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Abstract: 

Objective: 

Adjuvant protocols devised to enhance motor recovery in subacute stroke patients have failed to 

show benefits with respect to classic therapeutic interventions. Here we evaluate the efficacy of a 

novel brain-state dependent intervention based on known mechanisms of memory and learning, 

that is integrated as part of the weekly rehabilitation program in subacute stroke patients. 

Methods: 

Twenty-four hospitalized subacute stroke patients were randomly assigned to two intervention 

groups; 1. The associative group received thirty pairings of a peripheral electrical nerve stimulus 

(ES) such that the generated afferent volley arrived precisely during the most active phase of the 

motor cortex as patients attempted to perform a movement; 2. In the control group the ES 

intensity was too low to generate a stimulation of the nerve. Functional (including the lower 

extremity Fugl-Meyer assessment (LE-FM; primary outcome measure)) and neurophysiological 

(changes in motor evoked potentials (MEPs)) assessments were performed prior to and following 

the intervention period. 

Results: 

The associative group significantly improved functional recovery with respect to the control 

group (median (interquartile range) LE-FM improvement: 6.5 (3.5-8.25) and 3 (0.75-3), 

respectively; p=0.029). Significant increases in MEP amplitude were seen following all sessions 

in the associative group only (p’s≤0.006). 

Interpretation: 

This is the first evidence of a clinical effect of a neuromodulatory intervention in the subacute 

phase of stroke. This was evident with relatively few repetitions in comparison to available 

techniques, making it a clinically-viable approach. The results indicate the potential of the 

proposed neuromodulation system in daily clinical routine for stroke rehabilitation. 

  

This article is protected by copyright. All rights reserved

A
cc

ep
te

d 
A

rti
cl

e



 

Introduction 

In recent years, several adjuvant therapies based on non-invasive brain stimulation (NIBS, for 

review see
1
) have been devised for enhancing the spontaneous biological recovery process 

following stroke
1,2

. The basic assumption is that NIBS ‘primes’ the motor cortex for subsequent 

learning, which then occurs during a period of increased cortical excitability. However, the 

benefits of NIBS on function or motor learning are relatively small
3
 and the responses highly 

variable between and within patients. The source of this variability remains unclear, but may be 

related to the diffuse set of cortical neurons activated by NIBS which exhibit either inhibitory or 

excitatory actions onto the motor cortex
4
. The efficacy may thus be related to the overall state of 

excitability of the cortical network, referred to as the brain state. Applying NIBS during specific 

brain states may enhance their effectiveness
5
. 

We have recently demonstrated that a brain state-dependent peripheral stimulation protocol 

induces significant plasticity of the damaged cortex in chronic stroke patients that translates 

directly into improved function
6
. Peripheral nerve stimulation is timed to arrive at the motor 

cortex during the peak negative (PN) phase of the movement-related cortical potential (MRCP), 

inducing a causal and systematic relation between the sensory signals arising from muscles 

involved in the movement and the physiologically generated brain wave during imagination or 

attempt of that movement (Fig. 1). This intervention exhibits many of the characteristics of 

associative long-term potentiation, one of the primary mechanism for memory formation and 

learning
7,8

, since its effects develop rapidly, are long lasting, depend on the timing of the two 

inputs and are specific to the targeted muscle
9,10,11

. 

One of the advantages of triggering peripheral stimulation based on the physiological activation 

of the motor cortex is the active participation of the patients
12

. Indeed, a very small number of 

pairings are sufficient to promote cortical plasticity when the delay is precisely timed
6
. This 

approach can be exploited in a brain-computer-interface (BCI) technology that detects the brain 

activation patterns of patients and triggers peripheral stimulation. Preliminary studies on healthy 

participants have shown the feasibility of this approach
10,11

. 

In the current study, we present for the first time the concept of brain-state dependent peripheral 

stimulation in subacute stroke patients. We hypothesized that the proposed intervention would 

lead to an increase in function of the affected limb that is directly measurable through clinical 
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scales. Further, we hypothesized an enhancement of the output of the motor cortex to the target 

muscle following a very short intervention time (ideally, even within a single session). The 

demonstration of this hypothesis would strongly support the theory that timing is critical and that 

associativity is the main physiological mechanism underlying the induced plasticity. 
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Methods 

Ethical approval 

Patient demographic data and baseline clinical evaluations are shown in Table 1. Eighteen male 

and six female patients (61.2 ± 8.2 years) participated in this study. Inclusion criteria were; age 

above 18 years, a superior division middle cerebral artery (MCA) stroke within four months of 

inclusion in the study, and the ability to follow instructions. All patients underwent 

neuropsychological assessment, with none meeting the DSM-IV criteria for diagnosis of 

dementia. Patients were excluded if they presented with concomitant neurological or other severe 

medical problems, seizure history, contraindications to transcranial magnetic stimulation (TMS), 

cognitive impairments, treatment with drugs that act on the central nervous system, 

cardiovascular or respiratory symptoms contraindicative of walking, and any other significant 

non-stroke-related impairments affecting walking. All patients were inlaid at the 

neurorehabilitation center at Neuroenhed Nord, Brønderslev, Regionshospital Nordjylland, 

Denmark where they received intensive, multidisciplinary individualized rehabilitation therapy. 

Participation in this study was in addition to all therapies delivered at the hospital and all hospital 

staff were blinded to the experimental protocol. Approval for the study was given by the 

Scientific Ethics Committee for Nordjylland, Denmark (reference no. N-20160016). The study 

was performed in accordance with the Declaration of Helsinki. 

Sample size calculations were based on pilot testing of the current protocol in three sub-acute 

stroke patients who improved 6 ± 3 points on the lower extremity Fugl-Meyer (LE-FM) motor 

performance assessment. Our control group was expected to improve by 1.5 ± 2 points 
13

. A 

power analysis revealed that the minimum sample size was n = 10 in each group necessary to 

achieve a statistical power of at least 95% (two-tailed ⍺ = 0.05). 
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Overall study design 

Patients were randomly allocated to one of two groups: an associative intervention group and a 

sham intervention (control) group. A posteriori validation verified that the groups matched for 

age (t(22) = 0.19, p = 0.85) and time since stroke (t(22) = 0.36, p = 0.73). Patients attended three 

intervention sessions (see ‘Interventions’) per week for four weeks for a total of twelve sessions. 

During intervention sessions one, six and 12, corticospinal output properties were assessed using 

TMS (see ‘Quantification of corticospinal output’). Immediately prior to and after the four-week 

intervention period, patients were assessed with several clinical scales by a clinician blinded to 

the experimental protocol (see ‘Clinical and behavioral measures’). 

Clinical and behavioral measures 

Assessment were made by a clinician blinded to the protocol and included the modified Ranking 

scale score (mRS)
14

, LE-FM motor performance assessment
15

, the Ashworth scale for spasticity 

(ASS) of the affected leg
16

 and the functional ambulation classification (FAC) scale
17

 and the 10-

m walk test at their fastest pace
18

. The choice of using only one trained clinician was based on 

previous literature that demonstrated high test-retest and interrater reliability of the mRS scale 

19,20
, LE-FM scale 

21
, the ASS scale 

22
 and the FAC scale 

23
. 

Movement-related cortical potential (MRCP) 

During all sessions, monopolar electroencephalographic (EEG) signals were recorded using an 

active EEG electrode system (g.GAMMAcap
2
, gTec, GmbH, Austria) connected to a g.USBamp 

amplifier (gTec, GmbH, Austria) from FP1, Fz, FC1, FC2, C3, Cz, C4, CP1, CP2, and Pz 

according to the standard international 10-20 system. The channel selection was based on the 

large Laplacian, with Cz as the central channel 
24

. The reference electrode was placed on the left 

or right earlobes and the ground electrode on Fz. A single channel surface electromyogram 

(EMG) was recorded from the tibialis anterior (TA) muscle of the affected leg to control for the 

patients’ movement. All EEG and EMG signals were sampled at a frequency of 256 Hz and 

hardware filtered from 0 to 100 Hz. 

Patients were asked to attempt 30 dorsiflexion movements of the foot contralateral to the lesion 

site in relation to a visual cue. The experimental setup and cue is depicted in Figure 1. A custom-

made Matlab script (R2014b, Mathworks®) provided this cue via a screen positioned 1.5 m in 
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front of the patient on when to mentally prepare, execute, and release the movement. Patients 

were instructed to attempt to perform a single dorsiflexion movement as fast as possible when 

the cursor had reached the upwards turn and to maintain the new position for 2 s, following 

which they relaxed again for 4-5 s prior to the next cue being provided. Data from recorded EEG 

signals were used to quantify the time of PN of the MRCP’s before proceeding to either the 

associative or sham interventions described under the section ‘Interventions’. 

Feature extraction from the MRCP 

Matlab software (R2014b, Mathworks®) was used to filter the continuous EEG signals using a 

second order band-pass filter from 0.05 to 10 Hz. EEG data were then divided into 4 s epochs 

(from 2 s before to 2 s after the visual cue) for each movement and a Laplacian channel
24

 was 

used to enhance the MRCP in each epoch. Next, a window of 500 ms on either side of task onset 

was chosen. If any epochs’ PN was outside the selected window it was discarded. Epochs with 

electrooculography (EOG) activity exceeding 140 µV were also discarded. The remaining 

epochs were averaged and the mean PN was defined as the time of occurrence of the minimum 

value of the averaged MRCP in relation to the visual cue. The mean PN was used to calculate the 

point in time for when to apply the peripheral stimulation in the subsequent intervention session 

for both patient groups. 

Recording and stimulation 

EMG activity was recorded by surface Ag/AgCl electrodes (20 mm Ambu Neuroline 720, Ambu 

A/S, Denmark) placed over the belly of the TA muscle affected leg
25

. Surface EMGs were pre-

amplified and sampled at 2 kHz using scientific software Mr. Kick II 2.3 (Knud Larsen, SMI®, 

Aalborg University, Denmark) for recordings of the motor evoked potentials (MEPs) evoked by 

TMS in the TA during sessions one, six and 12. During the intervention, EMG data were 

collected using the g.USBamps (gTec, GmbH, Austria) at a sampling frequency of 256 Hz. 

A monophasic Magstim 200 (Magstim Company, Dyfed, UK) with a focal figure of eight double 

cone coil (110 mm diameter) was used to apply single TMS pulses to elicit a MEP in the TA. 

The direction of the current was directed from posterior to anterior. MEPs were elicited before 

(pre), immediately after (post), and 30 min after (post30) the cessation of the intervention for 

both groups during intervention sessions one, six and 12. For procedure, see the section 

‘Experimental procedures’. 
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Stimulation (pulse width 1 ms) of the CPN was applied by a NoxiTest isolated peripheral 

stimulator (IES 230, Aalborg, Denmark). Stimulating electrodes (32 mm, PALS! Platinum, 

Patented Conductive Neurostimulation Electrodes, Axelgaard Manufacturing Co., Ltd. USA) 

were placed on the skin overlying the deep branch of the CPN (L4 and L5) contralateral to the 

lesion site with the cathode proximal. A suitable position for stimulation, defined as the site 

where a maximal M-wave was produced in the TA with no activity from the synergistic peroneal 

muscles and no activity from the antagonist soleus (SOL), was identified. The stimulation site 

corresponded to a point just anterior to the level of the caput fibulae. Initially, the motor 

threshold (MT) was determined as the intensity where an M-wave became visible in the EMG 

signal. For the associative intervention group, the stimulation intensity was set to MT. For the 

sham intervention group, the stimulation intensity was set to ~70% of perception threshold.  

Quantification of corticospinal output 

Patients were seated comfortably with their affected foot resting on a footplate. Initially, the 

intensity for the magnetic stimulus was set at approximately 50% of the stimulator output (SO) 

to find the optimal site for evoking a MEP in the TA. Three consecutive stimuli at a 5-7s inter-

stimulus interval, were delivered over Cz and this was repeated for different sites by moving the 

coil in ~1 cm steps anteriorly and laterally. The best spot for stimulation (also termed the hot-

spot) was defined as the coordinate where the peak-to-peak amplitudes of the MEPs were greater 

in the target muscle than the amplitudes of adjacent coordinates for a given stimulus intensity. 

For all patients, this site was approximately 2–3 cm anterior to the vertex. Once the hot-spot was 

identified, it was marked on the patients’ head with a felt pen to ensure that the coil position was 

maintained and the stimuli were consistently delivered over the same area of the motor cortex. 

Subsequently, the resting motor threshold (RMT), defined as the highest stimulus intensity that 

produced no more than five of ten consecutive TA MEPs with a peak-to-peak amplitude of ~50 

µV while the muscle was at rest, was identified. Next, ten MEPs were elicited in the resting TA 

at each of six TMS intensities; 90, 100, 110, 120, 130, and 140% of RMT (60 MEPs in total). 

The TMS stimuli were delivered every 5–7 s in a randomized order for intensity. The mean 

peak-to-peak TA MEP amplitudes were extracted pre, post, and 30 min following the cessation 

of the intervention. 
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Interventions 

For the associative group, the intervention protocol consisted of a single electrical stimulation 

delivered to the common peroneal nerve (CPN) at MT and so that the artificially generated 

afferent flow arrived at the PN of the MRCP, as outlined in our previous publications
9,6

. The 

timing was calculated based on the following equation: mean PN – 50 ms. The 50 ms represents 

the mean latency for the afferent inflow resulting from the peripheral stimulus to reach the 

somatosensory cortex plus a cortical processing delay and is based on previous work
26

. For the 

sham group, the electrical stimulus was delivered at the same time as for the associative group 

but at an intensity below motor threshold (~70%) to ensure that no afferent inflow reached the 

cortex at the time of PN. A total of 30 pairings of attempted movement according to the cue (Fig 

1) and ES were applied during each intervention session. Patients attended a total of twelve 

separate intervention sessions, with three sessions per week over four weeks. A minimum of 24 h 

elapsed between sessions. Patients were blinded as to the intervention they received. 

Statistical analyses 

The main outcome measures were the clinical tests and the changes in MEP amplitude. Any 

differences in pre-intervention clinical measures (mRS, LE-FM, ASS, and 10-m walking test) 

between groups were evaluated with Mann-Whitney U tests. To test whether there was a change 

in clinical measures due to the interventions, separate Wilcoxon signed ranks tests were 

employed for each group for the mRS, LE-FM, ASS scores, and the 10-m walking test speed. To 

compare improvements in these clinical measures, Mann-Whitney U tests analysed the absolute 

pre-post intervention differences between the associative and sham groups. 10-m walking test 

speed was analysed using non-parametric tests because of violations to the assumption of 

normality. Bonferroni adjustments were applied to correct for multiple comparisons. A two-way 

between-within ANOVA, with session (sessions one, six, 12) as the within-subjects factor and 

group (associative, sham) as the between-subjects factor, was used to evaluate RMT and the pre-

measures of TA MEPs evoked at the highest stimulation intensity across testing sessions and 

groups. Greenhouse-Geisser corrected degrees of freedom were used to correct for violations of 

the assumption of sphericity. Finally, changes in TA MEP were analysed by a repeated measures 

mixed effects ANOVA. Subject was a random effects factor nested within group (associative, 

sham) with session (sessions one, six, 12), time (pre, post, and post30), and stimulation intensity 
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(90%, 100%, 110%, 120%, 130%, 140% RMT) as within-subjects fixed factors. Post hoc 

Fisher’s least significant difference corrections were administered to determine the locus of the 

differences
27

. Differences with a probability of < 0.05 were considered significant. Statistical 

analyses were conducted in Minitab 18. 
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Results 

Clinical measures 

Baseline clinical scores for both groups are shown in Table 2. There were no statistically 

significant differences between the associative and sham groups for the LE-FM (95%CI: [-7, 3]), 

mRS (95%CI: [-1, 1]), FAC (95%CI: [-1, 1]), ASS (95%CI: [0, 0]), or 10-m walking speed 

(95%CI: [-0.65, 0.58] m/s; all p’s > 0.50) upon enrollment. At baseline, a total of eight patients 

presented with no visible voluntary muscle activation of the TA and were unable to perform the 

dorsiflexion movement, thirteen patients had limited dorsiflexion abilities as quantified by the 

LE-FM scale, while three patients were able to perform a complete dorsiflexion movement. 

Figure 2A shows the individual and median improvements in LE-FM scores following the 

associative or sham interventions. The absolute pre-post intervention period difference scores for 

both groups are shown in Figure 2B. The associative group significantly improved in their 

median (interquartile range, IQR) lower extremity LE-FM from 23.5 (18.75–26.25) to 32 

(26.25–32), Z = 3.06, p = 0.002. The sham group also significantly improved from 25.5 (18–30) 

to 29.5 (21–31), Z = 2.63, p = 0.009. However, there was a significant median absolute pre-post 

intervention difference between the associative (6.5, 3.5–8.25) and sham (3, 0.75–3) groups, 

indicating that the associative group improved significantly more on the LE-FM compared to the 

sham group, Z = 2.19, p = 0.029, 95%CI: [1, 6]. 

The associative and sham groups significantly improved in their mRS scores from 4 (3-4) to 2.5 

(2-3.3) and 4 (2.8-4) to 3 (2-3), respectively (both Z’s ≥ 2.13, both p’s ≤ 0.033), with no 

significant difference in improvements between groups (p = 0.93, 95%CI: [-1, 1]). Additionally, 

both groups equally improved their FAC score from 2 (1.8-4) to 4 (3.8-5) and 2 (1.8-4) and 4 (4-

5), respectively (both Z’s = 2.71, both p’s = 0.007), with no difference in improvement (p > 0.99, 

95%CI: [-1, 1]). For the ASS, no significant changes were detected for either the associative or 

sham groups (both p’s > 0.30, 95%CI: [0, 0]).  

Two patients from each of the associative and sham groups could not walk either at baseline or 

after the 4-week intervention period. There were five patients in the associative group and three 

patients in the sham group that could not walk at baseline but could walk after the four-week 

intervention period. In these instances, patients were assigned a walking speed of 0 m/s and 
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included in the statistical analyses. The associative and sham groups significantly improved their 

walking speed in the 10-m walking test from 0.59±0.77 to 1.09±0.78 m/s and 0.63±0.67 to 

0.95±0.75 m/s, respectively (both Z’s ≥ 2.67, both p’s ≤ 0.008), with no difference in 

improvement between groups (p = 0.56; 95%CI: [-0.21, 0.56] m/s). 

Reliability of the MRCP 

The associative intervention as applied in the current study requires the MRCP to be stable 

within a session, since the arrival of the afferent inflow to the motor cortex has to occur at the 

precise time of the PN phase of the MRCP. However, since each session commenced with the 

identification of the occurrence of the time of PN of the MRCP, variability across days is 

expected and may even be a further marker for plasticity induction. The two upper panels of 

Figure 3 show the time of occurrence of the PN of the MRCP for each session for two patients. 

Also shown are the standard deviations. The lower panel displays the average PN time across all 

sessions for each patient in the associative group. Across all patients, the time of PN of the 

MRCP occurred at -60 ±55 ms prior to the cue to commence the movement. 

Changes in corticospinal output properties 

Because of patients’ compliance to TMS, it was not always possible to elicit MEPs. For session 

one, 11/12 patients were included in the analyses from each group. For session six, 7/12 

associative group patients and 8/12 sham group patients were included in the analyses, and for 

session 12, 11/12 associative group patients and 10/12 sham group patients were included. The 

RMT did not change before or after the training for either group. For the associative group, the 

mean (± SD) RMT was 56.8±16.6%, 59.0±13.3%, and 53.9±9.5% MSO in sessions 1, 6, and 12, 

respectively. For the sham group, the mean RMT was 49.2±12.3%, 48.1±11.2%, and 

53.3±13.3% MSO in sessions 1, 6, and 12, respectively. A two-way between-within participants 

ANOVA revealed no significant interaction between group and session (p = 0.14), nor main 

effect of session (p = 0.95) or group (p = 0.23). In patient A05, the RMTs were 84 and 73% 

MSO for session one and six respectively and for patients A07 it was 79% MSO for session one. 

Thus, it was not possible to obtain a complete recruitment curve up to 140% RMT on these 

occasions. 

The amplitude of the TA MEPs evoked at the highest stimulation intensity before the 

commencement of the intervention sessions across all patients attained values of 323±182 µV, 
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303±220 µV, and 425±224 µV for the associative group and 471±299 µV, 382±306 µV, and 

454±500 µV for the sham group for sessions one, six, and 12, respectively. There was no 

significant session by group interaction, nor any main significant effects of session or group (all 

p’s > 0.52), indicating that the maximal pre-intervention session MEPs did not change 

systematically throughout the intervention period. 

Figure 4 shows the mean TA MEP amplitude for the patients in the associative (Figure 4A-C) 

and sham group (Figure 4D-F), plotted against TMS intensity for intervention sessions one, six, 

and 12. Data are expressed as a fraction of the maximum TA MEP amplitude prior to the 

intervention of the respective session. The linear mixed model analysis on TA MEP amplitudes 

revealed no significant four or three-way interactions between session, time, stimulation 

intensity, or group (all p’s > 0.80). However, there was a significant two-way interaction 

between time by group, F(2,964) = 3.72, p = 0.024 (Figure 4G). Following the significant group by 

time interaction, post hoc analyses revealed that, for the associative group, TA MEP amplitudes 

were significantly larger immediately post (291±214 µV) and 30 minutes post-intervention 

(323±275 µV) compared with pre-intervention values (243±241 µV), regardless of testing 

session and stimulation intensity (p = 0.006, 95%CI: [13, 80] µV and p < 0.001, 95%CI: [43, 

110] µV, respectively). There was no difference between post and post30 MEP amplitudes (p = 

0.076, 95%CI: [-3, 63] µV). For the sham group, there were no differences in TA MEP 

amplitudes between pre (233±232 µV), post (222±219 µV), and post30 (219±239 µV) 

measurements across testing sessions and stimulation intensities (pre-post: p = 0.97, 95%CI: [-

33, 32] µV; pre-post30: p = 0.38, 95%CI: [-18, 47] µV; post-post30: p = 0.36, 95%CI: [-17, 47] 

µV). 
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Discussion  

This is the first systematic study on subacute stroke patients that explicitly explores the 

associative long-term potentiation theory within a brain-state dependent rehabilitation approach. 

Patients enrolled in the associative intervention improved motor function significantly more 

compared with the sham group. The implications are that the intervention presented here has the 

potential to boost recovery beyond the spontaneous biological recovery processes in the first few 

months after the insult. Further, it opens the possibility to develop an online BCI system for 

patients where the intention to move is detected from continuous monitoring of the brain signals 

and used to trigger the peripheral stimulation that generates the afferent feedback to the brain at 

the precise time of the PN phase of the MRCP. This online BCI has been tested in healthy 

participants where it led to significant increases in the excitability of the cortical projections to 

the target muscle
10,11

. In the current study, we specifically tested the scientific hypothesis of 

associative plasticity without the BCI component to eliminate confounding factors (such as the 

fact that different patient groups may have different detection accuracy). Nonetheless, the current 

results have direct implications for a future BCI system that allows stroke patients to control 

their own recovery process. 

To date, clinical studies on the use of BCI for stroke therapy have involved chronic patients. 

Although this choice simplifies the study design because of the stable conditions of the patients, 

a real impact in stroke therapy can only be achieved in the acute and subacute phase of the 

stroke. This is the time window critical for recovery since the greatest gains are achieved in this 

interval
28

. During this time, genes and proteins for synaptogenesis, neuronal growth and 

dendritic sprouting, are expressed to a greater extent following a stroke
29

. It is in this state that 

the brain is highly plastic and it is likely that the same synaptic rules for learning and memory 

formation will lead to the most optimal outcome
28

. Addressing patients in this time window is 

extremely challenging for neurotechnology developments because of the variability of symptom 

distribution and symptom severity
28

 as well as limited patient compliance and variability in brain 

electrical activity. These conditions impose strong constraints in the development of the 

technology as proposed here since it relies on the accurate and early detection of movement 

intention from EEG signals. While chronic stroke patients exhibit rather stable MRCPs between 

days
6
, this is not the case for subacute stroke patients (Figure 3). This necessitates the collection 
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of a training data set prior to the associative intervention where patients attempt the motor task in 

a number of repetitions. However, in the proposed intervention, each session only requires a 

maximum of 20-25 minutes which includes the preparation time. This is well within the time-

frame typically used for other therapeutic procedures. In this way, our approach is easily 

transferred into the clinical setting. 

Neural repair following stroke specifically involves adjacent sites around the lesion as well as 

remote sites that are connected to the damaged area
30

. Generally, the increased activity in remote 

sites as well as increased activity in the contralesional hemisphere during motor execution 

declines with recovery and the degree of this decline is correlated with the amount of function 

regained
31

. Within the time window of spontaneous biological recovery, significant axonal 

sprouting occurs that has the potential to be the target for novel therapies, although not all 

sprouting processes are beneficial
32

. The intent of the associative intervention as presented here 

is thus to guide plasticity by directly activating specific pathways known to be dysfunctional 

following a stroke. By repetitively pairing the intent of the patient, as quantified by the MRCP, 

with the artificially generated afferent inflow to the ipsilesional motor cortex, the associative 

intervention directly follows the principles of memory formation and learning first proposed by 

Hebb
33

. This targeted plasticity induction significantly improved functionality, and may thus 

promote beneficial plasticity processes such as axonal sprouting between those cortical areas that 

should be connected and between peripheral sensory receptors and cortical areas
28

. Indeed, 

sensory information from muscle receptors plays an integral part in motor learning
34

. The fact 

that the patients exposed to the associative intervention improved significantly more than the 

sham group supports the importance of the correct pairing in time of the peripherally generated 

signal and the MRCP. It should be noted that there were no significant improvements in the 

secondary functional outcome scores, i.e. the ASS or mRS. This is in agreement with previous 

reports 
6,13,35

. The reasons for the lack of improvements in these functional outcome scores 

remain speculative but, at least in the current study it can be partly explained by the fact that only 

two patients presented with spasticity at enrolment.  

The rationale of the proposed intervention is similar to that underlying paired associative 

stimulation (PAS – for review see
36

). PAS uses a peripherally generated afferent volley, as in our 

approach, and combines it with a second stimulation to the area of the motor cortex representing 

the target muscle with TMS. The inter-stimulus interval is such that the afferent volley arrives 
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just prior to the TMS stimulus. However, PAS is not as effective as our intervention since 

approximately 50% of participants do not exhibit the expected change in excitability following 

PAS
36

. The lower efficacy of PAS may be due to a diffuse activation by TMS of a set of both 

inhibitory and excitatory cortical neurons. In agreement with this interpretation, NIBS protocols 

that use either TMS or direct transcranial current stimulation have shown large variability in their 

effects, between individuals as well as within individuals across days
1
. In our approach, the 

activation of the cortical areas occurs naturally through the patient’s own attempt at performing 

the movement and thus the relevant brain areas are activated in a more natural manner. However, 

what remains to be investigated is the exact site of plasticity induction. Thus, in the current 

study, the significant functional improvements as quantified by the LE-FM scale and the 10 m 

walk test, were accompanied by significant increases in MEP size only in the associative group. 

While this is an indication of plastic changes within the corticospinal tract 
37,38

, in future studies 

it will be important to identify the exact locus of these changes and thus the associated functional 

changes using techniques such as resting functional magnetic resonance imaging or diffusion 

weighted images 
38

. 

The MRCP and the time of the PN of the MRCP varied from one session to the next for 

individual patients. Although this variability was reduced for single trials within a single 

intervention session, values still ranged between 150 and 300 ms. In the conventional PAS 

protocol, a difference of only 5 ms between the timing of the two stimuli could induce an 

inhibitory rather than a facilitatory effect
39

. Thus, although our associative intervention is 

modelled on PAS, it is unlikely that the two interventions have the same sites for plasticity 

induction. Irrespective of the exact site, one factor that is likely to contribute to the enhanced 

effect of our protocol as compared to PAS is that it is a behavioral training where the patient is 

actively involved in the intervention. The patient engagement combined with the correlated 

activation of the relevant brain areas through the peripherally generated volley and the MRCP 

lead to beneficial effects that are not seen in the sham intervention. 

Since the patients investigated here were hospitalized, one important goal during the 

development of the associative intervention was that it had to be complementary to the other 

activities the patients had to perform as part of the standard rehabilitation procedures in 

Denmark. Typically, patients at this stage have difficulty to concentrate for long periods of time 

and experience more fatigue as compared to chronic stroke patients. The associative intervention 
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introduced here, requires only 30 movements to be performed in the initial phase where the PN 

of the MRCP is established, and 30 in the actual intervention phase. The total duration of a single 

session that includes preparation of the EEG and stimulation electrodes is 20 minutes. It thus 

paves the way for this novel technology to be used within the daily clinical practice. 
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Figure Legends 

Figure 1. Schematic of the experimental set-up. Schematic of the associative and sham 

interventions performed during each of the 12 intervention sessions (three times per week for 

four weeks). Patients watched a screen placed 2 m in front of them on which a cue provided 

information on when to attempt the dorsiflexion movement. FOCUS appeared on the screen 

initially followed by the schematic of a step function. Patients were required to start the 

attempted movement once the moving cursor (triangle) reached the upward slope. Finally, the 

word REST appeared last on the screen prior to the start of the next trial. Relevant brain activity 

was measured, detected and the time of the peak negative (PN) phase of the MRCP extracted in 

the first 30 trials. In the subsequent 30 trials, this time was used to provide into an output 

command for an electrical stimulator. The stimulator applied a single pulse (1-ms duration) to 

the deep branch of the common peroneal nerve (CPN). For the associative intervention group, 

the induced sensory signal produced by the electrical stimulation applied to the CPN was timed 

to arrive at the motor cortex during the time of maximum activation of the motor cortex as seen 

in the electroencephalographic (EEG) signal. The stimulation intensity was set to 1 x motor 

threshold (MT). For the sham intervention group, the stimulation intensity was set below 

perception threshold such that there would be no resultant afferent volleys sent to the cortex. 

Thirty such pairs were performed. 

Figure 2. Lower extremity Fugl-Meyer (LE-FM) motor performance scores improved 

significantly for both associative and sham intervention groups, with a greater overall 

improvement for the associative group. A) LE-FM motor performance scores for all 

associative (grey circles) and sham (grey squares) patients pre- and post-intervention. Black 

circles and black squares represent median scores for the associative and sham groups, 

respectively. B) Pre-post intervention absolute difference scores for all associative (grey circles) 

and sham (grey squares) patients. The black circle and black square represent median absolute 

pre-post intervention difference scores for the associative and sham groups, respectively. *, p < 

0.05, **; p < 0.01. 

Figure 3. The time of peak negativity of the movement-related cortical potential (MRCP) 

across all 12 intervention sessions for the associative group. (A-B) data for single patients and 

each intervention session. Error bars represent standard deviations across all trials within a single 
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session. (C) Mean data across all sessions for each patient. Error bars represent standard 

deviations for all 12 sessions. 

Figure 4. Mean tibialis anterior (TA) motor evoked potential (MEP) recruitment curves for 

associative and sham intervention groups for sessions one, six, and 12. Recruitment curve 

properties of the TA MEP before (black squares), immediately after (grey circles), and 30 

minutes after (white triangles) the cessation of the associative (A-C) or sham (D-F) interventions 

across all participants. TA MEP amplitude is expressed as a fraction of the maximum peak-to-

peak TA MEP amplitude before any intervention. Each graph represents a different day of the 

intervention; session one, session six (after two weeks), and session 12 (after four weeks). G) 

displays mean TA MEP amplitudes (µV) for the associative (black bars) and sham (grey bars) 

intervention groups for pre, post, and post30 measurements, pooled across all sessions and 

stimulation intensities. Note the significant group by time interaction, where MEPs are 

significantly increased at post and post30 measurements for the associative intervention group 

only. Error bars represent standard error and asterisks indicate significant differences. RMT, 

resting motor threshold. 
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Table 1. Patient demographic data and baseline clinical evaluations. 
Patient 

No. 

Age, 

yr 

Sex Time After 

Stroke, days 

Middle Cerebral 

Artery Side 

Type of  

Lesion 

 

Associative Intervention Patient Group 

A01 57 M 63 L Left media 

A02 56 M 23 L Left media 

A03 58 M 18 R Right basal ganglia 

A04 66 M 44 L Left basal ganglia 

A05 54 F 108 R Right basal ganglia 

A06 66 M 37 R Right basal ganglia 

A07 64 M 16 L Left corona radiata/media 

A08 65 F 28 R Right media 

A09 64 M 67 R Right corona radiata/media 

A10 72 M 59 R Right anterior cerebral artery 

A11 42 M 103 L Left basal ganglia 

A12 66 M 54 L Left media 

Mean 60.8  51.7   

SD 7.9  30.6   
 

Sham Intervention Patient Group 

S01 64 M 99 L Left basal ganglia 

S02 49 M 16 R Right caps interna 

S03 69 F 20 L Left caps interna 

S04 56 M 48 L Left caps interna 

S05 64 F 46 L Left parito-occipt 

S06 60 M 128 R Right basal ganglia 

S07 52 M 28 R Right media 

S08 77 M 57 L Left basal ganglia 

S09 54 M 59 L Left basal ganglia 

S10 53 M 22 L Left media 

S11 71 F 91 L Left basal ganglia 

S12 69 F 63 R Right media 

Mean 61.5  56.4   

SD 8.9  34.8   

M, male; F, female; R, right; L, left. 
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Table 2. Patient clinical and behavioral data. 

Patient 

No. 

LE-FM  mRS  FAC  ASS  

10-m Walk 

Test, m/s 

Pre Post  Pre Post  Pre Post  Pre Post  Pre Post 

 

Associative Intervention Patient Group 

A01 24 33  3 2  5 5  1 0  1.30 1.81 

A02 27 34  2 2  4 5  0 0  1.85 2.04 

A03 25 32  2 2  5 5  0 0  1.82 1.89 

A04 28 32  4 2  3 4  0 0  1.13 1.69 

A05 16 17  4 4  1 1  0 0  0.00 0.00 

A06 18 31  4 4  0 1  0 0  0.00 0.00 

A07 19 27  4 2  2 5  0 0  0.00 0.91 

A08 31 32  4 3  2 4  0 0  0.00 0.91 

A09 26 32  4 2  2 4  0 0  0.00 0.37 

A10 10 12  4 4  1 3  0 0  0.00 0.31 

A11 20 24  3 3  4 5  0 0  1.03 1.20 

A12 23 32  4 3  2 4  0 0  0.00 1.91 

Median 23.5 32.0  4.0 2.5  2.0 4.0  0.0 0.0    

IQR 18.8-26.3 26.3-32.0  3.0-4.0 2.0-3.3  1.8-4.0 3.8-5.0  0.0-0.0 0.0-0.0    

Mean             0.59 1.09 

SD             0.77 0.78 
 

Sham Intervention Patient Group 

S01 18 17  4 3  2 4  0 0  0.35 0.39 

S02 28 31  3 2  4 5  0 0  1.51 1.51 

S03 30 30  4 2  2 4  0 0  0.00 1.10 

S04 14 21  4 4  1 1  0 0  0.00 0.00 

S05 23 31  4 3  3 4  0 0  1.14 1.46 

S06 18 21  4 4  0 1  0 0  0.00 0.00 

S07 30 29  2 3  4 5  0 0  0.80 1.05 

S08 22 25  4 2  2 4  0 0  0.00 0.60 

S09 28 31  2 2  5 5  0 0  1.64 2.07 

S10 33 34  2 2  5 5  0 0  1.56 2.19 

S11 30 33  4 3  2 4  0 0  0.56 0.78 

S12 15 18  4 3  1 4  1 0  0.00 0.20 

Median 25.5 29.5  4.0 3.0  2.0 4.0  0.0 0.0    

IQR 18.0-30.0 21.0-31.0  2.8-4.0 2.0-3.0  1.8-4.0 4.0-5.0  0.0-0.0 0.0-0.0    

Mean             0.63 0.95 

SD             0.67 0.75 

mRS, modified Rankin scale score; FAC, functional ambulation classification; LE-FM, lower-

extremity Fugl-Meyer assessment - motor performance; ASS, Ashworth scale for spasticity of 

the affected leg; IQR, interquartile range; SD, standard deviation. 
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