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Abstract—In three-phase power and energy applications,
the synchronous reference frame phase-locked loop (SRF-
PLL) is a popular tool for the synchronization purposes.
The SRF-PLL can be easily and effectively customized for
different scenarios by changing its loop filter. Recently,
some supposedly different PLLs using the steady-state lin-
ear Kalman filter (SSLKF) have been developed. The main
aim of this letter is to analyze these PLLs. It is demonstrated
that they are actually equivalent to some well-known SRF-
PLL structures and, therefore, provide no advantage com-
pared to them.

Index Terms—Fixed gain filter, Kalman filter, phase-
locked loop (PLL), synchronization, synchronous reference
frame PLL (SRF-PLL), three-phase systems.

I. INTRODUCTION

THE phase-locked loop (PLL) is regarded as one of
the most popular tools for the grid synchronization of

power electronics converters and extracting the grid voltage
parameters in energy and power applications [1]–[3]. Recently,
there have been intensive research efforts towards develop-
ing efficient PLLs. In three-phase systems, which this letter
focuses on, the majority of these efforts are based on a
standard structure, known as the synchronous reference frame
PLL (SRF-PLL) [1]. The conventional SRF-PLL structure
can be observed in Fig. 1(a). In this PLL, the phase error
information is generated by transferring the three-phase grid
voltage signals into the synchronous reference frame. The loop
filter [a proportional-integral (PI) regulator] is responsible for
regulating the phase error signal vq to zero, and its output
signal is considered as an estimation of the grid voltage
frequency.

The conventional SRF-PLL has some drawbacks. The first
problem is that the frequency estimated by the SRF-PLL
undergoes an abrupt change when a phase jump happens
[4]. This phenomenon is because of the coupling between
frequency and phase variables. Notice that these parameters
are estimated by a single loop in the conventional SRF-PLL
[4]. Inspired by the enhanced PLL (EPLL) structure [3], [4],
which has been developed based on an optimization procedure,
this problem may be alleviated by tapping the frequency from
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Fig. 1. Block diagram of (a) conventional SRF-PLL, (b) enhanced SRF-
PLL (ESRF-PLL), (c) type-3 SRF-PLL, and (d) enhanced type-3 SRF-
PLL (ET3-SRF-PLL). va, vb, and vc denote the three-phase input signals
of the PLLs, vα and vβ are the grid voltage signals in the stationary (αβ)
frame, and vd and vq are the grid voltage signals in the synchronous (dq)
frame. kp, ki, and ka are the loop filter parameters. ωn is the nominal
value of the grid frequency. θ̃g is the estimated phase angle. ω̂g and ω̃g
both denote the estimated frequency.

the PI integrator output. Fig. 1(b), which is referred to as the
enhanced SRF-PLL (ESRF-PLL), illustrates this idea.

Another drawback of the conventional SRF-PLL is that it
cannot follow frequency ramps with a zero phase error because
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it is a type-2 control system [5]. To deal with this problem, a
type-3 SRF-PLL like that shown in Fig. 1(c) may be employed
[6], [7]. The loop filter transfer function in this PLL is as kp+
ki/s+ka/s

2, where kp, ki, and ka are its control parameters.
The type-3 SRF-PLL, similar to the conventional SRF-PLL,

suffers from a large transient in the estimated frequency when
a phase angle jump happens. Therefore, it can be alleviated
in a similar manner as the ESRF-PLL [see Fig. 1(d)]. This
structure is referred to as the enhanced type-3 SRF-PLL (ET3-
SRF-PLL).

Recently, some synchronization techniques for employing
in power and energy applications have been designed which
apparently have different structures compared to the conven-
tional SRF-PLL and its variants. The general structure of these
techniques, which are often referred to as the steady-state
linear Kalman filter-based PLLs (SSLKF-PLLs)1 [8]–[10] and
sometimes the fixed gain filter [11], can be observed in Fig. 2.
As shown, the prediction and correction stages are two main
parts of these techniques.

The main aim of this letter is analysing these so-called new
synchronization methods [8]–[11]. It is demonstrated here that
they are equivalent with some well-known SRF-PLLs. This
equivalence means that these synchronization techniques offer
no advantage compared to the well-known SRF-PLLs.

II. ANALYSIS OF SSLKF-PLLS

A. SSLKF-PLL Based on a Two-State Prediction Model
Fig. 2, as mentioned before, illustrates the general structure

of an SSLKF-PLL. In developing a two-state version of this
PLL, it is assumed in [8] that the frequency of the PLL
input signal does not experience large variations. Based on
this assumption, the following two-state prediction model is
considered [8]

x(n) = Ax(n− 1)

y(n) = Cx(n)

xT =
[
θg ωg

]
;A =

[
1 Ts
0 1

]
;C =

[
1 0

]
(1)

in which n denotes the current sample, θg and ωg are the
grid voltage angle and angular frequency, respectively, and Ts
is the sampling time. Throughout this letter, Ts = 0.0001 s
(which corresponds to a sampling frequency equal to 10 kHz)
is considered.

Based on the model described in (1), the following steps
are conducted by the prediction/correction filter to accurately
estimate the state variables [8]:

1) Predicting the states at the next sampling time

x̃(n) = Ax̂(n− 1). (2)

2) Correcting the predicted states using the phase error
information

x̂(n) = x̃(n) + κθe(n) (3)

1Strictly speaking, the SSLKF-PLL may not be regarded as a Kalman
filter because, as shown in Fig. 2, its correction vector is fixed. Notice
that implementing a Kalman filter involves adjusting its gains according
to the Kalman filter theory in each sampling period.

sin

cos



dq
dv

qv



abc

av

bv

cv

v

v Correction
1z

Prediction
ˆ( ) ( 1)n n x Ax

( )nx

( )nx

( )g n

ˆ( ) ( ) ( )qn n v n x x 

Fig. 2. General structure of the SSLKF-PLL (also known as the fixed
gain filter).

where κT =
[
κ1 κ2

]
is referred to as the correction

vector, and θe(n) = θg(n)−Cx̃(n) = θg(n)− θ̃g(n).
Based on (1)-(3), the PLL discrete-time implementation can

be derived as shown in Fig. 3(a). This PLL is briefly called the
SSLKF-PLL2 as it is based on a two-state prediction model.
Notice that the signal vq(n) = sin(θg(n)− θ̃g(n)) ≈ θg(n)−
θ̃g(n) = θe(n) contains the phase error information and is
used for the correction stage. A hidden assumption here is
considering the grid voltage amplitude equal to 1 p.u.

By applying the block diagram algebra to the correction
and prediction stages of Fig. 3(a), an alternative representation
of the SSLKF-PLL2 can be achieved as shown in Fig. 3(b).
Notice that, in this structure, Tsz

z−1 and Ts

z−1 describe two inte-
grators discretized using backward and forward Euler methods,
respectively. Considering this fact, the s-domain equivalent of
the SSLKF-PLL2 can be obtained as illustrated in Fig. 3(c).
This structure is the same as the ESRF-PLL [see Fig. 1(b)] if
κ′1 = κ1/Ts = kp and κ′2 = κ2/Ts = ki. Therefore, it can
be concluded that the SSLKF-PLL2 and the ESRF-PLL are
equivalent systems.

B. SSLKF-PLL Based on a Three-State Prediction Model

In designing this PLL, it is assumed that large frequency
ramping changes during normal operating conditions are
likely. Based on this assumption, the following three-state
prediction model is considered [9], [10]

x(n) = Ax(n− 1)

y(n) = Cx(n)

xT =
[
θg ωg ag

]
;A =

 1 Ts T 2
s /2

0 1 Ts
0 0 1


C =

[
1 0 0

]
(4)

where ag = dωg/dt. Using this model, the state predic-
tion/correction procedure can be carried out as follows

x̃(n) = Ax̂(n− 1). (5)

x̂(n) = x̃(n) + κθe(n) (6)

where κT =
[
κ1 κ2 κ3

]
.

Based on (4)-(6), the PLL structure shown in Fig. 4(a) can
be derived. This PLL is named the SSLKF-PLL3 as it is based
on a three-state prediction model.

Using the block diagram algebra, the SSLKF-PLL3 can
be rearranged as shown in Fig. 4(b). Considering that Tsz

z−1
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Fig. 3. (a) SSLKF-PLL based on a two-state prediction model. This PLL
is briefly referred to as the SSLKF-PLL2. (b) An alternative representa-
tion of the SSLKF-PLL2, which may be obtained by applying the block
diagram algebra to Fig. 3(a). (c) The s-domain equivalent of the SSLKF-
PLL2. κ′1 = κ1/Ts and κ′2 = κ2/Ts.

and Ts

z−1 are both discrete integrators, the s-domain equivalent
of Fig. 4(b) can be obtained as depicted in Fig. 4(c). The
highlighted (red-color) path in Fig. 4(c) has a very negligible
influence on the SSLKF-PLL3 performance as it has a very
small gain (i.e., half the sampling period). By neglecting it,
we can observe that the SSLKF-PLL3 and the ET3-SRF-PLL
[see Fig. 1(d)] are equivalent systems if κ′1 = κ1/Ts = kp,
κ′2 = κ2/Ts = ki, and κ′3 = κ3/Ts = ka.

It is worth mentioning here that researchers who are work-
ing in the communication field are well aware of the strong
similarity of PLLs and Kalman filters. They have reported
these similarities in some research and tutorial articles [12]–
[14].

III. TUNING

A. SSLKF-PLL2
Using Fig. 3(c), the s-domain small-signal model of the

SSLKF-PLL2 can be derived as shown in Fig. 5(a). Notice
that, as mentioned before, the grid voltage amplitude is
assumed to be 1 p.u. Based on this model, the closed-loop
transfer function relating ωg to ω̃g can be derived as

ω̃g(s) =
κ′2

s2 + κ′1s+ κ′2
ωg(s). (7)

By defining κ′1 = κ1/Ts = 2ζω′n and κ′2 = κ2/Ts = (ω′n)
2

and selecting the natural frequency ω′n and the damping factor
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Fig. 4. a) SSLKF-PLL based on a three-state prediction model. This
structure is briefly called the SSLKF-PLL3. (b) An alternative repre-
sentation of the SSLKF-PLL3, which is achieved by applying the block
diagram algebra to Fig. 4(a). (c) The s-domain equivalent of the SSLKF-
PLL3. κ′1 = κ1/Ts, κ′2 = κ2/Ts, and κ′3 = κ3/Ts.

ζ according to the preferred (required) dynamic behavior, the
SSLKF-PLL2 control parameters are chosen. Notice that the
natural frequency is the most influential factor in determining
the PLL bandwidth and, hence, its noise immunity and tran-
sient response speed, while ζ is the major factor in determining
the damping of the dynamic response and, consequently,
the PLL phase margin (PM). Here, ζ = 1/

√
2 (which in

the literature is regarded as an optimum damping factor for
second-order systems) and ω′n = 125 rad/s are selected. These
values correspond to κ1 = 0.01768 and κ2 = 1.5625.

B. SSLKF-PLL3

Using Fig. 4(c), the s-domain small-signal model of the
SSLKF-PLL3 can be derived as shown in Fig. 5(b). For the
sake of simplicity in the tuning procedure, we have neglected
the highlighted (red color) path in Fig. 4(c). As mentioned
before, it has a very negligible influence on the SSLKF-PLL3
performance.

Using Fig. 5(b), the following open-loop transfer function
can be obtained

Gol(s) =
ω̃g(s)

ωg(s)− ω̃g(s)
=

κ′2s+ κ′3
s2(s+ κ′1)

. (8)
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Fig. 5. s-domain small-signal model of (a) the SSLKF-PLL2 and (b) the
SSLKF-PLL3.

TABLE I
CONTROL PARAMETERS

Parameters

SSLKF-PLL2 κ1 = 0.01768, κ2 = 1.5625,
ESRF-PLL kp=176.8, ki = 15625
SSLKF-PLL3 κ1 = 0.03018, κ2 = 3.7722, κ3 = 195.3125
ET3-SRF-PLL kp=301.8, ki = 37722, ka = 1953125

Because this open-loop transfer function has two poles at
the origin and a pole-zero pair with non-zero values, the
symmetrical optimum method sounds to be the best option
for selecting its control parameters [15], [16]. Applying this
approach, which sets the gain crossover frequency at the
geometric mean of the pole-zero pair to maximize the PM,
yields

κ′1 = κ1/Ts = bωc

κ′2 = κ2/Ts = bω2
c

κ′3 = κ3/Ts = ω3
c .

(9)

In (9), ωc denotes the gain crossover frequency and de-
termines the speed of dynamic response and the level of
noise immunity, and b is a factor that specifies the PM as
PM = tan−1[(b2 − 1)/(2b)]. Here, b =

√
2 + 1 (which

corresponds to PM = 45◦) and ωc = 125 rad/s are chosen.
These values correspond to κ1 = 0.03018, κ2 = 3.7722, and
κ3 = 195.3125.

IV. PERFORMANCE COMPARISON

To support the theoretical findings of this letter (i.e., the
equivalence of the SSLKF-PLL2 [Fig. 3(a)] and ESRF-PLL
[Fig. 1(b)], and the equivalence of the SSLKF-PLL3 [Fig.
4(a)] and ET3-SRF-PLL [Fig. 1(d)]), some numerical and
experimental results are presented. The numerical results are
obtained using Matlab/Simulink and the experimental ones
are provided using a dSPACE platform. In obtaining the
experimental results, the three-phase input signals of the PLLs
are generated by the dSPACE platform. The control parameters
of all PLLs can be found in Table I. It is worth mentioning
here that the backward and forward Euler methods are used
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Fig. 6. (a) Simulation results and (b) experimental results of Test 1.

for the discretization of the loop filter and voltage-controlled
oscillator of the SRF-PLLs, respectively.
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Four tests are performed. The description of these tests is
as follows.

Test 1: A 80◦ phase angle jump.
Test 2: A +5 Hz frequency jump under a harmonically

distorted and imbalanced grid condition.

0 0.04 0.08 0.12 0.16
-1

-0.5

0

0.5

1

Time (s)

G
ri

d 
vo

lta
ge

 (
p.

u.
)

0 0.04 0.08 0.12 0.16
49

50

51

52

53

54

Time (s)

E
st

im
at

ed
 f

re
qu

en
cy

 (
H

z)

 

SSLKF-PLL2
ESRF-PLL
SSLKF-PLL3
ET3-SRF-PLL

0 0.04 0.08 0.12 0.16
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Time (s)
Ph

as
e 

er
ro

r 
(d

eg
) SSLKF-PLL2

ESRF-PLL
SSLKF-PLL3
ET3-SRF-PLL

Fig. 9. Simulation results of Test 4.

Test 3: Presence of 0.1 p.u. dc component in one phase of
the grid voltage three-phase signal.

Test 4: A +40 Hz/s ramping change in the grid voltage
frequency for a duration of 0.075 s.

Fig. 6 shows the simulation and experimental results of Test
1. Table II summarizes the details of the obtained results.
As expected, the SSLKF-PLLs and their corresponding SRF-
PLLs demonstrate well-matched results. To save the space, the
experimental results are not shown for the rest of the tests.

Figs. 7, 8, and 9 demonstrate the simulation results of Tests
2, 3, and 4, respectively. The details can be found in Table II.
In all these tests, again, it is observed that the SSLKF-PLLs
and their corresponding SRF-PLLs demonstrate well-matched
results.

V. CONCLUSION

In this letter, an analysis of two SSLKF-PLLs, which have
been recently designed and proposed for the synchronization
in power and energy applications, was conducted. It was
shown that these SSLKF-PLLs are mathematically equivalent
to two well-known SRF-PLLs, which have a rather long
history of use in power and energy applications. To support
this theoretical finding, some numerical and experimental
tests were conducted. The obtained results were confirmed
that the SSLKF-PLLs and their corresponding SRF-PLLs are
equivalent systems. It means that the SSLKF-PLLs have no
advantage/disadvantage compared to their corresponding SRF-
PLLs.
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