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Abstract—In a large-scale power electronic system like a wind 

farm, the mutual interactions between the power converter 

controllers and passive components may lead to instability 

problems or undesired dynamic response. This paper presents an 

optimum parameter design procedure for the power converter 

controllers in a power electronic system in order to guarantee a 

stable operation and to guarantee an acceptable dynamic 

response. In the approach, first, all oscillatory modes are 

calculated by a Multi-Input Multi-Output (MIMO) transfer 

function matrix of the power system; then, a multi-objective 

optimization procedure based on the Genetic Algorithm (GA) is 

presented to place the modes in the desired locations in order to 

increase the stability margin and to improve the dynamic 

response. Time-domain simulations of a 400-MW wind farm in the 

PSCAD/EMTDC environment confirms the effectiveness of the 

presented design approach. 

 
Keywords— power electronic system, grid-connected converters, 

stability, dynamic response, design, optimization, damping  

I.  INTRODUCTION  

The fast growth of renewable energy sources, HVDC 

systems, variable-speed drivers, etc., has brought concerns 

about the stable and reliable operation of the future power 

system [1]-[6]. A power electronic system containing many 

power converters may show an undesired dynamic behavior or 

even an unstable operation, while the individual power 

converters show an acceptable dynamic characteristic for a 

strong grid. Recently, Transmission System Operators (TSOs) 

in different countries have reported a few times that they could 

not connect a wind farm to the grid because of harmonic-

frequency oscillations [7]. In such cases, individual wind 

turbines have already passed different tests but the whole wind 

farm does not show a stable operation. The dynamic oscillations 

above the fundamental frequency are mainly coming from the 

mutual interactions between the high-bandwidth controllers and 

the passive components of the system [8], [9]. Therefore, this 

paper presents a method for designing the power converters to 

reduce the electrical oscillations by considering some 

information of the power system. There are two general 

approaches to analyze a power electronic system: One is the 

non-linear time-domain simulation analysis, which is accurate 

in a wide frequency range but has high computational burden. 

The second approach is the linearized frequency-domain 

analysis, which is accurate in the intended frequency range and 

has low computational burden [10], [11]. Optimization of a 

large-scale power electronic system in the time-domain is 

complex because of too high computational burden. So far, 

frequency-domain analysis based on the state-space modeling 

has been done in various power electronic systems like 

microgrids, current source converters, and parallel voltage 

source inverters [12]- [16].  However, the state-space modeling 

can be complex for large-scale power electronic systems 

because it needs the information of each component of the 

system in details [17]- [21]. Another tool, for dynamic analysis 

of the system in the frequency-domain, is the impedance based 

modeling [22]-[27]. In this method, the source output 

impedance (Zs ) and the load input impedance (Zl) are obtained 

and then the interconnected system stability is assessed by the 

Nyquist criterion of the ratio of Zl(s)/Zs(s) [22]- [27]. Therefore, 

it can just identify if the system is stable and can not identify 

how much the stability margin is. So, the impedance-based 

analysis can not be used as a powerful design tool for a large 

number of power converters in a large-scale power electronic 

system.  

In order to reduce the electrical oscillations and to improve 

the dynamic response in a large power electronic system, this 

paper presents a frequency-domain based optimum design 

method, which is simple and has low computational burden. 

The proposed optimized design approach is solved by using 

Genetic Algorithm (GA) and its objective function is to increase 

the stability margin and to improve the dynamic response. A 

large-scale power electronics based system is introduced as a 

Multi-Input Multi-Output (MIMO) transfer function matrix, 

which is simpler than state-space modeling. The dynamic 

analysis, the damping and frequencies of oscillatory modes are 

identified based on the determinant of the MIMO matrix.  

In Section II, a grid-connected power electronic converter is 

modeled by a Norton equivalent circuit, i.e., a current source 

with a parallel active admittance. In Section III, a large power 

electronic system is modeled by a MIMO transfer function 

matrix. The proposed optimized parameter design is explained 

in Section IV, where the oscillatory modes of the system are 

placed in desired locations. In Section IV, a 400-MW wind farm 

is considered as a case study. In Section V, the proposed 

optimum design is tested by time-domain simulations of the 

400-MW wind farm studied using the PSCAD/EMTDC 

 

Optimum Design of Power Converter Current 

Controllers in Large-Scale Power Electronics Based 

Power Systems 

Esmaeil Ebrahimzadeh 
Member, IEEE 

Department of Energy 

Technology 

Aalborg University 

ebb@et.aau.dk 

 

Frede Blaabjerg 
Fellow, IEEE 

Department of Energy 

Technology 

Aalborg University 

fbl@et.aau.dk 

 

Xiongfei Wang 
Senior Member, IEEE 

Department of Energy 

Technology 

Aalborg University 

xwa@et.aau.dk 

 

Claus Leth Bak 
Senior Member, IEEE 

Department of Energy 

Technology 

Aalborg University 

clb@et.aau.dk 

 
 



0093-9994 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2018.2886190, IEEE
Transactions on Industry Applications

 

 

2 

environment software. 

II. ADMITTANCE MODEL OF GRID-CONNECTED CONVERTER 

A simple block-diagram of a grid-connected converter with 

an inner control loop is shown in Fig. 1(a), where Gcont-k   is the 

current controller, and Gdelay-k  is the delay of the digital control 

implementation. Fig. 1(b) shows the block-diagram of the 

current closed-loop control system, where the PoC voltage 

(VPoC-k) and the current reference (Iref-k)  are the inputs and the 

grid current  (Ig-k) is the output. From Fig. 1(b), the grid current 

can be obtained from 

g k c k ref k c k PoC kI G I Y V     
 

(1) 

where Gc-k  and Yc-k   are 
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(3) 

Based on Equation (1), a grid-connected converter can be 

modeled by an ideal current source along with a parallel active 

admittance (Norton equivalent circuit) as shown in Fig. 1(c). 

This paper focuses on optimum design of the current controller, 

which is fast and a high-bandwidth controller. Therefore, the 

outer power controllers and grid synchronization loops are 

neglected as they are too slow to have influence on current 

controller dynamics. In this paper, Gcont-k   is considered to be a 

Proportional plus Resonant (PR) current controller and Gdelay-k  

is modeled by Pade approximation, i.e., 
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 (4) 

where  ωf  is the fundamental frequency and Ts-k  is the 

sampling period of the digital control. 

 
(a) grid-connected converter with the inner control loop 

 

(b) closed-loop control of grid current 

 

(c) Norton equivalent of the converter 

Fig. 1. Grid-connected converter with the inner control loop and its 

equivalent circuit. 

III. A POWER ELECTRONIC SYSTEM AS A MULTI-INPUT MULTI-

OUTPUT (MIMO) TRANSFER FUNCTION MATRIX 

By modeling of every passive element and active element 

(power electronic converters) as Norton equivalent circuit, the 

current-voltage relationships in a power electronic system can 

be obtained by the nodal admittance matrix as given in (5). In 

(5), it is assumed that bus 1 is connected to the electrical grid 

and bus 2 to bus n+1 are connected to the power electronic 

converters.   Yc-k (k=1,2, …,n), Yii,Yij(s) (i,j=1,2, …,m, and i≠j) 

are the active admittance of the kth power electronic converter, 

the connected admittance to the ith bus, the admittance between 

ith bus and jth bus, respectively. When a component model is 

black-box, its equivalent admittance can be obtained by  
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experiment (if the component has been built) or by numerical 

simulations (if the component has been designed but has not 

been built yet). Equation (5) is actually a Multi-Input Multi-

Output (MIMO) transfer function matrix [28], where the 

outputs are the bus voltages and the inputs are the injected 

currents, i.e, 
-1

V(s) = G(s) I(s)
 

(6) 

The poles of the introduced MIMO transfer function can be 

calculated by solving the following equation: 

 

1 1 1 2 2 2

det 0

j , j , , j
q q q

p p p     



      

G(s)



(7) 

where the frequency (fi) and the damping ratio (ζi) of the 

poles can be obtained from  

 

(8) 

 

The poles of the MIMO transfer function matrix basically are 

the poles of its elements, i.e,   
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The inverse Laplace transform of Gij(s) is  


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(10) 

Therefore, the poles of Gij(s) in the s-domain are related to 

the oscillations of the system in the time-domain. The 

imaginary parts of the poles identify the frequencies of 

oscillations and the real parts identify the damping of the 

oscillations. If αq (one of the real parts) is positive, the term 

q qt j t

qA e e
 

 is a function with an increasing exponential 

magnitude and the system is unstable. If αq is negative, the term 

q qt j t

qA e e
 

 is a decaying exponential function with a final 

value of zero.  

2 22
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f

 
Fig. 2. Step response of a simple second-order system for different 

damping ratios. 
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Fig. 3. 400-MW wind farm, which is studied for the proposed optimum controller design method. 
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IV. PROPOSED OPTIMUM DESIGN OF CURRENT CONTROLLER 

A. Guaranteeing stability 

According to the previous discussion, a power electronics 

based system is stable if and only if all its poles (P1, P2, …, and 

Pq) have negative real parts. The mode with the largest real part  

can be found by 

1 2
( , , , )

c c c qc
j MaxP        


(11) 

If  Pc has a negative real part, it means that the real parts of 

all modes are negative. Therefore, in order to guarantee the 

stability, an inequality constraint, H(x), is considered in GA 

algorithm to set the real part of Pc smaller than zero. The 

threshold value for stability is zero mathematically. However, 

because of the round-off errors of floating-point computations 

and the grid variations, the threshold value should be 

considered a value larger than zero to be robust. So, it is 

considered to be ten here., i.e., 

10 ( ) 0
c

H   x


(12) 

where x, optimization variable, can be a vector including the 

current controller and filter parameters of the grid-connected 

converter. 

[ , , , ]
p i f f

K K L Cx


(13) 

The optimum parameter vector (x) includes the filter 

parameters to have more freedom degrees and to optimize the 

system ideally.  In a case, if the filter parameters can not be 

redesigned, the vector includes only the controller parameters. 

In this case, there are less freedom degrees for the optimization 

and may not optimize the system ideally. 

 

B. Guaranteeing the desired dynamic performance 

Fig. 2 shows the step response of a simple second-order 

system for different damping ratios, which is used as an 

example for evaluating the dynamic response of a system. Fig. 

2 shows that the amount of overshoot depends on the damping 

ratio. The system with a smaller damping ratio reaches the final 

value faster, but the response oscillates around this final value. 

A  system with a damping ratio around 0.8 can be a good trade-

off between the speed and oscillation of the response as shown 

in Fig. 2. 

In a power electronics based systems, low-frequency modes 

are related to the power converter controllers and the high-

frequency modes are more related to the cables and 

transformers. As the switching frequency (fs) is considered to 

be 2.5 kHz, the maximum logical bandwidth for the current 

controller would be around 500 Hz (fs/5) [29]. Therefore, In 

order to guarantee the desired dynamic performance of the 

power converters in a power electronic system, an objective 

function is considered to set the damping ratios of  all low-

frequency modes close to 0.8; in fact, the objective function is 

to minimize F(x) as described in (14). 

 
1 2
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
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

(14) 

V. A 400-MW WIND FARM AS A CASE STUDY 

The effectiveness of the proposed optimized design approach 

is studied for a 400-MW wind farm with 100-MW aggregated 

strings, as shown in Fig. 3. Fifteen Wind Turbines (WTs) of 6.7 

MW are located on three parallel feeders as shown in Fig. 4. 

 Under the nominal operation, the current on the feeder is 

increasing towards the collector bus as the number of the WTs 

is also increasing. Therefore, a closer cable to the collector bus 

should have larger cross-section than a farther cable. 

Consequently, three different cables (95 mm2 cable, 240 mm2 

cable, and 400 mm2 cable) carry the feeder current.   Five WTs 

of 6.7-MW on each feeder can be aggregated by one 33-MW 

WT as shown in Fig. 5(a). If it is assumed that the injected 

power by the WTs on the feeder are the same, the equivalent 

impedance parameters of the 33-MW WT can be calculated by  
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where, ZAT and BAT are the equivalent series impedance and 

the equivalent shunt susceptance, respectively. ZAB, ZBC, ZCD, 
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Fig. 4. Fifteen wind turbines, which are located on each 100-MW string 

of the wind farm shown in Fig. 3. 
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Fig. 5. Aggregated model of the fifteen wind turbines shown in Fig. 4, 
(a) aggregated model on each feeder, (b) aggregated model of three 

feeders. 
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ZDE, and ZET  are the series impedances of the sections and BAB, 

BBC, BCD, BDE, and BET are the shunt susceptances (see Fig. 4).  

Finally, the aggregated 33.3-MW WTs on three parallel feeders 

can be aggregated as one 100-MW WT (see Fig. 5(b)). The 

equivalent series impedance and shunt susceptance can be 

calculated by 

  

33 33 3
3

AT
AT

Z
Z B B   (16) 

 

Since the dc-link is almost constant, the dynamics of the 

Turbine-Side Converters (TSCs) can be neglected. A simple 

Thévenin equivalent voltage source is used to represent the 

grid. The transformers are modeled by its short-circuit 

impedances and the cables are modeled by the nominal π- 

 

model. The parameters of the wind farm are given in Table I. 

Short Circuit Ratio (SCR) is defined by  

 
2


g

g base

V
SCR

Z S
 (17) 

 

Where Vg and Zg are the grid voltage and the grid impedance, 

and Sbase is the apparent power injected by the wind farm. For 

large X/R ratio, Zg = Xg = ω0Lg. More detailed information 

about the model can be found in [29]. The current controller and 

filter parameters of the Grid-Side Converters (GSCs) are 

Fig. 6. Step-response of the designed GSC for a strong grid. 

Table I. Parameters of the 400-MW wind farm and Genetic Algorithm 
(GA) Solver 

Parameter Value 

Transformer T1 Leakage inductance  1.378 µH 

Cable 33-kv 

Shunt capacitance 3.24 µF 

Series inductance 0.436 mH 

Series resistance 0.0537 Ω 

Transformer T2 Leakage inductance 1.891 mH 

Cable 150-kv ( Cable length = 

10 km) 

Shunt capacitance 0.26 µF/km 

Series inductance  0.5 mH/km 

Series resistance 
0.0574 
Ω/km 

Transformer T3 Leakage inductance 22.788 mH 

Grid 
X/R ratio 20 

SCR 100 

Current controller 

Kp 2.5e-3 

Ki 2 

fs 2.5 kHz 

Genetic Algorithm (GA) 

Solver 

Population Size 40 

Generations 160 

Stall Generations 80 

Function Tolerance 1 ×10-5 
 

 

 

 
Fig. 7. Mode damping ratios of the individual WT and the wind farm for the stand-alone design, and for the optimum design. 

 

 
(a) 

 
(b) 

Fig. 8. Dynamic response of GSC. GSC parameters are changed 
from the optimum design to the initial design at t = 0.5 s and the 

dynamic response of the optimum design is also tested at t = 0.4 s, 

(a) PCC voltage and gird current, (b) FFT analysis of PCC voltage 
between t = 0.52s to t = 0.54s. 
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designed for a desired phase-margin of 45° for stand-alone 

operation. Fig. 6 shows the step-response of the GSC for a 

strong grid, where a desired dynamic response can be observed. 

The same controllers are used for all GSCs. 

VI. PROPOSED OPTIMUM DESIGN IN FREQUENCY-DOMAIN AND 

CORRESPONDING TIME-DOMAIN SIMULATIONS 

A. Optimum design 

Fig. 7 shows the mode damping ratios of the individual WT 

and the wind farm for the stand-alone design (initial design). 

The damping ratios of the modes of the wind farm for the 

optimized parameters (Kp = 9.51e-3, Ki = 4.16, and fres = 357 Hz) 

are also shown in Fig. 7. As it can be seen, the damping ratios 

of the individual WT for the stand-alone design is around 0.8, 

which confirms that the individual WT for a strong grid has a 

good stability margin and an acceptable dynamic response.  

However, when all WTs are connected to the wind farm, the 

damping ratios for low-frequency modes are too small and the 

damping ratio for frequency around 900 Hz is negative, which 

shows that the wind farm is unstable around this frequency. 

Therefore, it is necessary to redesign the controller parameters 

to improve the stability margin and to guarantee a desired 

dynamic response. As shown in Fig. 7, after setting the GSC 

parameters based on the proposed optimum design procedure, 

all modes have positive damping, which confirms that the wind 

farm has a stable operation. In addition, the low-frequency 

modes, which is related to the power converter dynamics, have 

suitable dampings around 0.8, which depicts that the wind farm 

has a desired dynamic performance for the optimum design.  

   

In Fig. 8, the wind farm is simulated in the time-domain using 

PSCAD software, where the current controller parameters of 

the GSCs have been set by the proposed optimum design 

(before t = 0.5 s). At t = 0.4 s, the current reference is changed 

from 0.25 p.u. to 1 p.u. As it can be seen, the wind farm has a 

good dynamic response and a stable operation for the optimized 

parameters. At t = 0.5, the GSC parameters are changed from 

the optimum design to the initial design. As shown in Fig. 8, 

 
(a) 

 

 
(b) 

Fig. 9. Robustness of the optimum design case (SCR = 100 and Cable length = 10 km) against variations, (a) SCR = 100 (optimized case) is changed to SCR 

=50 and SCR =200, (b) Cable length = 10 km (optimized case) is changed to Cable length = 1 km and Cable length = 15 km. 

 
Fig. 10. Robustness of the optimum design. The GSC parameters are 
optimized and set for SCR = 100 and Cable length = 10 km but the 

wind farm is simulated for another case, i.e.,  SCR = 50 and Cable 

length = 15 km. At t = 0.5, the GSC parameters are changed to the 

initial design  
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some oscillations around 900 Hz propagate into the wind farm, 

because of the instability problems as predicted in Fig. 7 in the 

frequency-domain. Therefore, it can be concluded that a good 

control design for an individual power converter cannot 

guarantee the stable operation of the whole power electronics 

based system as shown in Fig. 8.   

B. Sensitivity analysis with respect to system variations 

In this section, the robustness of the optimum design case 

(SCR = 100 and Cable length = 10 km) against variations of the 

wind farm is studied. Fig. 9(a) shows the mode damping ratios 

of the wind farm, where SCR = 100 (optimized case) is changed 

to SCR =50 and SCR =200.  Fig. 9(b) shows the mode damping 

ratios, where Cable length = 10 km (optimized case) is changed 

to Cable length = 1 km and Cable length = 15 km. As it can be 

seen, the damping ratios of modes, particularly low-frequency 

modes, are not affected a lot against such variations. The high 

frequency poles are related to the resonance modes resulting 

from the capacitance and the inductance of the cables. By 

increasing the cable length, the capacitance and the inductance 

of the cable increase and the resonance frequency decreases.  

The damping of these poles is corresponded to the resistance of 

the cable. As this resistance is very small, the damping of these 

poles is small. In order to confirm the robustness of the 

optimized design, the time-domain simulations have also been 

performed. First, the GSC parameters are optimized and set for 

SCR = 100 and Cable length = 10 km. However, the wind farm 

is simulated for another SCR and cable lengths, i.e.,  SCR = 50 

and Cable length = 15 km. At t = 0.5, the parameters are 

changed to the initial design. As it can be seen from Fig. 10, the 

wind farm with the optimum controller design presents a robust 

and stable operation. However, after t = 0.5, the wind farm with 

the initial parameters is unstable and harmonic-frequency 

oscillations propagate into the grid.  

 

VII. CONCLUSION 

This paper presents a multi-objective design procedure for 

the power converter controllers in order to increase the stability 

margin in a power electronics based system. A power electronic 

system is introduced as a Multi-Input Multi-Output (MIMO) 

transfer function matrix and the oscillatory modes are identified 

by the determinant of the MIMO matrix. The proposed 

algorithm put the modes in the desired locations to improve the 

dynamic response of the system. A 400-MW wind farm is 

studied as a power electronics based system for the proposed 

optimum design procedure. Time-domain simulations confirm 

that a good design for an individual converter under strong grid 

cannot guarantee a stable operation of the whole power 

electronic system including many other converters and passive 

components.   On the other hand, the proposed design technique 

is a powerful tool to analyze and to improve the dynamic 

performance of a large-scale power electronic system like a 

wind farm. In addition, the power electronic system with the 

optimum controller design shows a robust and stable operation 

against variations of the system. 
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