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Abstract— Microsoft Kinect sensors are being widely used as 
low-cost marker-less motion capture systems in various kinematic 
studies. Previous studies investigated the reliability and validity of 
Microsoft Kinect sensors by employing marker-based motion 
capture systems. Both systems employ IR emitters and detectors 
to track human posture and physical activities. This paper 
hypothesizes that the motion capture systems may interfere with 
Microsoft Kinect One sensor and influence the sensor’s 
performance in tracking the skeleton. Hence, this study 
investigated the impact of a motion capture system on the 
Microsoft Kinect v2 skeleton algorithm using a mannequin in the 
presence of eight Qualisys Oqus 300/310 cameras and 
retroreflective markers. It was found that the motion capture 
system introduced a destructive impact on the Microsoft Kinect v2 
skeleton tracking algorithm. In addition, it was observed that 
retroreflective markers placed near the joints caused the 
Microsoft Kinect v2 to give an incorrect reading of estimate the 
joint position. The motion capture cameras thus caused a time-
varying distortion of the Microsoft Kinect estimate of the joint 
position. It is believed that the inference can be reduced by 
decreasing the number of markers and avoiding facing the motion 
capture cameras in sight of Microsoft Kinect v2. 

 
Index Terms— Microsoft Kinect sensor, Qualisys motion 

capture system, RGB-D sensor, mutual interference, experimental 
noise analysis.  

 

I. INTRODUCTION 

ICROSOFT Kinect sensors are considered to be one of 
the most successful marker-less human physical activity 

trackers. The Microsoft Kinect sensors are low-cost and 
portable compared to marker-based motion capture systems. 
Consequently, they have attracted researchers’ and developers’ 
interests to use these sensors in various research areas, such as 
robotics and navigation [1], [2], animal studies [3], agriculture 
[4], physical activity and rehabilitation [5]–[7], fall detection 
[8], gaming and virtual reality [9]. In addition, Microsoft Kinect 
sensors have been proposed for use in a telerehabilitation 
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program to track users’ physical activities [10], [11]. Previous 
studies introduced a post-processing algorithm to generates a 
3D model of the tracked skeletons based on the acquired depth 
images [12]–[14]. 
Several SDKs were developed for Microsoft Kinect sensors to 
estimate the position of each joint derived from the mentioned 
algorithms [15]–[17]. The Microsoft Kinect SDK human joint 
skeleton algorithm replicates 20 positions in  each detected 
skeleton in Kinect v1 (Kinect Xbox 360) [18] and 25 positions 
in Kinect v2 (Kinect Xbox One) [15]. 
Although several studies evaluated the validity and reliability 
of the Microsoft Kinect v2  skeleton estimation using marker-
based motion capture systems as a golden standard system 
[19]–[27], none of these studies investigated or reported any 
distortion in the estimated joint positions. The majority of these 
studies employed Vicon [19], [20], [33], [34], [21], [26]–[32], 
BTS SMART-DX [22], [35], or Qualisys [24], [36], [37] 
motion capture systems that all utilize reflective markers.  
Microsoft Kinect v2 estimates the depth information based on 
time-of-flight (ToF) principle using infrared (IR) emitters and 
detector [38]. While the majority of marker-based motion 
capture systems estimate the position of retroreflective markers 
in the space using captured IR images from multiple cameras 
surrounding the region of interest [39]. Hence, different IR 
sources might cause cross-system interference.  
Naeemabadi et al. [40] showed  Microsoft Kinect v2 is using IR 
projectors emitting ray with 850nm wavelength. They remarked 
Qualisys motion capture system interferes the depth images 
captured by the Microsoft Kinect v2, while they are utilized 
simultaneously. 
Therefore, this study is aimed to investigate the possible impact 
of the motion capture systems on the Microsoft Kinect 2 
skeleton algorithm and providing possible solutions to reduce 
the potentially destructive impact on the Microsoft Kinect v2 
recordings. 
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II. MATERIALS AND METHODS  

A. Procedure 

In this study, a steady human posture was provided using a 
mannequin with bendable joints. The mannequin surface was 
made of polyurethane foam with the colored plush surface. It 
was dressed in black tight training clothes and placed at the 
center of the motion lab, surrounded by eight Qualisys Oqus 
300/310 cameras. A Microsoft Kinect v2 sensor was mounted 
on a tripod (1.2m from the floor) and placed approximately 
2.5m from the mannequin, which is within the recommended 
range for tracking human skeleton. The Kinect v2 sensor 
viewing area was adjusted to where the mannequin was placed 
at the center of the RGB camera and facing the camera (see Fig. 
1). 

A set of retroreflective markers were attached to the 
mannequin. The landmarks were chosen based on previous 
studies, focusing on tracking the chest, spine, head, hip, upper 
and lower extremities kinematics [41], [42]. An additional 20 
markers were placed on the estimated joint positions by the 
Kinect sensor in order to track the position of the joint using the 
motion capture system. 

 

 
 
Fig. 1.  Experiment’s setup. (a) Laboratory dimensions and position of Oqus 

cameras, mannequin and Kinect sensor, are drawn in the figure. The Kinect 
sensor was mounted on a tripod 1.2m from the floor and placed approximately 
2.5m from the mannequin. The central position is defined where the mannequin 
is standing in the center of the Kinect RGB camera. (b) The central position of 
the mannequin is shown with yellow color. Eight horizontal translations of the 
mannequin in each side (right and left) are shown with green and blue colors. 

 

The mannequin posture remained fixed during all recordings, 
while 16 horizontal movements (in the coronal plane of the 

mannequin) were performed, moving away from the center of 
the room (seen by both the Kinect and the Qualisys motion 
capture system) in both right and left directions.  

In each mannequin position, the recordings were repeated in 
the absence and presence of the Qualisys Oqus cameras (active 
noise source) and with and without the reflective markers 
(passive noise source) in order to evaluate the impact of the 
possible noise sources on the performance of the skeleton 
algorithm. Hence, the data were collected for 17 different 
mannequin positions, and in each position, four different data 
recordings were performed. Consequently, a total of 68 
different combinations of mannequin position-configuration 
were recorded. 

In this study, the possible noise sources were divided into 
passive and active noise sources in order to estimate the impact 
and behavior of each noise source individually. Retroreflective 
markers were assumed to be the source of passive noise, while 
the motion capture cameras were regarded as active noise 
sources. 

B. Data Collection 

The Qualisys motion capture system was utilized as a golden 
standard marker-based motion capture system. The recordings 
were captured using Qualisys Track Manager (QTM) 2.9 (build 
1697) with a sampling frequency of 250 Hz and exposure time 
of 200 µs (Qualisys AB, Gothenburg, Sweden). The 25 joint 
positions (estimated by Microsoft Kinect SDK v2.0) were 
captured and stored using a Microsoft Kinect v2 sensor with a 
sampling frequency of 30 Hz [15]. A custom-built TCP/IP 
based software program was developed to trigger simultaneous 
data acquisition on both systems. 

C. Data Processing 

The absolute position of mannequin joints may vary slightly 
between each pair of recordings at the same position; therefore, 
an alternative estimation was utilized. Although the absolute 
position of each joint might change, the relative positions of 
each pair of joints were expected to remain intact. By assuming 
that the mannequin posture did not change during the 
recordings, it can be concluded that the length of each bone 
between the two joints and the angle of each joint remained 
constant. Accordingly, the bone length and joint angle were 
assumed to be independent of absolute joint position and 
constant. 

Seventeen joints out of 25 joints from Microsoft SDK version 
2.0 skeleton algorithm were utilized to assess the effect of the 
noise source on the estimated joint positions. The head, neck, 
spine, shoulders, elbows, hip, knees, ankles and wrist joints 
were used in the analysis, while the feet, hands and thumb joints 
were excluded. Fig. 2 shows the joints included and the 
corresponding virtual bones between each joint pair in this 
study. 

The length of each bone (��,�
� ) can be calculated by 

measuring the Euclidean distance between each two joints. 
Similarly, the angle between each pair of bones (�

(��,�
� ,��,�

� )
) can 

be estimated by calculating the angle between each of the two 
bones. In this study, neck, shoulder, hip, and knee joint angles 
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were compared. A preliminary investigation showed that the 
positions of the joint and bone length and joint angles in the 
presence of noise source did not have a normal distribution 
(Shapiro-Wilk normality test p< 0.05). Therefore, the median 
position (M) of the joints and interquartile range (IQR) were 
utilized to measure the influence of noise (see Fig. 3a, 3b, 3c). 

 
Fig. 2. The seventeen chosen joints and corresponding sixteen virtual 

bones. The joints’ names are shown with blue circles, while the name of each 
bone is shown in black lines 

Each pair of recordings was compared by calculating the 
difference between the median (M) bone length and the ratio of 

interquartile ranges (IQR) of bone length. The difference of 

bone lengths in each paired recording is shown as �������,�
� � 

(see equation 1), and the ratio of IQRs in the presence and 

absence of noise in shown as ��������,�
� � (see equation 2). 

 

���� ���,�
�

�
� =  ����������,�

� � − ����,�
� �� (1) 

��������,�
� � =

��������,�
� ��

�������,�
� ��

 (2) 

 

Where, ���������,�
� � and ����,�

� � are median length of the 

bone in the presence and absence of noise source, while 

�����������,�
� � and ������,�

� � represent the IQR of the bone 

length in each recording whether or not noise source is 
involved. Accordingly, the difference of medians 

���� ��
(��,�

� ,��,�
� )

 � and ratio IRQs ����� ��
(��,�

� ,��,�
� )

 � can be 

measured for the angle of the joints. 

III. RESULTS 

A. Impact of Passive Noise Sources  

The impact of the passive noise source in 17 positions and 16 
bones was evaluated. A total of 272 bone-positions were 
compared in the presence and absence of the passive noise. 

The results showed that the femur bone was more influenced 
by the passive noise sources than other bones. However, the 
unexpected variation of bone (ratio of IQRs) was low (except 
for the right radius at 50cm right translation and left radius at 
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Fig. 3. Estimate skeleton captured by the Kinect v2 sensor. (b-d) Distribution of the neck joint in the recording with and without the contribution of the 
active noise, represented in red and blue colors, respectively. The planes reflect anatomical human body planes, and the axis reflects the Microsoft Kinect 
local coordinates. (e) Distribution of right femur bone length in the absence of noise sources. (f) Distribution of right femur bone length where reflective 
markers involved as a passive noise source. (g) Corresponding point cloud of neck joint position in the space with and without the contribution of the active 
noise. 
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10cm right translation, where the ratios of IQRs for these bone-
positions were 108 and 44, respectively). Fig. 4 compares bone 
length for four different bone-positions in the presence and 
absence of passive noises. 

Fig. 4 represents four different possible effects of passive 
noise on bone length. In general, the passive noise may cause 
both considerable bone change and variation, as shown in Fig. 
4a. In the majority of bone-positions and mostly in femur bones, 
only considerable steady change in bone length due to passive 
noise has been observed (see Fig. 4b). In a few bone-positions, 
the bone lengths did not significantly change, but very high 
variation in bone length were observed (see Fig. 4c). Some of 
the bone-positions were not influenced by the passive noise, 
such as the left fibula in the center position, shown in Fig. 4d. 

Similarly, the impact of the passive noise source on seven 

joint angles in 17 positions were evaluated. The results indicate 
that the upper limb joint angles were more affected by the 
presence of the passive noise source than lower limb joint 
angles. The left shoulder joint in center position showed the 
greatest change in the estimated angle, and the right hip angle 
at 50cm right translation showed the highest variation 
compared to the absence of passive noise sources. 

B. Impact of Active Noise Sources 

Fig. 5 illustrates four different effects of the active noise on 
the bone length in different bone-positions. 

As depicted in Fig. 5, neck, clavicle, and humerus bones were 
more affected by the active noise source (Fig. 5a). Moreover, in 
the central positions of the mannequin (5 cm and 10 cm 
translations), the higher impact of active noise sources were 
recorded. The results indicated that the highest distortion was 

 
 
Fig. 4. Comparison of the impact of the passive noise sources on bone length in four different bone-positions. Blue dots show bone length where the noise 
sources were not involved in the recordings, and red dots represent the bone length in the presence of the passive noise sources. The values in the square 
brackets represent the median and IQR of each recording. (a) Left radius bone in 10cm right translation, where the difference in bone length is 9.4mm, and 
the ratio of IQR is 44.2. (b) Right femur in 25cm right translation, where the difference in bone length is 86.6 mm and the ratio of IQR is 2.2 (c) Right 
femur in 10 cm left translation, where the difference in bone length is 3.9 mm, and the ratio of IQR is 8.6 (d) Left fibula in central position, where the 
difference in bone length is 0.7 mm and the ratio of IQR is 0.9. 
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in the neck and left clavicle bones in 10 cm right translation.  
The results showed that the upper limb joints were more 

affected by the active noise source rather than the lower limbs. 
The left shoulder at 20 cm left translation had the highest 
change and the neck joint in the 10 cm right translation had the 
highest variation in terms of measurement in the absence of 
active noise. 

The results show that the neck, neck-spine shoulder, spine 
shoulder/mid and clavicle bone length had the same periodic 
behavior, with roughly 45-second intervals (see Fig. 5a). 
However, the intensity of variation might be lower, as can be 
seen in Fig. 5b. Very few recordings introduced a high variation 
in bone length and a low bone length change (see Fig. 5c). 
Based on the results, the remaining bone-positions were less 
affected by the active noise (see Fig. 5d). 

C. Investigating Recorded IR and Depth Images 

The captured IR images showed the retroreflective markers, 
and the Qualisys Oqus camera caused the bright regions around 
the object (see Fig. 6c). The live video stream of IR images 
indicated changes in the brightness levels of pixels around the 
camera, while the brightness of those pixels representing 
positions of retroreflective markers remained constant. 

The corresponding depth images indicated that the Microsoft 
Kinect SDK v2.0 was not able to estimate the depth of those 
bright areas. As a result, several areas of unknown depth were 
observed due to the noise sources (see Fig. 6d). The area of 
unknown depth surrounding the Qualisys Oqus camera (next to 
the mannequin’s neck) was altered in terms of a number of 
pixels and area size. 

 
Fig. 5. Comparing the impact of active sources on bone length in four different bone-positions. Blue dots show bone length where the noise sources were 
not involved in the recordings, while red dots represent the bone length in the presence of active noise sources. The values in the square brackets represent 
the median and IQR of each recording. (a) Left clavicle bone in 10cm right translation, where the difference in bone length is 15.8 mm, and the ratio of IQR 
is 17.6. (b) Right clavicle in 10 cm right translation, where the difference in bone length is 8.3 mm, and the ratio of IQR is 2.8. (c) Left radius in 20 cm left 
translation, where the difference in bone length is 2.0 mm, and the ratio of IQR is 15.5. (d) Right radius in 10 cm right translation, where the difference in 
bone length is 0.0 mm, and the ratio of IQR is 1.1. 
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IV. DISCUSSION 

This study investigated the effect of active and passive noise 
sources introduced by a motion capture system on the Microsoft 
Kinect SDK v2.0 skeleton algorithm, and the impact of 
distortion were assessed.  

The findings show that the active noise source (Qualisys 
Oqus cameras) may change the Euclidian distance between two 
estimated joints up to 15 mm, while the changes in bone length 
due to the passive noise source (retroreflective markers) may 
exceed 80 mm. As a result, we may assume that the passive 
noise sources cause a greater change between two joint 
distances (bone length) than do the active noise sources. 

The results showed that spine shoulder-mid, spine mid-base, 
femurs and fibular bones were more influenced by the passive 
noise in almost all the positions. Having examined the results 
appears that the Microsoft skeleton algorithm is trying to 
compensate for the induced error and avoid propagation error 
to the other estimated joints. In addition, it seems that the 
Microsoft Kinect SDK v2.0 skeleton algorithm is trying to 
avoid estimating the joints’ position precisely onto the area of 
unknown depth. Therefore, the joints were shifted from the 
unknown depth area into the nearest possible area (see Fig. 6b, 
where the joints are shown with purple arrows). Consequently, 
length of spine shoulder-mid and spine mid-base bones were 
distorted. 

Based on the results, it seems that the passive noise source, 
in general, has a stationary impact on the estimated joint 
position. As a result, most of the estimated bone length did not 
vary during the recordings (both in presence and absence of the 
passive markers). 

The raw data indicated that elbow and wrist joints in the 
presence of the passive noise have either an increase or decrease 
in length variation ratio. This is most likely a result of the fact 
that the joints were surrounded by multiple areas of unknown 
distance (see Fig. 6d); therefore, the ratio of variation in radius 
bone length is estimated as either too high or too low due, 
respectively, to fluctuation between boundaries of unknown 
depth areas or restricting between unknown depth areas. The 
same results were also obtained for knee joints. Therefore, it 
can be concluded that the reflective markers which surround 
joints (purposed in some landmarks, such as the Helen-Hayes 
marker set [43]) might lead the Kinect skeleton algorithm to 
provide an inaccurate estimate of corresponding joints. 

By examining the impact of active noise, it can be concluded 
that the noise influence depends on the position of the 
mannequin. The result illustrates that in the near central 
translations (5 and 10 cm horizontal translations) head, neck, 
spine-mid, spine-shoulder, and shoulder joints had higher 
displacement and variation. As a result, length of neck, clavicle 
and humerus bones were highly influenced by the active noise 
source. 

Having examined Fig. 6a, it can obviously be noticed that 
one of the active noise sources (which was behind the 
mannequin neck in the nearly central position) appeared on the 
right side of the mannequin neck leading to a slightly left-move 
in the detection of the mannequin. As a result, the joints’ 
position (which were nearby the unknown depth areas) were 
shifted (see Fig. 6b, where the joints are marked by green 
arrows. 

The impact of interference on the mediolateral plane (x) and 
vertical plane (y) were increased when one of the Qualisys Oqus 
cameras was in direct sight of the Kinect sensor. Evidently, 

 
 
Fig. 6. A record of Microsoft Kinect v2 in absence and presence of noise sources while mannequin was placed in 10 cm translation to the left. (a) RGB 
record in the absence of active and passive noise sources, yellow circles represent the center of estimated joints position by Microsoft Kinect SDK v2.0 
skeleton algorithm. (b) RGB record in the presence of the active and passive noises were interfering with the Microsoft Kinect sensor and the estimated 
joint positions. The green arrows show the joints are affected by the active noise and the purple arrows show the joint positions are affected by the passive 
noise. (c) the corresponding IR record in the presence of the active and passive noises. (d) corresponding estimated depth map in the presence of the active 
and passive noises. (The black pixels represent areas of unknown depth). 
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light interference appears to be the main reason for the 
distortion, and the interference may stem from identical light 
wavelengths. Hence, both Microsoft Kinect v2.0 sensor and 
Qualisys Oqus cameras use 850 nm wavelength. The Microsoft 
Kinect v2.0 uses intensity modulation with three different 
frequencies [44], [45], while the Qualisys motion capture 
system employs time-division multiplexing between several 
cameras. Therefore, the destructive noise seems to be a result 
of the timing between two systems, which may also explain 
why the distortion seemed to vary over time. 

The results showed that the passive noise source caused 
lower bone length variation (RoIQR) in comparison to the 
active noise, while larger changes in bone length (Bias) were 
observed. 

This study showed the presence of a marker-based motion 
capture system interfere with the Microsoft Kinect v2 skeleton 
algorithm. However, Giblin et al. [46] reported that they did not 
observe any interaction between Microsoft Kinect v2 and the 
Vicon motion capture system. However, it remains unknown 
how interference between the two systems was evaluated. 

Vicon cameras can be equipped with 875 nm, 780 nm, or 623 
nm LED strobes; therefore; it is difficult to evaluate the exact 
distortion on Kinect recordings in the individual reports. 
However, the passive noise source may have shown its 
influence on the recordings. Hotrabhavananda et al. [33] 
evaluated the Kinect v2 depth and skeleton data, while the 
subjects were asked to perform three clinical evaluation tasks. 
Gaddam et al. [47] used three Vicon MX cameras to evaluate 
the Kinect SDK v2.0 and with the Vicon cameras in direct sight 
of the Kinect. Moreover, Muller et al. [29] introduced a marker-
less gait assessment system with six Microsoft Kinect v 2.0 
sensors. They did not report any distortion introduced by the 
motion capture system. 

Eltoukhy et al. and Oh et al. [22], [35] used a Smart DX-7000 
BTS motion capture system that used an 850 nm LED strobe, 
and this might have had a negative impact on the Kinect 
accuracy. It might be argued that there was a low consistency 
between the two systems in the study. Woolford et al. [24] used 
the Qualisys ProReflex system and reflective markers to assess 
Microsoft Kinect v2 accuracy for monitoring physical 
activities. However, Qualisys ProReflex cameras emit 880 nm 
strobe, which might still contribute as an active noise source in 
the Kinect v2 recordings. Alessandro et al. [36], [37] employed 
12 Qualisys Oqus cameras and 39 passive retro-reflective 
markers in two studies to investigate the performance of the 
Microsoft Kinect v2. It seems that their results may be 
influenced by investigated interference, as they did not propose 
a solution to avoid it. 

The current study had two methodological limitations. First 
only the effect of noise sources on the Microsoft Kinect SDK 
v2.0 skeleton algorithm was evaluated; however, Sarbolandi et 
al. [44] showed that the Microsoft SDK had overall better 
performance. Second, the limited positions and static postures 
might have impacted interference, giving different in dynamic 
postures. 

V. CONCLUSION 

In this study, the influences of passive and active noise 
sources on the Microsoft Kinect SDK v2.0 skeleton algorithm 
was evaluated. The findings indicate that the estimated position 
of joints was sensitive to the projected IR lights from the 
Qualisys motion capture system and retroreflective markers. In 
addition, the results showed that the presence of the active noise 
sources in proximity to any of the estimated joints caused 
inaccuracy in finding the optimized position. Moreover, the 
markers misled the skeleton algorithm, causing it to 
inaccurately estimate the position of those joints surrounded by 
the retroreflective markers. However, the accuracy and 
precision of the Microsoft Kinect v2 was frequently evaluated 
by a marker-based motion capture system; none of the previous 
studies reported any interference between the two systems. It 
can be concluded that the accuracy and precision of the 
Microsoft Kinect v2 might be higher in the absence of the 
interferences. Therefore, it can be hypothesized that the 
Microsoft Kinect v2 skeleton tracking algorithm might have 
higher accuracy than the reported value in the previous studies. 

The impact of interference might be reduced in the following 
ways.  

 First, avoiding facing the active noise source insight of 
Microsoft Kinect. 

 Second, reducing the number of the active sources (IR 
strobes)  

 Third, decreasing the number of reflective markers to the 
possible minimum number,  

 Finally avoid placing the markers around or on the 
Microsoft Kinect joints. 

 

ACKNOWLEDGMENT 

This study is supported by the Aage and Johanne Louis-
Hansen Foundation and Aalborg University. For further 
information, see 
http://www.labwellfaretech.com/fp/kneeortho/?lang=en 

REFERENCES 

 

[1] K. B. Cho and B. H. Lee, “Intelligent lead: A novel HRI sensor for 
guide robots,” Sensors, vol. 12, no. 6, pp. 8301–8318, 2012. 

[2] O. M. Mozos, H. Mizutani, R. Kurazume, and T. Hasegawa, 
“Categorization of indoor places using the Kinect sensor,” Sensors, 
vol. 12, no. 5, pp. 6695–6711, 2012. 

[3] B. Lee, M. Kiani, and M. Ghovanloo, “A Smart Wirelessly Powered 
Homecage for Long-Term High-Throughput Behavioral 
Experiments,” IEEE Sens. J., vol. 15, no. 9, pp. 4905–4916, 2015. 

[4] G. Azzari, M. L. Goulden, and R. B. Rusu, “Rapid characterization 
of vegetation structure with a microsoft kinect sensor,” Sensors, vol. 
13, no. 2, pp. 2384–2398, 2013. 

[5] K. J. Bower, J. Louie, Y. Landesrocha, P. Seedy, A. Gorelik, and J. 
Bernhardt, “Clinical feasibility of interactive motion-controlled 
games for stroke rehabilitation.,” J. Neuroeng. Rehabil., vol. 12, no. 
1, p. 63, 2015. 

[6] Y.-J. J. Chang, S.-F. F. Chen, and J.-D. Da Huang, “A Kinect-based 
system for physical rehabilitation: A pilot study for young adults 
with motor disabilities,” Res. Dev. Disabil., vol. 32, no. 6, pp. 2566–
2570, Jan. 2011. 

[7] A. González, P. Fraisse, and M. Hayashibe, “Adaptive Interface for 
Personalized Center of Mass Self-Identification in Home 



1558-1748 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2018.2876624, IEEE Sensors
Journal

IEEE SENSORS JOURNAL, VOL. xx, NO. x,  
 

8 

Rehabilitation,” IEEE Sens. J., vol. 15, no. 5, pp. 2814–2823, 2015. 
[8] M. Li, G. Xu, B. He, X. Ma, and J. Xie, “Pre-impact fall detection 

based on a modified zero moment point criterion using data from 
Kinect sensors,” IEEE Sens. J., vol. 18, no. 13, pp. 5522–5531, 
2018. 

[9] S. Gaukrodger et al., “Gait tracking for virtual reality clinical 
applications: A low cost solution,” Gait Posture, vol. 37, no. 2013, 
p. S31, 2013. 

[10] S. H. Lee et al., “Measurement of shoulder range of motion in 
patients with adhesive capsulitis using a Kinect,” PLoS One, vol. 10, 
no. 6, 2015. 

[11] G. Blumrosen, Y. Miron, N. Intrator, and M. Plotnik, “A real-time 
kinect signature-based patient home monitoring system,” Sensors, 
vol. 16, no. 11, 2016. 

[12] J. Shotton et al., “Real-time human pose recognition in parts from 
single depth images,” Stud. Comput. Intell., vol. 411, pp. 119–135, 
2013. 

[13] W. He, R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. 
Fitzgibbon, “Efficient Regression of General-Activity Human Poses 
from Depth Images,” Proc. IEEE Int. Conf. Comput. Vis., pp. 415–
422, 2011. 

[14] W. Shen, K. Deng, X. Bai, T. Leyvand, B. Guo, and Z. Tu, 
“Exemplar-based human action pose correction,” IEEE Trans. 
Cybern., vol. 44, no. 7, pp. 1053–1066, 2014. 

[15] Microsoft, “Kinect for Windows SDK 2.0,” 2014. [Online]. 
Available: https://www.microsoft.com/en-
us/download/details.aspx?id=44561. [Accessed: 31-Jan-2017]. 

[16] Open Natural Interaction, “OpenNI 2.2.0.33,” 2015. [Online]. 
Available: https://structure.io/openni. [Accessed: 31-Jan-2017]. 

[17] OpenKinect, “Libfreenect v0.5.6,” 2016. [Online]. Available: 
https://openkinect.org. [Accessed: 31-Jan-2017]. 

[18] Microsoft, “Kinect for Windows SDK v1.8,” 2013. [Online]. 
Available: https://www.microsoft.com/en-
us/download/details.aspx?id=40278. [Accessed: 31-Jan-2017]. 

[19] R. A. Clark et al., “Reliability and concurrent validity of the 
Microsoft Xbox One Kinect for assessment of standing balance and 
postural control,” Gait Posture, vol. 42, no. 2, pp. 210–213, Apr. 
2015. 

[20] R. P. Kuster, B. Heinlein, C. M. Bauer, and E. S. Graf, “Accuracy of 
KinectOne to quantify kinematics of the upper body,” Gait Posture, 
vol. 47, pp. 80–85, 2016. 

[21] M. Mcgroarty, D. Meldrum, S. Giblin, H. French, and F. Wetterling, 
“Variations in knee flexion measurements for overhead squat as 
measured with marker-based and markerless motion capture 
systems,” Gait Posture, vol. 49, pp. 89–90, 2016. 

[22] M. Eltoukhy, J. Oh, C. Kuenze, and J. Signorile, “Improved kinect-
based spatiotemporal and kinematic treadmill gait assessment,” Gait 
Posture, vol. 51, pp. 77–83, 2017. 

[23] L. G. Wiedemann, R. Planinc, I. Nemec, and M. Kampel, 
“Performance evaluation of joint angles obtained by the kinect V2,” 
in Technologies for Active and Assisted Living (TechAAL), IET 
International Conference on, 2015, pp. 1–6. 

[24] K. Woolford, “Defining Accuracy in the Use of Kinect V2 for 
Exercise Monitoring,” in MOCO ’15 Proceedings of the 2nd 
International Workshop on Movement and Computing, 2015, pp. 
112–119. 

[25] J. Darby, M. B. Sánchez, P. B. Butler, and I. D. Loram, “An 
evaluation of 3D head pose estimation using the Microsoft Kinect 
v2,” Gait Posture, vol. 48, pp. 83–88, 2016. 

[26] E. Auvinet, F. Multon, V. Manning, J. Meunier, and J. P. Cobb, 
“Validity and sensitivity of the longitudinal asymmetry index to 
detect gait asymmetry using Microsoft Kinect data,” Gait Posture, 
vol. 51, pp. 162–168, 2017. 

[27] B. F. Mentiplay et al., “Gait assessment using the Microsoft Xbox 
One Kinect: Concurrent validity and inter-day reliability of 
spatiotemporal and kinematic variables,” J. Biomech., vol. 48, no. 
10, pp. 2166–2170, May 2015. 

[28] K. Otte et al., “Accuracy and reliability of the kinect version 2 for 
clinical measurement of motor function,” PLoS One, vol. 11, no. 11, 
pp. 1–18, 2016. 

[29] B. Müller, W. Ilg, M. A. Giese, and N. Ludolph, “Validation of 
enhanced kinect sensor based motion capturing for gait assessment,” 
PLoS One, vol. 12, no. 14, pp. 14–16, 2017. 

[30] A. Lioulemes, M. Theofanidis, and F. Makedon, “Quantitative 
analysis of the human upper-limb kinematic model for robot-based 

rehabilitation applications,” IEEE Conf. Autom. Sci. Eng. (CASE), 
Fort Worth TX, pp. 1061–1066, 2016. 

[31] A. K. Mishra, M. Skubic, and C. Abbott, “Development and 
preliminary validation of an interactive remote physical therapy 
system,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 
vol. 2015–Novem, pp. 190–193, Aug. 2015. 

[32] M. Ma, R. Proffitt, and M. Skubic, “Validation of a Kinect V2 based 
rehabilitation game,” PLoS One, vol. 13, no. 8, p. e0202338, 2018. 

[33] B. Hotrabhavananda, A. K. Mishra, M. Skubic, N. 
Hotrabhavananda, and C. Abbott, “Evaluation of the microsoft 
kinect skeletal versus depth data analysis for timed-up and go and 
figure of 8 walk tests,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. 
Soc. EMBS, vol. 2016–Octob, pp. 2274–2277, 2016. 

[34] M. R. Kharazi et al., “Validity of microsoft kinectTM for measuring 
gait parameters,” in Biomedical Engineering (ICBME), 2015 22nd 
Iranian Conference on, 2015, no. November, pp. 375–379. 

[35] J. Oh, C. Kuenze, M. Jacopetti, J. F. Signorile, and M. Eltoukhy, 
“Validity of the Microsoft KinectTMin assessing spatiotemporal and 
lower extremity kinematics during stair ascent and descent in 
healthy young individuals,” Med. Eng. Phys., vol. 0, pp. 1–7, 2018. 

[36] A. Napoli, S. Glass, C. Ward, C. Tucker, and I. Obeid, 
“Performance analysis of a generalized motion capture system using 
microsoft kinect 2.0,” Biomed. Signal Process. Control, vol. 38, pp. 
265–280, 2017. 

[37] A. Napoli, S. M. Glass, C. Tucker, and I. Obeid, “The Automated 
Assessment of Postural Stability: Balance Detection Algorithm,” 
Ann. Biomed. Eng., pp. 1–10, 2017. 

[38] C. S. Bamji et al., “A 0.13 μm CMOS System-on-Chip for a 512 × 
424 Time-of-Flight Image Sensor with Multi-Frequency Photo-
Demodulation up to 130 MHz and 2 GS/s ADC,” IEEE J. Solid-
State Circuits, vol. 50, no. 1, pp. 303–319, 2015. 

[39] E. Ceseracciu, Z. Sawacha, and C. Cobelli, “Comparison of 
markerless and marker-based motion capture technologies through 
simultaneous data collection during gait: Proof of concept,” PLoS 
One, vol. 9, no. 3, pp. 1–7, 2014. 

[40] Mr. Naeemabadi, B. Dinesen, O. K. Andersen, and J. Hansen, 
“Investigating the impact of a motion capture system on Microsoft 
Kinect v2 recordings: A caution for using the technologies 
together,” PLoS One, vol. 13, no. 9, p. e0204052, 2018. 

[41] T. D. Collins, S. N. Ghoussayni, D. J. Ewins, and J. A. Kent, “A six 
degrees-of-freedom marker set for gait analysis: Repeatability and 
comparison with a modified Helen Hayes set,” Gait Posture, vol. 
30, no. 2, pp. 173–180, 2009. 

[42] S. van Sint Jan, Color Atlas of Skeletal Landmark Definitions. 
Elsevier Health Sciences, 2007. 

[43] M. P. Kadaba, H. K. Ramakrishnan, and M. E. Wootten, 
“Measurement of lower extremity kinematics during level walking,” 
J. Orthop. Res., vol. 8, no. 3, pp. 383–392, 1990. 

[44] H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing: 
Structured-light versus Time-of-Flight Kinect,” Comput. Vis. Image 
Underst., vol. 139, pp. 1–20, 2015. 

[45] J. Sell and P. O’Connor, “The xbox one system on a chip and kinect 
sensor,” IEEE Micro, vol. 34, no. 2, pp. 44–53, 2014. 

[46] S. Giblin et al., “Bone length calibration can significantly improve 
the measurement accuracy of knee flexion angle when using a 
marker-less system to capture the motion of countermovement 
jump,” 3rd IEEE EMBS Int. Conf. Biomed. Heal. Informatics, BHI 
2016, pp. 392–397, 2016. 

[47] S. P. R. Gaddam, M. K. Chippa, S. Sastry, A. Ange, V. Berki, and 
B. L. Davis, “Estimating forces during exercise activity using non-
invasive kinect camera,” Proc. - 2015 Int. Conf. Comput. Sci. 
Comput. Intell. CSCI 2015, pp. 825–828, 2016. 

 

 



1558-1748 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2018.2876624, IEEE Sensors
Journal

IEEE SENSORS JOURNAL, VOL. xx, NO. x,  
 

9 

MReza Naeemabadi received the 
B.Sc. and M.Sc. degrees in Biomedical 
Engineering, Bioelectric from Azad 
University Mashhad and Isfahan 
University of Medical Science, 
respectively. His background is mainly 
focused on biomedical signal processing 
and telehealth services. Currently, he is 
pursuing the Ph.D. degree in biomedical 

engineering at SMI, Health Science and Technology 
Department, Aalborg University and also affiliated with 
Laboratory of Welfare Technologies - Telehealth and 
Telerehabilitation, Aalborg University. His current PhD is 
focusing on employing human motion trackers in 
telerehabilitation applications. 
 
 

Birthe Dinesen is Professor and Head 
of the Laboratory of Telehealth & and 
Telerehabilitation at Aalborg 
University  Denmark. Since 2004, Dr. 
Dinesen has carried out research 
within telehealth and 
telerehabilitation. She has been the 
principal investigator on several 

groundbreaking telehealth and - rehabilitation studies within 
chronic disease management. She has been author or co-author 
of more than 70 peer-reviewed papers in international journals. 
Dr. Dinesen’s research focuses on future technology-enabled 
care delivery models. Her focus is on participatory design, 
engagement methods and the use of information technology to 
improve  health, including mobile, social, and distributed 
computing systems. In 2012, Dr. Dinesen founded the 
Transatlantic Telehealth Research Network (TTRN) between 
Danish and American research and health institutions, 
including UC Berkeley, UC Davis and the Cleveland Clinic. 
With an international perspective on technology-enabled 
healthcare delivery, Dr Dinesen has carried outPage 12 of 14 
research in Australia, Norway, Sweden, China and the USA. 
You can read about her research at this link: 
https://www.labwelfaretech.com/?lang=en. 
 
 
 
 
 
 
 
 
 
 

Ole Kæseler Andersen received the 
M.Sc. degree in electrical engineering 
with specialization in biomedical 
engineering in 1992, and the Ph.D. 
degree in biomedical engineering in 
1996, both from Aalborg University, 
Aalborg, Denmark. He defended his 
Dr. Scient. (doctoral degree in natural 
sciences) thesis in 2007 on the nature 
and organization of the withdrawal 

reflex sbmitted to Aalborg University. He is currently a 
Professor in biomedical engineering at SMI®, Department of 
Health Science and Technology, Aalborg University. He is 
head of the Doctoral School in Medicine, Biomedical Science, 
and Technology, Aalborg University. His research interests 
include rehabilitation engineering, sensor technology, thermal 
and electrical stimulation techniques, biomarkers for spinal 
nociception, and sensory-motor interaction related to the 
withdrawal reflex. 
 
 

John Hansen received the M.Sc. 
degree in signal processing with a 
specialization in biomedical 
engineering in 2002 and the Ph.D. 
degree in biomedical science and 
engineering in 2007, both from 
Aalborg University. He is currently an 
Associate Professor at the Laboratory 
for Cardio-Technology, Medical 
Informatics Group, Department of 

Health Science and Technology, Aalborg University. His 
position comprises research and teaching within the area of 
embedded technologies with focus on telemonitoring and health 
diagnostics. He has authored or co-authored over 60 scientific 
publications. 
 


