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Abstract  

Muscle strain injuries disrupt the muscle-tendon unit, early rehabilitation is associated with 

a faster return to sports (RTS), but the time course of tissue healing remains sparsely 

described. The purpose was to examine tissue regeneration and the effectiveness of early 

versus delayed rehabilitation onset on functional and structural recovery after strain 

injuries. 50 recreational athletes with a severe acute strain injury in their thigh or calf 

muscles were randomized to early or delayed rehabilitation onset. Magnetic resonance 

imaging (MRI) was obtained initially, 3 and 6 months post injury and dynamic contrast-

enhanced MRI (DCE-MRI) estimated tissue inflammation initially and after 6 months. Muscle 

strength was determined 5 weeks, 3 and 6 months post injury and a questionnaire 

determined soreness, pain and confidence. DCE-MRI microvascular perfusion was higher in 

the injured compared to an uninjured muscle acutely (p< 0.01) and after 6 months (p< 0.01), 

for both groups (p> 0.05) and unrelated to RTS (p> 0.05). Total volume of the injured muscle 

decreased from the acute to the 3 months scan, and to the 6 months scan (p< 0.01) in both 

groups. Muscle strength was similar in both groups at any time. There was a non-significant 

trend (p≤ 0.1) towards less pain and higher confidence with early rehabilitation. One re-

injury was recorded. In conclusion, our data showed prolonged tissue repair with the initial 

response linked to muscle atrophy but did not explain why early rehabilitation onset 

accelerated recovery considering that structural and functional recovery was similar with 

early and delayed rehabilitation.     

 

Introduction 

Muscle strain injuries are classified as traumatic injuries that require substantial clinical 

rehabilitation to return to normal pre-injury sports activity. These injuries have a high 
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incidence and a significant re-injury rate 1–4. Re-injuries are particularly common in the early 

phase after return to sports (RTS)1, which suggests that there is a discrepancy between the 

time allowed for tissue healing and the ability of the tissue to withstand high sport specific 

loading. Muscle strain injuries affect primarily the muscle-tendon interface, which implies 

that the tissue damage will involve both parts of the contractile muscle and the connective 

tissue of tendon and/or aponeurosis. The myotendinous junction (MTJ) can withstand 

considerable forces and strain before failure 5 and can adapt to changes in loading history 6, 

but it is the weakest link of the muscle-tendon unit 7. Consequently, the healing of a strain 

injury will likely incorporate regeneration of the MTJ and connective tissue formation and 

re-connection between muscle fibers and collagen fibers. Given its low turnover and rather 

poor healing capacity 8, the connective tissue may be a limiting factor in the rehabilitation of 

strain injuries, but this has not been investigated. Previously, it has been demonstrated in 

animal models 9 and electrically stimulated humans muscle 10 that tissue healing involves 

extracellular matrix (ECM) regeneration. Although experimentally induced focal muscle 

damage is not directly comparable to strain injuries, it is worth noting that connective tissue 

regeneration can take place for many weeks to months after the injury.  

Recently, we have demonstrated that early rehabilitation onset after muscle injury is crucial 

for a faster clinical recovery to sports 11. This supports earlier findings that immobilization 

impairs both muscle and tendon tissue 12,13 and has a detrimental effect upon connective 

tissue structure and cells in in vitro system 14. The mechanisms for such a disadvantageous 

outcome with delayed loading are unclear and rarely investigated in detail in humans. 

Therefore, the present study sought to investigate if A) tissue perfusion measured by 

dynamic contrast-enhanced MRI, B) tissue structure determined by conventional MRI, and 

C) muscle function examined by strength tests differed in athletes with a rehabilitation 

onset of 2 compared to 9 days post injury. Additionally, we wanted to assess subjective 

measures of pain, symptoms related to the injury and confidence in the injured limb. 

Previous studies of acute muscle strain injuries have shown that tissue morphology at the 

injury site is abnormal for several weeks and months after injury 2,15. It is, however, 

unknown how dynamic this process is and whether the initial severity of tissue damage 

yields long-term pathophysiological changes. Further, it is unknown whether these tissue 

changes are of clinical relevance, and if they play a role in re-injuries. To avoid invasive 
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procedures, the present study made use of dynamic contrast-enhanced MRI (DCE-MRI) to 

quantitatively measure microvascular permeability16 and estimate tissue inflammation. This 

technique can serve as a surrogate marker of inflammation as shown previously using 

histology as a reference17. Damage to the microvascular barrier is a pathological 

consequence following trauma 18, and in the context of strain injuries, the Gadolinium 

contrast uptake  in the injured tissue may represent microvascular leakage, cell injury and 

inflammatory processes.  

Thus, in the present study we aimed to examine tissue perfusion as an indirect marker of 

inflammation over time and examine the relation between tissue perfusion and 

morphological changes of the muscle. Muscle strength tests were performed to study 

muscle function and perceived readiness of patients for RTS were registered. All parameters 

were analyzed in relation to either an early initiated or a more protracted rehabilitation 

regimen. The study goal was to investigate whether a shorter time to RTS is reflected in the 

injured tissue structures and function. We hypothesized that the early therapy group would 

be superior to the delayed therapy group in function measured as muscle strength. Further, 

we expected that the DCE-MRI parameters determining the rate and magnitude of contrast 

uptake by the tissue is significantly increased in the acute phase post injury. At the 6 months 

follow up scan, we hypothesized that contrast uptake would be normalized in the injured, 

compared to an uninjured muscle, reflecting resolution of inflammation and restoration of 

the tissue integrity. At this late time point, we did not expect a difference between the 

rehabilitation groups.  

 

Materials and Methods 

Study design, participants and rehabilitation 

This study was a parallel design, two-arm RCT using a computer-generated minimization 

randomization procedure with a follow-up of 12 months. Minimization was based on muscle 

group and gender and was performed by the principal investigator. The primary outcome of 

the study was time to return to sports (RTS), which has been reported earlier together with 

a detailed outline of the clinical study design 11. Briefly, patients were clinically examined 
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and diagnosed before inclusion (sudden onset of pain during explosive movement, palpation 

pain and a clear defect at the muscle-connective tissue interface visible on an ultrasound 

scan). Inclusion criteria are listed in the supplementary table S2.  All patients gave written 

informed consent, the study was approved by the local ethical committee (The Regional 

Ethical Committee, ref. H-1-2014-005) and registered at clinical trials.gov. The rehabilitation 

protocols were identical for both groups, lasting for 12 weeks with a gradual increase in load 

over time focusing on the injured leg 11. For all exercises, patients were instructed not to 

exceed the pain level of > 5 on the NRS pain scoring scale. The onset of rehabilitation for the 

early therapy group was two days and for the delayed therapy group nine days after the 

injury. Patients were cleared for return-to-sport when symptom-free during rehabilitation 

and pain-free during and after repeated maximal sprints and single-leg jumps (pain ≤ 1 on 

the NRS pain rating scale).  

 

Magnetic Resonance Imaging 

MRI of the injured thigh or calf was performed in the first week, and 3 and 6 months post 

injury. All scans were performed using a 1.5T (Ingenia Stream; Philips Healthcare, Best, the 

Netherlands), all patients were scanned in supine position using a 32 channel torso coil. The 

following MRI protocol was used: 3 plane localizer; TR 3.2ms; TE 1 ms; FA 90⁰; Field of View 

(FOV) 530mm; Slice Thickness (ST) 10mm. Sagittal STIR (Short Tau Inversion Recovery) (TR 

4.4 sec; TE 20ms; FA 90⁰; FOV 440mm; ST 5mm; Matrix 218x218; TI 150ms). Sagittal T1W 

TSE; TR 503ms; TE 15ms; FA 90⁰; FOV 440mm; ST 5mm; FOV 440mm; Matrix 218x218). Axial 

STIR (TR 6.2; TE 20ms; Flip Angle (FA) 90⁰; FOV 250mm; ST 5mm; Matrix 128x128). Axial 

T1W TSE (TR 532ms; TE 20ms; FA 90⁰; FOV 250mm; ST 5mm; Matrix 128x128). During an 

intravenous gadolinium injection (0.2ml/kg body weight using a power injector 2ml/s) an 

axial T1W FFE Dynamic Contrast Enhanced (DCE) sequence was performed (TR 4.1ms; TE 

20ms; FA 12⁰; FOV 440mm; ST 4mm; Matrix 268x268; Temporal res 31sec). Finally, a post 

contrast T1W SPIR (TR 590 sec; TE 20ms; FA 90⁰; FOV 440mm; ST 5mm; Matrix 206x206; TI 

150ms). The two last sequences were only performed at the first and last time point. 

Dynamic contrast-enhanced MRI is based on a fast MRI sequence performed of a given 

anatomy with few seconds between each acquisition before, during and the first 5 minutes 
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after injection of Gadolinium contrast. This MRI sequence allows extraction of time intensity 

perfusion curves in each image volume element (voxel) as the signal intensity in the voxels 

of the target tissue changes over time19.  

Renal function was tested before the MRI scan as an estimated glomerular filtration rate 

(eGFR) <60ml/min/1.73m2 is a contraindication for administration of IV contrast medium. 

The DCE sequence was always performed as the second last sequence, i.e. a minimum of 20 

min into the scan assuming a relaxed state of the patient with normalization of potential 

perfusion changes induced by movement and increased heart rate. In the early therapy 

group, 16 participants were included in the DCE-MRI analysis (non-participation due to 

personal reasons n= 1, technical issues n= 3). In the delayed therapy group, 17 patients were 

included in the DCE-MRI analysis (personal reasons n=4, technical issues n= 1), 

supplementary figure 1. Prior to the MRI, all participants were asked to mark the area of 

maximal pain and its distal and proximal extension so that the length of the painful area was 

defined and measured.  

 

Image analysis 

Images were interpreted by an experienced radiologist, who was blinded to group allocation 

and clinical details other than the suspected muscle injury. The radiologist recorded the 

presence or absence of abnormal intra- and inter-muscular STIR hyperintensity and 

potential changes on T1 weighted images and determined the severity of the strain injury 

based on the classification system where grade 3 strains are defined as minor/ moderate 

partial muscle tears and grade 4 as total/ sub-total muscle tears20. The muscles involved and 

the location of the abnormality in each muscle was determined and the muscle with the 

most extensive STIR hyperintensity was noted Injury volume was calculated by assuming 

that the injury had a shape of a rotational ellipsoid, that is, volume ≈ length × width × depth 

× 0.5 21.  

Muscle volume was quantified using the Osirix Software (Osirix Lite V.9.0) by manual 

segmentation by a blinded investigator. The muscle boundaries were identified and outlined 

on the 2D axial T1-weighted images synchronized to the axial STIR images to differentiate 
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between muscle tissue and the intra- and intermuscular hematoma. Two-dimensional 

muscle areas were measured on 20 consecutive images starting at the most distal site of 

injury moving 20 slices with a slice thickness of 5 mm in the proximal direction and summed 

to a muscle volume. The exact same location was used for the follow up scans measured as 

distance from anatomical landmarks; the apex of the patella or the femoral head for thigh 

injuries and the patella plateau for calf injuries. The investigator analyzed the muscle 

volume of 10 randomly chosen patients 2 times for reproducibility measurements. Three 

separate regions of the muscles were chosen (the most distal, the mid potion and the most 

proximal part) and here the cross-sectional area of the injured muscle, the uninjured agonist 

and the uninjured antagonist were measured. The re-test (second measurement) was more 

than one week apart following the first measurement. Typical error % for replicate 

measurements and the correlation coefficient r for the three regions and the three muscles 

are listed in table S1, supplementary information.  

Dynamic contrast enhanced-MRI slices were analyzed using the computer software 

Dynamika® enterprise version 2.4.6 (Image Analysis LTD, London, 

http://www.imageanalysis.org.uk). Motion correction between temporal slices was applied 

on all the available axial DCE-MRI slices before regions of interest (ROIs) were drawn around 

areas with visible contrast-enhancement in the injured muscles (figure 1A). Vascular 

branches were avoided when drawing the ROIs which was facilitated by using the initial rate 

of enhancement (IRE) MAP superimposed on the grayscale images (figure 1A, B). ROIs were 

then combined to form a single volume. A ROI containing uninjured muscle in the same 

compartment and another ROI applied in the antagonist muscle region in the two most 

proximal and the two most distal slices of DCE-MRI dataset (figure 1A) served as references. 

For all voxels in the ROI, the analysis of contrast-enhancement included the mean of 

maximal enhancement (ME) selecting the height of the perfusion curves from baseline, the 

initial rate of enhancement (IRE) reflecting the steepness of the perfusion curve as percent 

contrast intensity increase over time from baseline. Finally the total number of voxels with a 

high enhancement reaching plateau or washout referred to as Nvoxel were determined 22. 

The composite IRE*ME is a surrogate marker of the area under the perfusion curve 23. The 

parameters IRE, ME and IRE*ME are expressed as the ratio of the ROIs at the site of injury 

and the reference ROIs. The first MR scan in the days after the injury was used as a baseline, 
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and ROIs were drawn into the corresponding slices on the 6 months follow up scan using the 

femoral head or the tibia plateau as anatomical landmark on the T1-weighted sagittal 

image.  

Maximal isometric muscle strength 

To evaluate mechanical muscle function, a maximal isometric muscle strength test 

determined peak muscle strength (maximal voluntary contraction, MVC) after the first 

rehabilitation phase, 5 weeks after the injury. The same test was repeated 3 as well as 6 

months post injury. Isometric tests were chosen to avoid forceful isokinetic muscle 

contractions in the early phase post injury. Isometric strength was measured in newton 5 

weeks, 3 months (13 weeks) and 6 months post injury with the Good Strength device 

(Version 3.14 Bluetooth; Metitur Ltd, Finland) as described in detail elsewhere24. 

Measurements were preceded by 10 minutes of warmup on a Monark cycle ergometer. 

Participants with an injury in the hamstring were seated with hips flexed at 90° and knees 

flexed at 30°, 60° and 80° from full extension (technical limitations did not allow 90°). 

Participants with a quadriceps injury were seated with hips flexed at 90°, knees flexed at 70° 

and 90° from full extension. Knee angles were measured with a hand-held goniometer. 

Stabilization belts were placed across the waist and distally across the ipsilateral thigh, and 

the transducer was placed 5 cm above the malleoli for injuries in the thigh 25. Participants 

with a calf injury were seated with hips flexed at 90°, knees fixed at 0° knee ankle, ankle 

joints in a 90˚ position and the force transducer was placed beneath the metatarsal bones. 

The same placements were used for all time points. The participants were instructed to 

perform the contraction as fast and powerful as possible. Each contraction lasted 4 s and 

was separated by a rest period of 30 seconds. Three measurements were made at each time 

point, the trial with the highest MVC was used in the data analysis. For thigh measurements, 

forces were corrected for the lower leg weight distal to the knee joint for each knee angle 

and for the ankle isometric strength, the passive force against the transducer was 

subtracted from the active MVC.  
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Maximal isokinetic muscle strength  

Maximal concentric (con) and eccentric (ecc) strength of hamstring (H) and quadriceps (Q) 

muscle was measured during isokinetic knee extension and flexion movements 3 and 6 

months post injury. A Kin-Com dynamometer (Chattecx Corp., Chattanooga, Tennessee) was 

used for the measurements. Participants were seated and reclined 10°, their hips and thighs 

were firmly strapped to the seat of the dynamometer. The axis of rotation of the 

dynamometer lever arm was visually aligned with the lateral femoral condyle, and the lower 

leg was attached to the lever arm of the dynamometer 5 cm above the lateral malleolus. 

Measurements were preceded by warm-up and the isometric muscle strength 

measurement. For each specific contraction mode, two pre-conditioning trials were 

performed followed by 3 maximal contractions at the angular velocity of 60°/s, the interval 

of rest between trials was 30 to 90 seconds. Recorded forces were corrected for the weight 

of the lower leg distal to the knee joint. Range of motion was 10° to 90° (0° indicating full 

knee extension). The knee extension range of motion was altered 2-3˚ for a few patients 

that could not extend their knee to 0°. Tests were always in the same order starting with 

hamstring con then hamstring ecc, followed by quadriceps con then quadriceps ecc on their 

healthy leg followed by the injured leg. Strength was reported as the maximal torque and 

the angle at which maximal torque was recorded. The trial with the highest peak torque was 

used in the data analysis. In addition, we determined the H:Q ratio, which determines the 

muscle strength properties around the knee joint 26. The conventional H:Q ratio is 

determined as the maximal hamstring concentric torque divided by the maximal quadriceps 

concentric torque (Hcon:Qcon). The functional H:Q ratio representative for knee extension is 

the maximal hamstring ecc torque divided by maximal quadriceps con torque (Hecc:Qcon). 

Lastly, the functional H:Q ratio representative for knee flexion was calculated by the 

maximal hamstring con torque divided by maximal quadriceps ecc torque (Hcon:Qecc).  

 

Dynamic calf muscle function test 

The heel-rise test is a measure of repeated concentric and eccentric muscle contractions 

and was only carried out in patients with calf muscle strain injuries as isokinetic 

measurements of the calf on the KinCom dynamometer were not possible. The MuscleLab 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

(Ergotest Technology) system was used, which consists of a string connected to a sensor 

inside a linear encoder unit. When the string is pulled, the sensor outputs a series of digital 

pulses that corresponds to the distance travelled 27.  For balance, the participants were 

instructed to place two fingertips per hand against a wall at shoulder height. The 

participants were instructed to rise as high as possible on each heel-rise and then lower the 

heel to the starting position with concentric and eccentric phases each lasting 1 s guided by 

a metronome. Participants were asked to perform as many heel-rises as possible. The test 

was terminated when the participant was unable to raise the heel >5 cm at the correct pace.  

 

Questionnaire and return to sport 

The questionnaire to assess function scores of the injured muscle was previously validated 

by Engebretsen et al 28 and translated to Danish. It consists of five categories (symptoms, 

soreness, pain, function and activities and quality of life/ quality of sports performance), 

each category is scored separately. The total score is achieved by calculating the mean of 

the five categories in percent of the maximal score. The questionnaire was modified for calf 

and thigh injuries to be specific to these regions following the same principles as the 

Hamstring Outcome Score. Participants were asked to complete the questionnaire at 3 and 

6 months as well as the one year follow up. RTS was defined as the time from injury until 

full, pain-free and confident participation in all sports activities on the pre-injury level could 

be performed. 

 

Statistics 

Two-way ANOVA with repeated measures in one factor (time) with post-hoc Holm-Sidak 

tests were used to detect statistical differences between groups and time points when the 

normality test was passed.  Normality was tested with the Shapiro Wilk test. DCE-MRI 

parameters were tested on log transformed data, numbers are given as geometric means 

with the upper and lower SEM. Due to lack of normality and log normality, questionnaire 

items were tested with the Mann–Whitney U test for differences between therapy groups 

at each time point. Muscle volume changes also lacked normality and were tested with 
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Mann–Whitney U tests for differences between muscle and therapy groups at each time 

point. There was no difference between muscle and therapy groups and therefore time 

effects were evaluated by one-way repeated measures ANOVA on ranks (Friedman test, 

post-hoc Tukey) across intervention groups. Paired t-tests were used for the statistical 

analysis to determine whether there was a systematic difference between the first and 

second measurement in the reproducibility test of muscle volume quantification on 10 

randomly chosen subjects. All correlations were performed using Spearman´s rank order 

correlation. The level of significance was set at P< 0.05. An a priori sample size calculation 

suggested that n= 21 was needed to detect a 30% difference in RTS at a p<0.05 level with a 

power of 80%. To account for drop-outs, a total of 25 patients in each of the studied groups 

were recruited and included in the study 11.  

 

Results 

Participants 

Seventy-five recreational athletes with an acute strain injury within 48 hours prior to the 

medical examination were recruited. Of these, 50 patients fulfilled the inclusion criteria and 

were randomized to one of the two intervention groups, all of the patients had grade 3 or 4 

muscle injuries 20. The primary outcome of this clinical study was time until RTS, which has 

been published previously11. Briefly, the early therapy group had a significantly faster return 

to sport compared to the delayed therapy group (median days until RTS 62.5, interquartile 

range 48.8 to 77.8, and 83.0 days 64.5 to 97.3, respectively). According to Fuller et al29, all 

injuries were classified as severe sports injuries. There was one re-injury registered in the 

early and none in the delayed therapy group. No statistical difference was detected 

between the groups in regards to age, height, weight, or the severity and location of the 

injury. An outline of patient characteristic and the injured muscles is found in the 

supplementary appendix, table S1) 11. A total of 8 patients dropped out of the study during 

therapy due to reasons unrelated to this study, and 42 completed the study, and of these 23 

had hamstring injuries (55%), 17 had calf injuries (40%) and 2 had quadriceps injuries (5%). 

There was no difference in acute pain levels, the dimensions of the edema and the severity 

of the injuries between the groups 11 (supplementary table S1).   
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Dynamic contrast-enhanced-MRI 

There was no statistical difference between the two intervention groups for all DCE-MRI 

parameters acutely and 6 months post injury. Immediately after injury, there was a higher 

perfusion both for mean IRE and ME in the injured muscle compared to a healthy muscle 

when using the same compartment in an uninjured reference muscle (p< 0.01). This 

difference was still evident 6 months after injury (figure 1, p< 0.01). None of the DCE-MRI 

variables were normalized at 6 months post injury follow-up, but we did observe a 

significant reduction of all values in the injured area over time (figure 1, table 1, p< 0.001), a 

change that was independent upon rehabilitation group allocation. The data demonstrate a 

high correlation between the volume of the edema measured on STIR MRI images and the 

amount of maximally perfused voxels (Nvoxel) (r= 0.74, p< 0.01). Our data did not show any 

statistical correlation between the amount of highly perfused Voxels (Nvoxel), IRE and ME 

and the time until RTS, (p= 0.2, p= 0.4, p= 0.4, respectively, supplementary table S2). 

Likewise, there was no correlation between the change over time in all the DCE-MRI 

parameters included in the analysis and the time until full recovery (supplementary table S2, 

S3). In addition, the self-reported painful area was not correlated to the volume of the 

edema extracted from STIR images (p= 0.3, supplementary table S4) or the amount of 

maximally perfused voxels (Nvoxel), (p= 0.7, supplementary table S4) from the DCE-MRI. 

Further, no correlation was determined between the parameters mean IRE or ME (p= 0.5, 

p= 0.9, respectively, supplementary table S4). Finally, the acute pain score determined 

during the first rehabilitation session (data available in 11) was not correlated to any static or 

dynamic MRI parameter.   

 

Muscle volume 

There was no difference between the early and delayed therapy group in the total muscle 

volume changes over time (p= 0.9), and no difference was observed in the relative changes 

between the thigh and calf muscle groups (p= 0.5). There was a decline in the volume of the 

injured muscle between the acute and the 3 months follow up scan (median reduction of 

9%, figure 2, p= 0.02), which remained unchanged at the 6 months follow up scan (median 

change acute to 6 months follow up scan 9%, p< 0.001). There was no difference in the 
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muscle volume of an uninjured muscle chosen from the same compartment and no change 

in the uninjured antagonist muscle volume at any time point (figure 2). 

There was a significant inverse correlation between the volume reduction of the injured 

muscle and the DCE-MRI parameter Nvoxel determined in the acute post injury scan, i.e. the 

more pronounced the perfusion, the greater the muscle loss. The association between 

Nvoxel and the measured volume changes from the acute scan to the 3 months follow up 

scan revealed a correlation coefficient r of -0.48, p= 0.003, and from the acute baseline scan 

to the 6 months follow up scan resulted in a correlation coefficient of -0.52 (figure 3, 

supplementary table S3, p= 0.001).  

 

Muscle isometric strength  

There were no statistical differences between the MVC in the injured leg compared to the 

contralateral uninjured leg at 5 weeks, 3 months and 6 months post injury, regardless of 

group allocation. The pattern of similar strength between the injured and healthy limb was 

the same for injuries in the thigh (hamstring and quadriceps) and calf muscles. Therefore, 

the collective MVC of the injured relative to the contralateral healthy limb is illustrated for 

all patients (figure 4 for all 3 time points.  Isometric MVC between the injured and the 

healthy legs was similar for all knee angles tested in the thigh muscles. 

 

Muscle isokinetic strength of the thigh muscles  

There was no difference between the rehabilitation groups in the isokinetic muscle torque 

of the injured muscles at both 3 and 6 months in patients with hamstring injuries. The 

injured hamstrings performed a lower torque in comparison with the contralateral 

uninjured side for both the concentric and the eccentric muscle contractions 3 months post 

injury (p= 0.002 and 0.04, respectively, table 2, supplementary figure 2). On average, the 

hamstring concentric peak force was 12% lower, the eccentric peak force 5% lower in the 

injured leg . Quadriceps concentric and eccentric torque was similar between the legs.  As a 

consequence, the calculated H:Q ratio was reduced in the injured compared with the 
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uninjured leg (p= 0.005) and this was also the case also for the functional Hcon:Qecc, (p< 

0.001). There was no difference in the functional Hecc:Qcon ratio (p= 0.2). Further, there was 

no difference between groups and between legs in the knee angle, at which the participants 

exerted their maximal concentric and eccentric hamstring strength (p= 0.48 and 0.53, 

respectively). The only group difference was manifested as a higher quadriceps con peak 

strength in the early therapy compared to the delayed therapy group (p= 0.03, table 2). 

Hamstring strength was recovered 6 months post injury, as there was no isokinetic deficit 

detectable at this time point (p= 0.23 for concentric, p= 0.86 for eccentric contractions). 

Quadriceps maximal torque was not different between the legs for both contraction forms 

and the H:Q ratios were similar between the injured and the uninjured leg. There was no 

difference between the legs in the angle at which peak hamstring strength was achieved 

(table 2).   

 

Test of calf muscle function 

There was no difference between the early and the delayed therapy group (figure 5, p= 0.37 

for the number of repetitions and p= 0.61 for distance). Further, no statistical difference was 

detected between the injured and the contralateral uninjured calf for both the number of 

heel rises performed (p= 0.52) and the distance, i.e. the active range of motion of the calf 

muscles during the test (p= 0.51). This was found both 3 and 6 months post injury, (figure 5) 

and both the number of calf rises, and the range of motion were similar at 3 and the 6 

months post injury (p= 0.17 and 0.42, respectively).   

 

Perception of symptoms and readiness  

There was no statistical difference in any of the subjective ratings of “symptoms”, “the level 

of pain”, “confidence in the injured leg”, “soreness” as well as “functional difficulties” 

between the groups. However, the participants in the early therapy group reported a trend 

towards reduced pain (p= 0.1) and greater “confidence in the injured leg” compared with 

the delayed group (p= 0.08, figure 6 A, B) 3 months post injury. The tendency towards a 

higher confidence in the injured leg for the early therapy group was similar 6 months post 
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injury (p= 0.06, figure 6 B), albeit not significant. There was no such trend seen for any of 

the other subcategories, soreness, symptoms and functional difficulties.  

 

Discussion 

The main outcome of the present study is that tissue repair is a prolonged process that lasts 

for at least 6 months after a severe muscle strain injury. The tissue is not fully normalized at 

the time when athletes resume full physical activity at pre-injury level as illustrated by the 

increased DCE-MRI perfusion parameters in the injured area compared to the uninjured 

reference muscles. This finding supports the view that even after RTS following a 

musculoskeletal injury, the injured tissues still undergoes regenerative activities. The 

prolonged tissue regeneration in both rehabilitation groups is further underlined by the 

finding of a significant reduction in the volume of the entire injured muscle both after 3 and 

6 months, which was correlated to the DCE-MRI parameters obtained acutely after injury. 

The tight relation between volume reduction at 3 and 6 months post injury and the 

increased tissue perfusion suggests a link between the magnitude of the trauma, the 

inflammatory response and muscle atrophy. This study cannot demonstrate that a faster 

RTS due to early onset of rehabilitation is directly related to any detectable differences 

either in static or dynamic maximal muscle strength or in structural analyses obtained by 

both conventional and DCE-MRI.   

Muscle atrophy after the injury suggests that either the innervation or the mechanical 

tension, or the combination of both is severely altered following a strain injury. Since there 

is a disruption between the contractile elements and the force transducing connective 

tissue 30, we hypothesize that the change in mechanical tension is the major factor causing 

focal immobilization of muscle fibers and fascicles through detachment from the connective 

tissue. Even if the detachment is followed by re-attachment, the newly formed attachment 

site is most likely a mechanically weaker fibrotic tissue. Immobilization of limbs results in 

muscle atrophy 12,31, impairs connective tissue structure and function13, can negatively 

change muscle architecture and evoke a decline in contractility of single muscle fibers 12,32. 

Additionally, inflammatory processes are associated with skeletal muscle atrophy via 

apoptosis and proteolysis and could further negatively influence muscle regeneration33.  
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Our data suggest a rapid loss in muscle volume manifested 3 months post injury with no 

improvement from 3 to 6 months. The lack of any increase in muscle mass is not the 

response of healthy muscle tissue as retraining of intact skeletal muscle after a period of 

immobilization reverses negative adaptations to unloading31, and even low loads elicit 

increases in muscle cross-sectional area and adaptations at the fascicle level 34,35. We 

interpret the lack of adaptation as persistent tissue damage, which is further supported by 

the persistent and increased tissue perfusion indicative of an inflammatory processes 6 

months post injury. It is important to state that functional muscle innervation through 

neuromuscular junctions (NMJs) is indispensable for muscle structure and function. A deficit 

in nerve innervation would lead to muscle atrophy36 and might therefore contribute to the 

observed muscle volume loss. However, denervation causes a decrease in capillaries and 

leads to de-vascularization37, yet tissue perfusion measured by DCE-MRI was increased 

rather than reduced in the injured muscle, even 6 months post injury.  However, it should 

be noted that despite these considerations, we did not directly determine NJMs and muscle 

innervation in the present study. Muscle atrophy as a result to strain injuries has also been 

reported by others 15,38, but unlike previous reports, the present study included an 

intermediate time point at 3 months post-injury at which time the volume loss was already 

present and unchanged at the later time point. It also noteworthy that the early start of 

rehabilitation did not counteract the significant reduction in muscle volume.  

Further, the rehabilitation onset had no impact on the microvascular flow neither acutely 

nor 6 months post injury, which implies that there was no effect of loading onset on 

perfusion indicative of inflammatory processes in the healing phase up to 6 months after 

the injury. It cannot be excluded that there might have been a group difference in DCE-MRI 

parameters at an earlier time point when the delayed therapy group was lacking behind the 

early therapy group in RTS. In the period between the injury and RTS, elevated tissue 

inflammation might have been linked to pain perception as it was reported for other tissues 

in the musculoskeletal system 39,40.  

There was a lack of a relationship between pain and DCE-MRI, or any of the MRI parameters 

and RTS, which indicate that the structural and dynamic parameters assessed by MRI has 

poor prognostic power with respect to RTS as reported previously 41. Similar findings were 

reported by Reurink et al 42, with the majority of injured athletes showing persistent fluid 
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accumulation even when clinically recovered. Non-resolution of edema is due to increased 

capillary permeability and associated with prolonged inflammation43. In the present study 

with the help of DCE-MRI, we show that the persistent edema does not seem to be a passive 

remnant of the acute trauma, but rather a very active process, even several months after 

the injury. As Reurink et al42, we find that these reparative processes do not hamper 

athletes in successful RTS but it can be speculated that ongoing repair weakens the tissue 

and renders it more prone to re-injuries. Whether this is the case should be explored in 

future studies and appears relevant as DCE-MRI offers predictive value in relation to muscle 

atrophy after a strain injury.  

Re-injury rate was low in the present study despite the persistent tissue perfusion, which we 

interpret as a successful rehabilitation. There might be a critical time span during which the 

actively regenerating tissue should not see high loads to avoid re-ruptures, but this 

speculative since there is a lack of studies on tissue inflammation, mechanical properties of 

the regenerating tissue and neural innervation after human muscle strain injury. In our data 

we found that peak muscle strength between the injured and the contralateral healthy 

muscle was similar already at the first time point (figure 4). This picture was the same for 

different muscle lengths and for both therapy groups (figure 4). As the participants 

predominantly rehabilitated the injured leg only11, the lack of a difference between the 

injured and the uninjured leg most likely reflects the adaptation to the training44,45. Further, 

our rehabilitation program was designed to stimulate the tissue frequently in the first 

phase, and in the later stages less often, but with heavy loading. The daily loading of the 

injured leg was based on findings indicating that mechanical loading has immediate though 

short lasting effects in healing connective tissue 46. Heavy loading evoked local changes 

associated with remodeling at the MTJ 47. In addition, the longer recovery time in our study 

compared to that in other studies 48–50 should be viewed in relation to the very low number 

of re-injuries found in our study.  

The loss of muscle volume did not influence the potential for gain in strength in the 

hamstring muscle between the 3 and 6 months post injury tests as evidenced by the 

recovery of the strength deficit during this time span (table 2). The strength deficits at RTS 

were similar for both groups and did not increase the risk for re-injuries. This seems to 

corroborate the fact that even more pronounced strength deficits in elite football players 
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does not seem to be associated with any higher risk of re-injury 51. Functional deficits in the 

calf muscles were not detected in our study, which may relate chosen functional test, which 

does not examine maximal strength per se, but rather the ability to perform repeated 

concentric and eccentric calf muscle movements. The heel rise test is, however, a widely 

used and reliable method to examine calf muscle function27.  

Besides the considerable difference in RTS, the two groups in this study were similar in 

every functional and structural parameter registered in the time after the injury. This leaves 

open the question of what factors were affected by the delay in rehabilitation, especially in 

relation to subjective pain, which ultimately caused the prolonged time to RTS in the 

delayed therapy group. Based on the suggestion that healing of strain injuries is governed by 

both muscle and connective tissue repair, it is interesting to note that isometric strength 

exercises may have analgesic effects in patients with painful tendons 52. A study 

investigating immediate active motion following tendon transfer, reported a significantly 

earlier pain relief as a result to the intervention 53. The same group found a shorter 

rehabilitation time after tendon transfer in a group subjected to early limb loading 

compared to immobilization 54. A possible association between the immediate loading of 

the injured tissue and persistent hypoalgesia might have reduced pain avoidance behavior, 

which is often described following injuries 55,56 and caused higher confidence in the early 

therapy group as indicated by our data. Whether the lower pain perception was driven by 

positive adaptations on the tissue level remains speculative.  

The authors acknowledge that there are some limitations to this study. First, we did not plan 

on including an MRI scan at the one year follow up and we lack therefore further insight into 

the development of both the muscle volume and tissue perfusion. Further, this study did 

not include any direct measurements of connective tissue synthesis within the injured 

tissues and therefore, the time course and the processes involved in the connective tissue 

repair remain somewhat speculative. Finally, we did not assess fascicle length and potential 

changes over the study period and lack EMG measurements of the different muscles to 

examine whether innervation of agonists and antagonists change after the injury. In 

conclusion, this study shows that the extent of the muscle strain injury is associated with 

persistent muscle atrophy and suggests that tissue repair is an ongoing process even after 
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successful RTS. The observed structural and functional changes were unable to explain the 

significantly shorter time to RTS in patients with early rehabilitation onset.  

 

Perspective 

The data in this study show that tissue remodeling and muscle atrophy take place several 

months after an acute muscle strain injury. This underscores the prolonged time required 

for connective tissue repair to allow MTJ regeneration, which should be taken into account 

in the decision on RTS. Further, these data indicate strength training should likely be 

maintained as part of rehabilitation effort even after RTS. We think it is important that 

future studies on human muscle strains address the question related to the time course of 

tissue healing, the specific tissues involved, including the connective tissue, and if 

inflammatory processes are associated with the risk of re-injuries. We showed that amateur 

athletes returned to sports faster after early rehabilitation onset, but the mechanisms 

behind this remains elusive. Our data proposes further detailed studies on the interplay 

between tissue regeneration and pain improvement.  

 

Acknowledgements 

The authors thank all the participants warmly for their participation. The medical staff of the 

Institute of Sports Medicine Copenhagen, Bispebjerg Hospital and the Radiology 

department, Frederiksberg Hospital is acknowledged for their assistance and contributions 

to this study. The authors also thank Elisabeth Bandak for her skillful help with the analysis 

of DCE-MRI and the Image Analysis Group Dynamika for their technical support.   

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

References 

1.  Wangensteen A, Tol JL, Witvrouw E, Van Linschoten R, Almusa E, Hamilton B, Bahr R. 

Hamstring Reinjuries Occur at the Same Location and Early After Return to Sport: A 

Descriptive Study of MRI-Confirmed Reinjuries. Am J Sports Med 2016;44:2112–2121. 

2.  De Vos RJ, Reurink G, Goudswaard GJ, Moen MH, Weir A, Tol JL. Clinical findings just 

after return to play predict hamstring re-injury, but baseline MRI findings do not. Br J 

Sports Med 2014;48:1377–84. 

3.  Edouard P, Branco P, Alonso JM. Muscle injury is the principal injury type and 

hamstring muscle injury is the first injury diagnosis during top-level international 

athletics championships between 2007 and 2015. Br J Sports Med 2016; 

4.  Ekstrand J, Hägglund M, Waldén M. Epidemiology of Muscle Injuries in Professional 

Football (Soccer). Am J Sports Med 2011;39:1226–1232. 

5.  Zamora AJ, Carnino A, Roffino S, Marini JF. Respective effects of hindlimb suspension, 

confinement and spaceflight on myotendinous junction ultrastructure. Acta 

Astronaut 1995;36:693–706. 

6.  Jakobsen JR, Mackey AL, Knudsen AB, Koch M, Kjær M, Krogsgaard MR. Composition 

and adaptation of human myotendinous junction and neighboring muscle fibers to 

heavy resistance training. Scand J Med Sci Sport 2017;27:1547–1559. 

7.  Nikolaou PK, Macdonald BL, Glisson RR, Seaber A V., Garrett WE. Biomechanical and 

histological evaluation of muscle after controlled strain injury. Am J Sports Med 

1987;15:9–14. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

8.  Heinemeier KM, Schjerling P, Heinemeier J, Magnusson SP, Kjaer M. Lack of tissue 

renewal in human adult Achilles tendon is revealed by nuclear bomb 14C. FASEB J 

2013;27:2074–2079. 

9.  Järvinen TA, Järvinen M, Kalimo H. Regeneration of injured skeletal muscle after the 

injury. Muscles Ligaments Tendons J 2013;3:337–45. 

10.  Mackey AL, Brandstetter S, Schjerling P, Bojsen-Moller J, Qvortrup K, Pedersen MM, 

Doessing S, Kjaer M, Magnusson SP, Langberg H. Sequenced response of extracellular 

matrix deadhesion and fibrotic regulators after muscle damage is involved in 

protection against future injury in human skeletal muscle. FASEB J 2011;25:1943–

1959. 

11.  Bayer ML, Magnusson SP, Kjaer M. Early versus Delayed Rehabilitation after Acute 

Muscle Injury. N Engl J Med 2017;377:1300–1301. 

12.  de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici M V. Time course of 

muscular, neural and tendinous adaptations to 23 day unilateral lower-limb 

suspension in young men. J Physiol 2007;583:1079–1091. 

13.  Couppé C, Suetta C, Kongsgaard M, Justesen L, Hvid LG, Aagaard P, Kjær M, 

Magnusson SP. The effects of immobilization on the mechanical properties of the 

patellar tendon in younger and older men. Clin Biomech 2012;27:949–954. 

14.  Bayer ML, Schjerling P, Herchenhan A, Zeltz C, Heinemeier KM, Christensen L, 

Krogsgaard M, Gullberg D, Kjaer M. Release of tensile strain on engineered human 

tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an 

inflammatory phenotype. PLoS One 2014;9:. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

15.  Sanfilippo JL, Silder A, Sherry MA, Tuite MJ, Heiderscheit BC. Hamstring strength and 

morphology progression after return to sport from injury. Med Sci Sports Exerc 

2013;45:448–454. 

16.  Boesen M, Kubassova O, Bouert R, Axelsen MB, Østergaard M, Cimmino MA, 

Danneskiold-Samsøe B, Hørslev-Petersen K, Bliddal H. Correlation between computer-

aided dynamic gadolinium-enhanced MRI assessment of inflammation and semi-

quantitative synovitis and bone marrow oedema scores of the wrist in patients with 

rheumatoid arthritis-a cohort study. Rheumatology 2012;51:134–143. 

17.  Axelsen MB, Stoltenberg M, Poggenborg RP, Kubassova O, Boesen M, Bliddal H, 

Hørslev-Petersen K, Hanson LG, Østergaard M. Dynamic gadolinium-enhanced 

magnetic resonance imaging allows accurate assessment of the synovial 

inflammatory activity in rheumatoid arthritis knee joints: a comparison with synovial 

histology. Scand J Rheumatol 2012;41:89–94. 

18.  Scallan J, Huxley VH, Korthuis RJ. Capillary Fluid Exchange. Morgan & Claypool 

Publishers; 2010.  

19.  Khalifa F, Soliman A, El-Baz A, Abou El-Ghar M, El-Diasty T, Gimel’Farb G, Ouseph R, 

Dwyer AC. Models and methods for analyzing DCE-MRI: A review. Med Phys 2014;41:. 

20.  Mueller-Wohlfahrt HW, Haensel L, Mithoefer K, Ekstrand J, English B, McNally S, 

Orchard J, van Dijk CN, Kerkhoffs GM, Schamasch P, Blottner D, Swaerd L, Goedhart E, 

Ueblacker P. Terminology and classification of muscle injuries in sport: the Munich 

consensus statement. Br J Sports Med 2013;47:342–50. 

21.  Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

during high-speed running: a longitudinal study including clinical and magnetic 

resonance imaging findings. Am J Sport Med 2007;35:197–206. 

22.  Boesen M, Kubassova O, Cimmino MA, Østergaard M, Taylor P, Danneskiold-Samsoe 

B, Bliddal H. Dynamic Contrast Enhanced MRI Can Monitor the Very Early 

Inflammatory Treatment Response upon Intra-Articular Steroid Injection in the Knee 

Joint: A Case Report with Review of the Literature. Arthritis 2011;2011:1–8. 

23.  Riis RGC, Gudbergsen H, Henriksen M, Ballegaard C, Bandak E, Röttger D, Bliddal H, 

Hansen BB, Hangaard S, Boesen M. Synovitis assessed on static and dynamic contrast-

enhanced magnetic resonance imaging and its association with pain in knee 

osteoarthritis: A cross-sectional study. Eur J Radiol 2016;85:1099–1108. 

24.  Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate 

of force development and neural drive of human skeletal muscle following resistance 

training. J Appl Physiol 2010;93:1318–1326. 

25.  Bieler T, Magnusson SP, Kjaer M, Beyer N. Intra-rater reliability and agreement of 

muscle strength, power and functional performance measures in patients with hip 

osteoarthritis. J Rehabil Med 2014;46:997–1005. 

26.  Aagaard P, Simonsen EB, Magnusson SP, Larsson B, Dyhre-Poulsen P. A new concept 

for isokinetic hamstring: quadriceps muscle strength ratio. Am J Sports Med 

1998;26:231–237. 

27.  Silbernagel KG, Nilsson-Helander K, Thomeé R, Eriksson BI, Karlsson J. A new 

measurement of heel-rise endurance with the ability to detect functional deficits in 

patients with Achilles tendon rupture. Knee Surg Sports Traumatol Arthrosc 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

2010;18:258–264. 

28.  Engebretsen AH, Myklebust G, Holme I, Engebretsen L, Bahr R. Intrinsic Risk Factors 

for Hamstring Injuries Among Male Soccer Players: A Prospective Cohort Study. Am J 

Sports Med 2010;38:1147–1153. 

29.  Cw F, Mg M, Bagate C, Bahr R, Jhm B, Donson H, Spt K, Mccrory P, As M, Wh M, Kl Q, 

Raftery M, Wiley P. Consensus statement on injury definitions and data collection 

procedures for studies of injuries in rugby union Consensus statement on injury 

definitions and data collection procedures for studies of injuries in rugby union 

Abstract. Br J Sports Med 2006;16:1–14. 

30.  Tidball JG, Salem G, Zernicke R. Site and mechanical conditions for failure of skeletal 

muscle in experimental strain injuries. J Appl Physiol 1993;74:1280–1286. 

31.  Hortobágyi T, Dempsey L, Fraser D, Zheng D, Hamilton G, Lambert J, Dohm L. Changes 

in muscle strength, muscle fibre size and myofibrillar gene expression after 

immobilization and retraining in humans. J Physiol 2000;524:293–304. 

32.  Larsson L, Li X, Berg HE, Frontera WR. Effects of removal of weight bearing function 

on contractility and myosin isoform composition in single human skeletal muscle 

cells. Pflugers Arch Eur J Physiol 1996;432:320–328. 

33.  Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis 

Model Mech 2013;6:25–39. 

34.  Holm L, Reitelseder S, Pedersen TG, Doessing S, Petersen SG, Flyvbjerg A, Andersen 

JL, Aagaard P, Kjaer M. Changes in muscle size and MHC composition in response to 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

resistance exercise with heavy and light loading intensity. J Appl Physiol 

2008;105:1454–1461. 

35.  Simpson CL, Kim BDH, Bourcet MR, Jones GR, Jakobi JM. Stretch training induces 

unequal adaptation in muscle fascicles and thickness in medial and lateral 

gastrocnemii. Scand J Med Sci Sport 2017;27:1597–1604. 

36.  Bodine-Fowler SC, Allsing S, Botte MJ. Time course of muscle atrophy and recovery 

following a phenol-induced nerve block. Muscle and Nerve 1996;19:497–504. 

37.  Borisov AB, Huang SK, Carlson BM. Remodeling of the vascular bed and progressive 

loss of capillaries in denervated skeletal muscle. Anat Rec 2000;258:292–304. 

38.  Silder A, Heiderscheit BC, Thelen DG, Enright T, Tuite MJ. MR observations of long-

term musculotendon remodeling following a hamstring strain injury. Skeletal Radiol 

2008;37:1101–1109. 

39.  Ballegaard C, Riis RGC, Bliddal H, Christensen R, Henriksen M, Bartels EM, Lohmander 

LS, Hunter DJ, Bouert R, Boesen M. Knee pain and in fl ammation in the infrapatellar 

fat pad estimated by conventional and dynamic contrast-enhanced magnetic 

resonance imaging in obese patients with osteoarthritis : A cross-sectional study. 

Osteoarthr Cartil 2014;22:933–940. 

40.  Riis RGC, Gudbergsen H, Simonsen O, Henriksen M, Al-Mashkur N, Eld M, Petersen 

KK, Kubassova O, Bay Jensen AC, Damm J, Bliddal H, Arendt-Nielsen L, Boesen M. The 

association between histological, macroscopic and magnetic resonance imaging 

assessed synovitis in end-stage knee osteoarthritis: a cross-sectional study. 

Osteoarthr Cartil 2017;25:272–280. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

41.  Wangensteen A, Almusa E, Boukarroum S, Farooq A, Hamilton B, Whiteley R, Bahr R, 

Tol JL. MRI does not add value over and above patient history and clinical 

examination in predicting time to return to sport after acute hamstring injuries: a 

prospective cohort of 180 male athletes. Br J Sports Med 2015;49:1579–87. 

42.  Reurink G, Goudswaard GJ a., Tol JL, Almusa E, Moen MH, Weir A, Verhaar JAN, 

Hamilton B, Maas M. MRI observations at return to play of clinically recovered 

hamstring injuries. Br J Sports Med 2014;48:1370–1376. 

43.  Reed RK, Lidén Å, Rubin K. Edema and fluid dynamics in connective tissue 

remodelling. J Mol Cell Cardiol 2010;48:518–523. 

44.  Folland JP, Hawker K, Leach B, Little T, Jones DA. Strength training: Isometric training 

at a range of joint angles versus dynamic training. J Sports Sci 2005;23:817–824. 

45.  Szeto G, Strauss G, De D, Lai H. The effect of training intensity on voluntary isometric 

strength improvement. Aust J Physiother 1989;35:210–217. 

46.  Eliasson P, Andersson T, Aspenberg P. Influence of a single loading episode on gene 

expression in healing rat Achilles tendons. J Appl Physiol 2012;112:279–288. 

47.  Järvinen TA, Józsa L, Kannus P, Järvinen TLN, Hurme T, Kvist M, Pelto-Huikko M, 

Kalimo H, Järvinen M. Mechanical loading regulates the expression of tenascin-C in 

the myotendinous junction and tendon but does not induce de novo synthesis in the 

skeletal muscle. J Cell Sci 2003;116:857–866. 

48.  Askling CM, Tengvar M, Thorstensson A. Acute hamstring injuries in Swedish elite 

football: a prospective randomised controlled clinical trial comparing two 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

rehabilitation protocols. Br J Sports Med 2013;47:953–959. 

49.  Askling CM, Tengvar M, Tarassova O, Thorstensson A. Acute hamstring injuries in 

Swedish elite sprinters and jumpers: a prospective randomised controlled clinical trial 

comparing two rehabilitation protocols. Br J Sport Med 2014;48:532–539. 

50.  Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar J a N, Bierma-Zeinstra SM a, 

Maas M, Tol JL. Platelet-Rich Plasma Injections in Acute Muscle Injury. N Engl J Med 

2014;370:2546–2547. 

51.  Tol JL, Hamilton B, Eirale C, Muxart P, Jacobsen P, Whiteley R. At return to play 

following hamstring injury the majority of professional football players have residual 

isokinetic deficits. Br J Sports Med 2014;48:1364–9. 

52.  Rio E, Kidgell D, Purdam C, Gaida J, Moseley GL, Pearce AJ, Cook J. Isometric exercise 

induces analgesia and reduces inhibition in patellar tendinopathy. Br J Sports Med 

2015;49:1277–1283. 

53.  Rath S, Selles RW, Schreuders TAR, Stam HJ, Hovius SER. A Randomized Clinical Trial 

Comparing Immediate Active Motion With Immobilization After Tendon Transfer for 

Claw Deformity. J Hand Surg Am 2009;34:488–494.e5. 

54.  Rath S, Schreuders TAR, Stam HJ, Hovius SER, Selles RW. Early active motion versus 

immobilization after tendon transfer for foot drop deformity: A randomized clinical 

trial. Clin Orthop Relat Res 2010;468:2477–2484. 

55.  Chmielewski TL, Jones D, Day T, Tillman SM, Lentz TA, George SZ. The Association of 

Pain and Fear of Movement/Reinjury With Function During Anterior Cruciate 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Ligament Reconstruction Rehabilitation. J Orthop Sport Phys Ther 2008;38:746–753. 

56.  Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE. Psychological Responses 

Matter in Returning to Preinjury Level of Sport After Anterior Cruciate Ligament 

Reconstruction Surgery. Am J Sports Med 2013;41:1549–1558. 

 

 Figure captions 

Figure 1. Strain injury on DCE-MRI: A) Axial grey-scale DCE-MRI of an injured hamstring, 
orange ring points at injury ROI, green ring at reference ROI same compartment, pink ring 
reference ROI antagonist (not used). B) IRE map, C) ME map, D) individual data points of IRE 
measured in the injury ROI (“Injury”) and reference ROI (“Reference”), acutely and 6 months 
post injury. Circles display ratings of the early group, squares display the delayed group. E) 
Individual data points of ME measured in injury ROI (“Injury”) and reference ROI 
(“Reference”), acutely and 6 months post injury. Circles display ratings of the early group, 
squares display the delayed group. ** indicates p< 0.01 across muscles and time. 

 

Figure 2. Muscle volume change towards initial muscle volume obtained from the acute post 
injury scan over time. Analyzed muscles include the injured muscle, a muscle from the same 
compartment and from the antagonist compartment. Data represented as median ± 
interquartile range. * indicates p< 0.05. 

 

Figure 3. Scatter plot of the correlation analysis between the DCE-MRI parameter measure 
of perfused volume (Nvoxel) (x-axis) and the change in muscle volume. A) Volume change 
from acute scan to 3 months follow up scan, B) change from acute scan to 6 months follow 
up scan. Data presented on a logarithmic x-axis because Nvoxel was log transformed in the 
analysis. Note that the graph displays parametric data and a Pearson correlation for easier 
interpretation, but the statistical analysis applied a non-parametric Spearman correlation.  

 

Figure 4. Isometric peak force difference between the injured leg compared to the 
contralateral uninjured leg of all 42 participants. Data are presented as % changes from 
peak force of the uninjured leg. Knee angle of hamstring isometric peak force was 30° and 
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for quadriceps 70°. Results from the early group are displayed as black bars, results of the 
delayed group as grey bars. Lines denote mean ± SEM. 

 

Figure 5. Heel rise test of patients with a calf strain. A) Number of successful heel rises 
performed three and six months post injury and B) Maximum range of motion (distance in 
cm) of heel rises performed three and six months post injury. Results from the early group 
are displayed as black circles, results of the delayed group as grey squares. Lines denote 
mean ± SEM. 

 

Figure 6. Participants perception and rating of A) pain, B) Quality of life/ confidence in the 
injured leg, C) levels of soreness, D) number of symptoms and E) scoring of functional 
difficulties in performing relevant activities at three, six and twelve months post injury. 
Scores are shown as percentage of the maximum score (100%). Maximum score translates 
to pain-free, fully confident, absence of soreness, symptoms and no functional difficulties, 
respectively. Circles display ratings of the early group, squares display the delayed group. 
Data represented as mean ± SEM.  
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Table 1. Overview of results obtained with DCE-MRI during the acute scan and the follow up scan 6 months 
post injury. Data are presented as geometric means ± geometric SEM. 

 

  

       Acute scan 

A. Early 
therapy (n= 16) 
B. Delayed 
therapy (n=17) 

 

      Six months follow up 

A. Early 
therapy (n=16) 
B. Delayed 
therapy (n=17) 

 

P value 

Nvoxel 

Volume of highest 
perfused voxels/ most 
perfused tissue 

A. 42369 
(35298-50858) 
B. 39909 
(29532-53916) 

A. 14251 
(10661-19049) 
B. 19117 
(13896-26298) 

Group            0.7 

Time              < 0.001 

Group*time 0.4 

Initial rate of 
Enhancement (IRE) 

Mean relative increase 
in signal intensity per 
second from 
enhancement onset until 
ME is reached  

A. 2.59 (2.34-
2.88) 
B. 2.84 (2.56-
3.15) 

A. 1.44 (1.33-
1.55) 
B. 1.45 (1.31-
1.60) 

Group            0.8 

Time              < 0.001 

Group*time 0.9 

Maximal enhancement 
(ME)  

Highest mean signal 
intensity relative to the 
baseline intensity 

A. 1.46 (1.42-
1.50) 
B. 1.41 (1.37-
1.44) 

A. 1.12 (1.09-
1.14) 
B. 1.11 (1.08-
1.14) 

Group            0.4 

Time              < 0.001 

Group*time 0.2 

IRE*Nvoxel 

Composite parameter 
reflecting both the 
volume and degree of 
perfusion 

A. 369.3 
(312-437) 
B. 394.4 
(289-538) 

A. 81.6 (60-
112) 
B. 103.2 (70-
152) 

Group            0.8 

Time              < 0.001 

Group*time 0.5 

ME*Nvoxel 

Composite parameter 
reflecting both the 
volume and degree of 
perfusion 

 

A. 77854 
(64514-93954) 
B. 70850 
(51929-96664) 

A. 20342 
(15259-27117) 
B. 26782 
(19121-37511) 

Group            0.8 

Time              < 0.001 

Group*time 0.4 

ME*IRE A. 3.79 (3.35-
4.29) 
B. 3.40 (3.35-
4.5) 

A. 1.60 (1.45-
1.77) 
B. 1.60 (1.41-
1.82) 

Group            0.9 

Time              < 0.001 

Group*time 0.7 
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Table 2. Isokinetic peak torque of the injured and the uninjured contralateral leg of participants with a hamstring injury. Data are presented as  
means (SD). * indicates a difference between the injured and the uninjured leg across groups, p< 0.05, $ indicates a difference between the groups  
across legs,p< 0.05.  

 13weeks post injury 

 

26weeks post injury

 

 Early therapy group 

 

Delayed therapy group

 

Early therapy group

 

Delayed therapy group

 

Hamstring con 

Peak torque 

Angle max 

 

Injured               

122.1 (25)*     

32.2 (11)          

Uninjured 

134.7 (23) 

31.8 (6) 

Injured               

106.7  (32)*     

31.3 (13)          

Uninjured 

125.4 (39) 

35.3 (15) 

Injured 

133.6 (36) 

29.3 (7) 

Uninjured 

134.5 (21) 

28.1 (4) 

Injured 

114.5 (22) 

27.8 (7) 

Uninjured 

123.4 (34) 

29.5 (8) 

Hamstrings ecc  

Peak torque 

Angle max 

 

Injured               

177.2 (31)*       

22.4 (10)            

Uninjured 

185.3 (30) 

18.5 (7) 

Injured               

158.0 (41)*         

25.3 (7)              

Uninjured 

165.8 (34) 

26.0 (13) 

Injured               

192.2 (36) 

23.4 (11) 

Uninjured 

186.5 (29) 

23.0 (13) 

Injured               

161.3 (37) 

18.0 (5) 

Uninjured 

165.7 (47) 

24.2 (12) 

Quadriceps con 

Peak torque 

Angle max 

 

Injured               

247.3 (36) 

65.8 (5) 

 

 

Uninjured 

247.8 (50) 

64.9 (4) 

Injured               

201.9 (40)$ 

67.0 (7) 

Uninjured 

211.1 (47)$ 

66.1 (8) 

Injured               

247.2 (51) 

68.0 (5) 

Uninjured 

249.0 (55) 

62.3 (8) 

Injured               

205.0 (44) 

65.0 (6) 

Uninjured 

211.7 (41) 

65.8 (7) 
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Quadriceps ecc 

Peak torque 

Angle max 

 

Injured               

295.2 (37) 

61.6 (7) 

Uninjured 

273.5 (81) 

60.1 (7) 

Injured               

239.3 (81) 

57.5 (11) 

 

Uninjured 

244.7 (55) 

63.9 (11) 

Injured               

308.2 (51) 

60.4 (8) 

Uninjured 

289.9 (76) 

60.9 (8) 

Injured               

243.5 (48) 

61.9 (10) 

Uninjured 

254.1 (60) 

60.2 (8) 
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