query regions in the order of r1, r2, . . . , rx before
it returns all the top-k dense regions. Note that k ≤ x ≤ q
and x = k+q

2 . After termination, TopkIDRs1Pass still keeps
x − k query regions with flag IR in its max-heap. Likewise,
TopkIDRsImprd computes or overestimates the density also for
x query regions (although in a different order perhaps) before
it returns the top-k results. After its termination, TopkIDRsImprd
keeps x−k query regions in its max-heap but each of these regions
is with a flag IR or OE IR. The number of regions with either
flag is expected to be x−k

2 .
For a query region, the cost of overestimating its density is

significantly lower than that of computing its concrete density. The
performance gain by TopkIDRsImprd is expected to be x−k

2 ·Cp =
(k+q)/2−k

2 ·Cp = q−k
4 ·Cp. The performance gain increases when

the query region set Q is larger and decreases when more regions
are to be returned. When k equals q, i.e., we need to compute
the concrete density for the entire Q, both processes perform the
same. The brief analysis is consistent with the experimental results
to be shown in Section 5.1.2.

5 EXPERIMENTAL STUDIES

All algorithms are implemented in Java, and run on a Windows 10
Pro PC with a 3.10GHz Core i3 CPU. We evaluate our proposals
using synthetic and real data sets.

5.1 Experiments on Synthetic Data
5.1.1 Settings
Indoor Space. We use a real floor plan of a shopping mall, each
floor taking 60m × 60m with 100 rooms and 4 staircases.6 The
irregular indoor partitions are decomposed into smaller but regular
ones, yielding 141 partitions and 220 doors. We duplicate the
original floor plan ten times to generate a larger floor plan with
1410 partitions and 2200 doors in total. The original stairways
are used as doors to connect the ten duplicates. All the partitions
are indexed by an R-tree for its high flexibility, compared to
alternatives like grids or other spatial indexes, at indexing arbitrary
shapes and layouts of indoor partitions. To speed up the search,
the 10 duplicates are indexed by 10 child node entries at the root
level. The tree fan-out is set to 20 on all other levels. The whole
tree is approximately 7MB and it is kept in memory.

To represent the indoor topology, we use the accessibility
graph as well as the P2D and D2P mappings from a previous
work [23]. These structures allow us to access doors and partitions
quickly by their IDs. Specifically, D2P (dk) maps a door dk to
a pair of partitions pi and pj such that an object can move from
partition pi to pj (or in the opposite direction) through door dk.
Conversely, P2D(pk) maps a partition pk to all the doors through
which an object can enter or leave pk. In addition, the door-to-door
distance matrix [23] is pre-computed to speed up distance-related
operations in our search, e.g., the determination of indoor buffer
and core regions.

Indoor Moving Objects. We generate moving objects in the
large floor plan for a lifespan of two hours using the indoor

6. http://goo.gl/iRbM0Q

mobility data generator Vita [21]. Initially, we distribute 5K to 20K
objects evenly into the entire indoor space. Gradually, new objects
are added to enter the indoor space. The number of entering
objects at every ten seconds follows the Poisson distribution
with mean λ = 1. Object maximum speed constraint is set
to Vmax = 1m/s. An object’s movement follows the random
waypoint mobility model [17]. For the entire two-hour simulation,
we record objects’ exact locations every second and store them in
spatiotemporal trajectories for objects. These trajectories with ex-
act locations and times form the ground truth in our experiments.

OIPT. The OIPT in our experiments is maintained according
to the ground truth as follows. Each object sends updates to OIPT
at varying frequencies. In particular, an object keeps silent for 1
to 20 seconds after it has sent the latest update. An update from
object o consists of a time stamp t and an exact location l, where l
is a random location within the sampling range of 0.5 meter from
o’s exact location at time t. When an update is received by the
OIPT , the old record for the object will be replaced by the new
information.

Queries. The indoor query regions (Q) in a top-k dense region
query are categorized into three groups, as shown in Table 4. When
issuing a query, certain numbers of the three types of query regions
are generated respectively. Tarjan’s algorithm [12] is used to make
sure all portions of a ir3-type query region are connected. Each
query with a fixed set of Q is processed at 10 random online time
stamps within the data set lifespan, i.e., against 10 instances of
OIPT . The average performance results are reported in the paper.

Table 4
Types of Indoor Query Regions in Q

Type Meaning
ir1 An incomplete indoor partition
ir2 A complete indoor partition

ir3

A combination of two or more ir1 regions,
of two or more ir2 regions, or of both types of regions.

It should be a self-connected part.

Other Settings. We also vary other parameters in the exper-
iments, namely k, |O|, |Q| and ∆t. As the difference between
the current (query) time and the minimum time in OIPT ,
∆t = tc− tmin indicates how old the data is for a search request.
We also compare the different distance decaying functions (see
Section 3.3) used in computing object presence and indoor density.
Table 5 lists the parameter settings with default values in bold.

Table 5
Parameter Settings on Synthetic Data

Parameters Settings
k 1, 3, 5, . . . , 15
|O| 5K, 10K, 15K, 20K

|Q| (% of total indoor partitions) 2%, 4%, 6%, . . . , 10%, . . . , 14%
Fractions of ir1, ir2, ir3 in Q 40% , 50%, 10%

∆t (s) 1, 2, 3, 4, 5, . . . , 10
Distance Decaying Function CL, LDL, I1PL, I2PL, EDL

5.1.2 Top-k Search Efficiency
First, we compare the two top-k search methods, namely Top-
kIDRs1Pass and TopkIDRsImprd (see Section 4.4) in terms of
efficiency. Either process runs 20 times for each particular single
setting. We measure the average execution time and the pruning
ratio. The latter is the fraction of moving objects excluded from
the expensive computation of object presence.

As no existing work solves the defined problem in indoor con-
texts, we develop five alternatives to compare with our methods. A
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natural baseline computes the load for each query region r ∈ Q by
directly counting the total number of objects whose last reported
location in OIPT is contained by r. The top-k query regions
with the highest densities are then returned by a full ranking.
This method ignores the location uncertainty in the positioning
data, and we call it directly counting (DC). There also exist
some variant algorithms that employ our indoor density definition.
First, a region-oriented nested-loop method (NLRegion) computes
the density for each query region r ∈ Q by summing up all
moving objects’ contributions (presences) to r’s density, and
returns the top-k regions. The crucial part of NLRegion is that the
algorithm should iterate through all the objects when computing
each region’s density. NLRegion’s major time cost is estimated as
q · CpRegion where q = |Q| and CpRegion � Cp, the unit cost
of our methods to compute r’s density (see Section 4.4). Next,
we develop an object-oriented nested-loop method (NLObject)
that exchanges the orders of the outer loop and the inner loop in
NLRegion. In particular, NLObject iterates through each moving
object contained in OIPT , and calculates its presence in the
query regions from Q. The top-k results are returned after the
object presences are summed up for each query region. NLObject
does not determine an object’s uncertainty region repeatedly
when iterating on query regions and thus is more efficient than
NLRegion. Furthermore, two improved versions of NLRegion
reduce the search space by pruning the objects outside r’s
buffer region. Specifically, NLwgbr uses general buffer regions
(simplified to minimum bounding rectangles for fast pruning) to
prune objects with zero contribution whereas NLwibr uses indoor
buffer regions. Their time costs are estimated as q · CpNLgbr and
q · CpNLibr , respectively, where CpNLgbr > CpNLibr > Cp.
The cost of our methods is upper bounded by x · Cp, where x
(k ≤ x ≤ q) is the number of query regions for which a search
overestimates or computes the density.

We use random queries with the default settings. The results
of efficiency comparison on all implemented methods are reported
in Table 6. Clearly, DC has the lowest execution time and memory
cost since it immediately uses the location reports in OIPT to
compute the densities and omits the computations on uncertainty
regions. However, DC’s effectiveness is very poor, as to be
presented in Sections 5.1.3 and 5.2. In other words, the search
results returned by DC are of very low quality compared to other
methods and the ground truth.

Different from DC, the other methods all consider the location
uncertainty. We call them uncertainty model (UM) based search
methods. Among them, our proposed methods significantly out-
perform all nested-loop alternatives. Compared to our methods,
NLRegion is slower by orders of magnitude, its two improved
versions and NLObject are several times slower. The pruning ratio
explains the reason behind—the bounds of indoor density in our
methods are very effective in pruning objects. Also, TopkIDRsIm-
prd has a higher pruning capability than TopkIDRs1Pass, which is
consistent with the analysis in Section 4.4. On the other hand, our
proposed methods also have lower memory consumptions com-
pared to their alternatives. It is noteworthy that TopkIDRsImprd
uses more memories than TopkIDRs1Pass since it produces more
intermediate data. Moreover, NLwibr requires more memories
than NLwgbr as it has to keep the indoor buffer regions in the
memory.

In the sequel, we omit DC and only compare its effectiveness
with UM search methods in Section 5.1.3. We also omit the
inefficient UM search methods and focus on our proposed search

Table 6
Efficiency Comparison in Default Setting

Algorithms Running time
(millisec.)

Pruning
ratio (%)

Memory
used (MB.)

TopKIDRs1Pass 399.7 81.56 147.8
TopKIDRsImprvd 365.7 85.02 156.1

DC 68.5 - 2.2
NLRegion 148386.2 0 342.5
NLObject 2248.1 0 321.3
NLwibr 1082.2 60.74 68.6
NLwgbr 1597.7 34.85 51.2

methods, i.e., TopkIDRs1Pass and TopkIDRsImprd. We break
down TopkIDRs1Pass’s cost into 2 parts: counting object number
based on the indoor buffer and core regions (COUNT4ibcRs), and
density computation in one pass (COUNT1Pass). Likewise, we
break down TopkIDRsImprd’s cost into 3 parts: COUNT4ibcRs,
counting objects whose uncertainty region is contained in a query
region r and identifying those objects whose uncertainty region
only overlaps with r (OverCount), and computing the latter set of
objects’ presence in r (COUNTu). In the implementation, the max
heap is constructed on the fly for an issued query. We include the
cost of heap construction in the part of COUNT4ibrRs.

Next, we investigate the effect of k by varying it from 1
to 15. The results are reported in Figure 5. Overall, increasing
k makes the execution time grow moderately for both search
methods but never higher than 400 milliseconds. The perform-
ance is thus very competent for online search. In both methods,
COUNT4ibcRs is insensitive to k and costs only a small part of
the total execution time. In contrast, the subsequent COUNT1Pass
and OverCount+COUNTu run longer as k is larger. A larger k
involves more query regions in these phases that compute, rather
than overestimate, the indoor densities. TopkIDRsImprd always
outperforms TopkIDRs1Pass; the former makes relatively fine
overestimates after COUNT4ibcRs in two passes, whereas the
latter directly computes the densities in one pass. The performance
gain shrinks for larger ks, which is again consistent with the
analysis in Section 4.4.
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Further, we fix k = 15 and vary |O| from 5K to 20K. The
results are reported in Figure 6. More moving objects result in
longer execution time for both search methods. The execution
time of COUNT4ibcRs also increases when O is larger, since
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more objects can be in a fixed indoor buffer (core) region. More
objects also cause the subsequent phases to finish in more time,
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as the indoor region density computations involve more objects.
Nevertheless, both methods can still return the top-15 results
in less than 771 milliseconds even |O| is up to 20K, totally
acceptable for online search.

Moreover, we investigate the query region set Q’s effect. The
size of Q is set as varying percents of the total 1410 indoor
partitions. We first use random compositions of the three region
types (Table 4) in each Q, and the results are shown in Figure 7.
The overall execution time of both methods increases markedly
when |Q| increases. For every phase of the search, the time cost
grows stably since more query regions fromQ are processed. Both
methods need to determine the indoor buffer and core regions for
each query region r in Q, and thus the cost of COUNT4ibcRs
grows steadily when Q is larger. Meanwhile, the phases to
compute concrete indoor densities need to process more query
regions and thus their costs also increase. Also, TopkIDRsImprd
outperforms TopkIDRs1Pass more visibly for larger Qs. The
increasing performance gain is again consistent with the analysis
in Section 4.4.
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In order to study the effect of query region types, we use
homogeneous query regions in Qs. The results are shown in
Figure 8. The cost is the lowest for ir1-type since this type yields
smaller indoor buffer (core) regions, whereas ir3-type incurs the
highest cost since this type complicates the determination of
indoor buffer (core) regions by involving more indoor partitions
and doors. The cost for ir2-type is in-between since this type’s
complexity is between the other two.
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Figure 8. Efficiency vs. Types in Q

We further study the effect of ∆t. We choose particular
time stamps to issue the search such that ∆t varies from 1s
to 10s. Referring to the results in Figure 9, both methods incur
significantly increased execution time for larger ∆t. A larger ∆t
means not only a larger indoor buffer region for a query region
r, but also a larger uncertainty region URI (loc) for an indoor
object o. As ∆t increases, the execution time of COUNT4ibcRs
and OverCount grows stably as they are more affected by the
number of objects in the query regions’ indoor buffer regions. In
contrast, the cost of COUNTu and COUNT1Pass increases more
rapidly since they are affected by the objects in indoor buffer
region as well as the enlargement of objects’ uncertainty regions.
Note that the variable part of objects involved in OverCount
and COUNT1Pass also become more as r’s indoor core region

becomes smaller and the density lower bound approaches to zero
when ∆t increases. Nevertheless, both methods can still return
the top-15 results within 920 milliseconds. This shows that our
methods are efficient for online search even when OIPT contains
relatively old positioning information.
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Last, we study the effect of DDFs. The results are shown in
Figure 10. Clearly, TopkIDRsImprd outperforms TopkIDRs1Pass
in all tested cases. The overall execution time increases when
the DDF becomes more complex because a more complex DDF
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Figure 10. Efficiency vs. DDFs

makes it slower to compute
the concrete density for query
regions. Nevertheless, a search
with any of the five DDFs
can return the top-k results
in less than 400 milliseconds.
Taking a deeper look, the exe-
cution time of COUNT4ibcRs
and OverCount stays stable for

different DDFs. A DDF does not affect the estimation of indoor
density; neither does it affect the object pruning.

5.1.3 Top-k Result Effectiveness

We also study the top-k search effectiveness with respect to the
ground truth that is calculated according to the moving objects’
true locations in the trajectories described in Section 5.1.1. As
the UM search methods return the same result, we run Top-
kIDRsImprd at 10 random tcs and compare it with DC in the same
settings. To lower the biases caused by positioning reports, for
each query time tc, we generate 20 OIPT instances by modifying
the positioning reports of the moving objects that update OIPT .
We run TopkIDRsImprd (UM) and DC 20 times at each of the 10
tcs and report their average effectiveness measures.

We consider two metrics. Recall measures the ratio of true
top-k dense regions in the returned top-k results. It is equal to
precision in the top-k search. Kendall coefficient τ is a measure of
rank correlation. In our setting, it captures the similarity between
the ranking of top-k search result (ϕr) and that of top-k ground
truth dense regions (ϕg). Let cp be the number of dense region
pairs (ri, rj) whose rankings in ϕr and ϕg are concordant, i.e.,
ri is before (after or in tie with) rj in both rankings. Let dp be
the number of dense region pairs (ri, rj) whose rankings in ϕr
and ϕg are discordant. The Kendall coefficient is τ = cp−dp

0.5k(k−1) .
If the agreement between the two rankings is perfect (i.e., they
are identical), τ equals 1. In contrast, τ is -1 if one ranking is the
reverse of the other. When ϕr and ϕg do not cover the same set of
objects, we make slight changes to them in order to compare them.
Suppose k = 3, ϕr is 〈A,B,C〉 and ϕg is 〈B,D,E〉. In order
to measure the Kendall coefficient between the two rankings, we
extend ϕr to 〈A,B,C,D,E〉 and ϕg to 〈B,D,E,A,C〉. The
elements we add into either ranking have the same ordering value,
e.g., elements D and E are ranked 4th in the modified ϕr .
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First, we use default values but vary k from 3 to 15 and
|O| from 5K to 20K. The results of effectiveness are reported
in Figure 11. Referring to Figure 11(a), the Kendall coefficient
of both DC and UM increases moderately with an increasing k.
Overall, DC’s Kendall coefficient is lower than -0.13 in all the
tested cases. In contrast, the Kendall coefficient of our search
method is always positive and above 0.68 when k ≥ 9, implying
the high consistency between the ground truth and the results
returned by our search. On the other hand, the cardinality of indoor
moving objects only results in fluctuations of the both methods’
Kendall coefficient due to data randomness. In this regard, our
top-k search approach is not sensitive to the object cardinality.
According to Figure 11(b), the recall of our top-k search is higher
than 0.86 for the most tested cases while DC’s recall is always
less than 0.31. Our search is able to find almost all the densest
indoor regions in most cases. For a fixed |Q|, larger ks tend
to include more ground truth dense regions in the top-k search
results, and therefore the two effectiveness measures improve
when k is increased in our experiments.
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Figure 11. Effectiveness vs. k and |O|

Next, we vary ∆t from 1s to 9s and test the effect of using
different sizes of Q. The results are shown in Figure 12. Clearly,
the Kendall coefficient and recall of UM decrease as |Q| becomes
larger. When more regions are in the query set Q, the search space
becomes larger and more densities (and uncertainty regions) are to
be computed and ranked. Consequently, the search results become
less effective. The Kendall coefficient slightly decreases with de-
creasing ∆t but it clearly stays above 0.72 in all cases, according
to Figure 12(a). A larger ∆t yields larger uncertainty regions for
objects, which makes the ranking of uncertainty regions based
on densities tend to be less close to the ground truth. The recall
overall decreases as ∆t increases, but it is always higher than
0.91, according to Figure 12(b). Thus, our online top-k search is
very effective in finding the correct results even when the OIPT
contains old positioning information that is not updated. On the
other hand, DC’s both measures are very low since it ignores the
location uncertainty.

1 3 5 7 9- 1 . 0
- 0 . 8
- 0 . 6
- 0 . 4
- 0 . 2
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0  ( a )

Ke
nd

all 
Co

eff
icie

nt

∆t  ( s )

 | Q | = 8 %  D C    | Q | = 1 0 %  D C    | Q | = 1 2 %  D C
 | Q | = 8 %  U M   | Q | = 1 0 %  U M   | Q | = 1 2 %  U M

1 3 5 7 90 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0  ( b )

Re
ca

ll

∆t  ( s )
Figure 12. Effectiveness vs. ∆t and |Q|

We further investigate the effect of query region types when
varying ∆t from 1s to 9s. Referring to Figure 13, both effective-
ness measures of UM significantly beat those of DC and are very

high for all tested cases. In particular, UM’s Kendall coefficient is
always above 0.79, and its recall is always above 0.92. Therefore,
our search is very effective regardless of query region types.
Interestingly, UM’s Kendall coefficient when processing ir3-type
query regions is slightly higher than that for the other types. This
indicates that our search is very stable to the changing composition
of query regions. On the other hand, it can be seen that increasing
∆t only slightly deteriorates the search effectiveness of our
proposed method, but almost has no impact on the effectiveness
of DC in the tested cases.
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Last, we investigate the search effectiveness using all default
settings but different DDFs in TopkIDRsImprd. The results are
reported in Figure 14. On the one hand, CL only gets a Kendall
coefficient of 0.22 since the assumption of a uniform URI(loc)
reflects poorly the uncertainty of object movement in URI(loc).
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Figure 14. Effectiveness vs. DDF

In contrast, DDFs LDL, I1PL
and I2PL achieve a Kend-
all coefficient of 0.59, 0.79
and 0.58 respectively. The de-
fault DDF EDL performs the
best, which achieves a Kend-
all coefficient of 0.82. On the
other hand, EDL is still the
best in terms of the recall.
These results show that, by considering the distance decaying
effect in URI(loc), the effectiveness of our top-k search improves
significantly. In particular, it clearly pays off to introduce the
complex EDL in computing object presence and indoor density.

5.2 Experiments on Real Data

In this part, we evaluate the top-k result effectiveness using real
data collected in a university building. The indoor space for the
experiments is a floor of 18m × 24m with 14 partitions and
16 doors. A Wi-Fi based indoor positioning system is deployed,
which offers a positioning accuracy around 4 meters. We collect
ground truth trajectories as well as the Wi-Fi positioning data for
35 persons who move according to their daily behaviors. Due to
the actual floor use, we use ir2-type for all query regions in Q
in the experiments. As the number of partitions is small, we set
k = 5, and vary ∆t from 3s to 8s and |Q| from 40% (6 query
regions) to 100% (14 query regions).

The effect of changing |Q| and ∆t on the effectiveness of the
top-k search is shown in Figure 15. Clearly, our proposed UM
method outperforms DC significantly in both measures of all the
tested cases. An interesting case happens when |Q| = 40%. As
five of the six query regions are returned to form the search result,
DC’s Kendall coefficient and recall are both very high. However,
the two measures decrease rapidly when we increase |Q|. Take
a close look at UM, its Kendall coefficient in Figure 15(a)
decreases with larger |Q| as more query regions are involved in the
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search. Still, the Kendall coefficient is very close to 0.7 when all
partitions are used as query regions. On the other hand, the Kendall
coefficient decreases with larger ∆t values. When ∆t increases,
an object’s uncertainty region becomes larger, which reduces the
accuracy of indoor densities computed in the top-k search. Thus,
the search effectiveness tends to decrease. UM’s recall is reported
in Figure 15(b). Again, larger |Q|s involve more query regions in
the search, and larger ∆ts lead to larger uncertain regions. Both
factors render it more difficult to find the top-k dense regions, and
thus the recall decreases. Nevertheless, UM’s recall is still around
0.78 even all of the partitions are used as the query regions.
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Figure 15. Effectiveness vs. ∆t and |Q| on University Data

Next, we fixed k = 5, |Q| = 40% and ∆t = 5s, and test
the effect of using different DDFs. The results are reported in
Figure 16. Apparently, applying CL results in very poor search
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Figure 16. Effectiveness vs. DDF
on University Data

effectiveness since assuming
uniform uncertainty regions is
oversimplified. Interestingly,
I2PL leads to a comparable
Kendall coefficient and even
slightly better recall in com-
parison with EDL. The uni-
versity environment we use is
relatively small and features

many obstacles, creating many fixed indoor paths with different
short lengths. This case renders I2PL very good at capturing the
distance decaying effect in the movements of persons collecting
the data, but leaves less room for more complex DDFs to play a
role. Nevertheless, the default EDL is overall the best in that it
helps achieve excellent effectiveness.

6 RELATED WORK

Querying Indoor Space Moving Objects. Indoor spaces are
modeled [16], [19], [23], [28], [29] differently than outdoor
spaces. Also, indoor positioning data is different than outdoor GPS
data. Therefore, managing and querying indoor moving objects
call for novel techniques.

Yang et al. [32] study continuous range monitoring over
indoor moving objects tracked by RFID-like indoor positioning
technologies. In particular, moving object positions are reported
as the detection ranges of relevant positioning devices (e.g., RFID
readers) that detect the objects. In the same setting, the authors
study k nearest neighbor queries on indoor moving objects [33].
Note that both works [32], [33] return uncertain query results as
object locations are unknown when they are not in any RFID’s
detection range. In order to improve the query result quality,
Yu et al. [35] propose a particle filter based method to infer
the undetected locations of RFID-tracked indoor moving objects.
Unlike these studies, our work on indoor densities does not assume
uniform distributions of locations in an object’s uncertainty region.

Xie et al. [30], [31] propose techniques for processing indoor
distance-aware spatial queries and joins over indoor moving
objects whose positions are reported as probabilistic samples.
The indoor location uncertainty handling techniques in [30], [31]
focus on capturing and computing the uncertain indoor distances
between query locations and moving objects. Working for the
data format and problems different from those in this paper, the
techniques in [30], [31] are not applicable to the search of indoor
dense regions.

Ahmed et al. [2], [3] study offline indoor density queries
by searching historical RFID indoor tracking data. Our work is
different in several aspects. First, our work is not specialized only
for RFID indoor tracking data. Second, our work addresses online
search using the current data. Third, our work defines density
with respect to the uncertainties in the positioning data whereas
works [2], [3] consider no uncertainty when defining the density.
Fourth, our work finds top-k dense geometric indoor regions but
works [2], [3] return indoor semantic locations with densities
higher than a threshold. Also using historical indoor RFID data,
a recent work [24] finds the most frequented indoor POIs in the
past. However, the techniques in work [24] are for historical data
and cannot be applied to the online search studied in this paper.

Density Queries in Outdoor Settings. Assuming Euclidean
spaces, Tao et al. [27] propose techniques to count spatio-temporal
objects within a given spatial window during a given historical
time interval. The proposed techniques are inapplicable to the
indoor dense region problem in this paper because they do not
support indoor regions and topology. Li et al. [22] propose
techniques to cluster linearly moving objects in outdoor spaces.
The proposed techniques do not apply to our setting where
indoor object movements cannot be captured by linear models.
Yiu and Mamoulis [34] propose density based and hierarchical
methods to partition and cluster static objects on a spatial network.
Their proposal does not support indoor regions and topology, and
therefore does not solve our research problem.

Hadjieleftheriou et al. [8] formulate snapshot and period
threshold density queries over outdoor objects moving according
to known linear functions. Jensen et al. [15] study snapshot dense
region queries in a Euclidean plane where objects move linearly. In
order to improve the query result quality, Ni and Ravishankar [25]
redefine the density and use small square neighborhoods to ap-
proximate arbitrary outdoor regions. In a similar setting, Hao et
al. [9] study continuous density queries. These proposals [8], [9],
[15], [25] are unsuitable for our problem because indoor objects in
our setting move in unknown manners other than linear functions
and the indoor topology is more complicated than the outdoor
counterpart.

Huang and Lu [13] study online density region queries on
moving objects in Euclidean spaces whose positions are approx-
imated as sensor detection ranges. In the context of road networks,
Li et al. [20] work on finding traffic density-based hot routes from
historical trajectories, and Lai et al. [18] study continuous dense
segment monitoring where object positions are described as offsets
to their road segment ends. In contrast, the indoor moving object
positions are captured as discrete indoor locations in our research.

7 CONCLUSION AND FUTURE WORK

This research tackles the problem of finding the current top-k
indoor dense regions from a set of user-defined query regions.
Our approach uses online indoor positioning data that contains a
latest indoor location report for each moving object. We design
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an appropriate indoor density definition amenable to the object
location uncertainty caused by the discrete indoor positioning.
We thoroughly analyze the data uncertainties with respect to
the top-k search, and derive upper and lower bounds of indoor
densities. The analysis outcomes enable us to devise efficient
search algorithms. We conduct extensive experimental studies on
synthetic and real data. The results demonstrate that our search
algorithms are efficient, scalable, and effective. The top-k indoor
dense regions returned by our search are highly consistent with
ground truth, although we use online data only and assume no
extra knowledge about the objects.

For future work, it is interesting to study continuous indoor
density queries and indoor object clustering by applying the tech-
niques proposed in this paper. Also, it may be possible to improve
indoor density computing by learning indoor movement models
from historical data. Moreover, it may make sense to compare
our approach with alternatives for densities, e.g., computer vision
and crowdsourcing, through interdisciplinary efforts with extra
investment on devices and crowds.
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