

Aalborg Universitet

Potential diagnostic value of a type X collagen neo-epitope biomarker for knee osteoarthritis

He, Yi; Manon-Jensen, Tina; Arendt-Nielsen, Lars; Petersen, Kristian Kjær; Christiansen, Thorbjørn; Samuels, Jonathan; Abramson, Steve; Karsdal, Morten A; Attur, Mukundan; Bay-Jensen, Anne C

Published in: Osteoarthritis and Cartilage

DOI (link to publication from Publisher): 10.1016/j.joca.2019.01.001

Publication date: 2019

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

He, Y., Manon-Jensen, T., Arendt-Nielsen, L., Petersen, K. K., Christiansen, T., Samuels, J., Abramson, S., Karsdal, M. A., Attur, M., & Bay-Jensen, A. C. (2019). Potential diagnostic value of a type X collagen neoepitope biomarker for knee osteoarthritis. Osteoarthritis and Cartilage, 27(4), 611-620. https://doi.org/10.1016/j.joca.2019.01.001

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 04, 2025

Accepted Manuscript

Potential diagnostic value of a type X collagen neo-epitope biomarker for knee osteoarthritis

Yi He, Tina Manon-Jensen, Lars Arendt-Nielsen, Kristian Kjær Petersen, Thorbjørn Christiansen, Jonathan Samuels, Steve Abramson, Morten A. Karsdal, Mukundan Attur, Anne C. Bay-Jensen

PII: \$1063-4584(19)30017-2

DOI: https://doi.org/10.1016/j.joca.2019.01.001

Reference: YJOCA 4382

To appear in: Osteoarthritis and Cartilage

Received Date: 1 June 2018

Revised Date: 20 November 2018

Accepted Date: 7 January 2019

Please cite this article as: He Y, Manon-Jensen T, Arendt-Nielsen L, Petersen KK, Christiansen T, Samuels J, Abramson S, Karsdal MA, Attur M, Bay-Jensen AC, Potential diagnostic value of a type X collagen neo-epitope biomarker for knee osteoarthritis, *Osteoarthritis and Cartilage*, https://doi.org/10.1016/j.joca.2019.01.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Potential diagnostic value of a type X collagen neo-epitope biomarker for knee osteoarthritis

4	
5	Yi He ¹ , Tina Manon-Jensen ¹ , Lars Arendt-Nielsen ²⁻³ , Kristian Kjær Petersen ² , Thorbjørn Christiansen
6	Jonathan Samuels ⁵ , Steve Abramson ⁵ , Morten A. Karsdal ¹ , Mukundan Attur ⁵ , Anne C. Bay-Jensen ¹ .
7	¹ Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
8	² SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
9 L0	³ C4Pain, Aalborg, Denmark ⁴ Orthopedic Department, Gentofte University Hospital, Hellerup, Denmark
11	⁵ Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY-10003
L2	
L3	
L4	
L5	
L6	
L7	
L8	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
ρq	

Running title: A neo-epitope of type X collagen as a biomarker

31	Abstract
32	Objective: Phenotypic changes of chondrocytes toward hypertrophy might be fundamental in the
33	pathogenesis of OA, of which type X collagen (Col10) is a well-known marker. The purpose was to develop a
34	specific immunoassay for blood quantification of a newly identified neo-epitope of type X collagen to assess
35	its diagnostic value for radiographic knee osteoarthritis (OA).
36	Methods: A neo-epitope of Col10 was identified in urine samples from OA patients. A monoclonal antibody
37	against the neo-epitope was produced in Balb/C mice. The enzyme responsible for the cleavage was
38	identified. Immunohistochemical detection of this neo-epitope was performed on human OA cartilage. An
39	immunoassay (Col10neo) was developed and quantified in two clinical studies: the C4Pain-003 and the NYU
40	OA progression study. ROC curve analysis was carried out to evaluate the discriminative power of Col10neo
41	between OA and RA.
42	Results: A neo-epitope specific mAb was produced. The Cathepsin K-generated neo-epitope was localized
43	to the pericellular matrix of chondrocytes, while its presence was extended and more prominent in
44	superficial fibrillation in the cartilage with advanced degradation. In the C4Pain study, a higher level of
45	Col10neo was seen in subjects with greater KL grade. The group of the highest tertile of Col10neo included
46	more subjects with KL3-4. In the NYU study, Col10neo was statistically higher in OA than control or RA. ROC
47	curve analysis revealed area under the curve was 0.88 (95% CI 0.81-0.94).
48	Conclusion: Our findings indicate that Col10neo linked to hypertrophic chondrocytes could be used as a
49	diagnostic biochemical marker for knee OA.
50	
51	Key words: chondrocyte hypertrophy, assay, biomarker, type X collagen, Osteoarthritis, Cartilage
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	

1 Introduction

Osteoarthritis (OA) is the most common joint disease, which is characterized by cartilage damage and 2 3 impaired joint function¹. It can implicate synovial joints, but knees, hands, hips, and spine are usually affected by this disease². A range of risk factors, such as aging, gender, obesity, early trauma, and heredity 4 5 are associated with osteoarthritis of the knee³. 6 Although substantial progress has been made to understand the mechanisms leading to degradation of the 7 cartilage matrix in OA, the exact pathogenesis of OA still needs to be elucidated. Supported by emerging 8 evidence hypertrophy of chondrocytes, the only cells present in cartilage is a key event in the development of $OA^{4, 5,6,7,8}$. 9 The time course of expression of type X collagen, a specific marker of hypertrophic 10 chondrocytes, and MMP13 has shown to be significantly induced during OA progression in a surgically induced joint instability OA model^{9,5}. In sections of human osteoarthritic cartilage, type X collagen was 11 found around hypertrophic chondrocyte clusters in the deep zone close to tidemark¹⁰. Also, Eerola et al. 12 demonstrated that intense immunostaining of type X collagen was observed specifically at sites of 13 osteophyte formation and surface fibrillation¹¹. Furthermore, the mineralization process has been shown in 14 15 OA cartilage indicating that articular chondrocytes from OA joints develop terminal differentiation similar to those in the growth plate during endochondral ossification¹². Conclusively, chondrocyte hypertrophy is 16 17 associated with OA. Cartilage degradation is a common feature for rheumatoid arthritis (RA), a systemic autoimmune disorder 18 19 as well. The degradation of cartilage matrix in both OA and RA is mediated by the overexpression of enzymes, mostly of MMPs and ADAMTSs^{13,14}. However, the driving force behind the development of these 20 two disorders is different as summarized by Pap et al. in a review¹⁵. In OA, cartilage loss occurs as part of a 21 phenotypic shifting of chondrocytes, while in RA, cartilage damage is considered a result of activated 22 23 synovial fibroblast-like synoviocytes (FLS) and monocytes. In the current study, we have discovered a neoepitope of type X collagen, ⁴⁷⁹GIATKG, in the urine samples 24 25 of osteoarthritis patients. The Cathepsin K-mediated neo-epitope is in the region near the carboxylterminal end of the triple helix. We produced a neo-epitope specific monoclonal antibody and identified 26 the productive enzyme responsible for the generation of the neo-epitope in vitro. We performed 27 28 immunostaining of osteoarthritis cartilage to show the distribution of the neo-epitope. We developed an 29 enzyme-linked immunosorbent assay (ELISA). In two clinical studies, blood levels of type X collagen 30 degradation biomarker-Col10neo are associated with Kellgren-Lawrence (KL) grade radiographic severity. 31 Most importantly, Col10neo biomarker could distinguish between OA and RA and suggest the potential 32 diagnostic value of this biomarker for knee OA.

Methods

	3.7	1
34	Materia	วเต
3 4	Matchia	ฉเจ

- 35 Unless otherwise stated, all materials used for experiments were ordered from Sigma-Aldrich (Copenhagen,
- 36 Denmark) or VWR (Rodovre, Denmark). The synthetic peptides were purchased from GenScript (USA).

37

38

33

Selection of the sequence for immunization

- 39 Ten urine samples of peri/postmenopausal women with knee pain undergoing arthroscopy were analyzed
- 40 by GC/MS and the Mascot database was searched for type X collagen neo-epitopes. Seventeen peptide
- sequences were found to be unique to human type X collagen. Two sequences carrying the same free c-
- 42 terminus located at amino acid (aa) position 478' (Accession No.: Q03692; UniProt) were discovered in the
- 43 urine from OA patients, indicating the cleavage occurring between the bond of A⁴⁷⁸-⁴⁷⁹G. The first 10 aa,
- 44 ⁴⁷⁹GIATKGLNGP⁴⁸⁸, of the free N-terminal end generated by this cleavage was selected for immunization.
- 45 Further, a sequence alignment with different species was conducted using the Basic Local Alignment Search
- 46 Tool (BLAST).

47

48

Monoclonal antibody (mAb) production

- 49 Six female Balb/C mice of 6-7 weeks of age were used for monoclonal antibody production and the
- 50 experiment was approved by the Danish Animal experimentation Council. Six mice were housed in the
- same cage (the standard type III cage, Scanbur) in a ventilated closet and provided with free access to tap
- 52 water and food. The 12-hour light/dark cycle was used in the animal facility with a temperature of 18-22°C.
- 53 Wood shavings were used for bedding. The mice were immunized subcutaneously with emulsified
- 54 GIATKGLNGP-GGC-KLH with Sigma Adjuvant System®(S6322, Sigma-Aldrich). 100μg of emulsified KLH-
- 55 conjugate with adjuvant was repeatedly injected into mouse every 3rd week until stable titer levels were
- obtained. The behavioral assessments were carried out throughout the study. Red bumps after injection
- 57 were expected and observed. There was no skin infection observed at the sites of injection.
- The mice with the highest antibody titer and best reactivity towards the specific peptide, GIATKGLNGP,
- 59 were chosen for fusion and boosted intraperitoneally (i.p.) with 100 μg of 100 μL KLH-conjugate three days
- 60 before fusion. The isolated splenocytes were fused with murine myeloma cells, SP2/0-Ag14 (ATCC®CRL-
- 61 1581[™]). Hybridoma cells were selected by using HAT (hypoxanthine-aminopterin-thymidine) medium.
- 62 Supernatants were screened against GIATKGLNGP-k (Biotin) Limiting dilution method was used to get
- 63 monoclonal antibody and isotype was tested with kit (5300-05, Southern Biotech). Hi Trap Protein G
- column (17-0404-01, GE healthcare) was used for purification.

⁴⁷⁹GIATKG specific immuno-assay (Col10neo)

A purified monoclonal antibody was first tested for specificity against three synthetic peptides 1) specific peptide (GIATKGLNGP), 2) elongation of the specific peptide (AGIATKGLNGP), 3) truncation of the specific peptide (IATKGLNGP), and two truncated recombinant type X collagen proteins [Col10(AA 479-680) and Col10 (AA 450-680)] respectively in a competitive immunoassay. The optimized competitive immunoassay protocol: a 96-well streptavidin pre-coated microplate was coated with 1ng/mlGIATKGLNGP-k(Biotin) dissolved in 50mM PBS-BTB for 30 min at 20°C. Then, the plate was washed five times with wash buffer (20 mM Tris, 50 mM NaCl, pH 7.2). 20μL of standards,controls or samples were added to appropriate wells, followed by 100μL of 23ng/ml 2F4in 50mM PBS-BTB buffercontaining 5% Liquid II (Roche Diagnostics, Germany), and incubated overnight (20±1 hr) at 4°C. After five times wash, 100μL of secondary antibody (115-035-003, Jackson ImmunoResearch) was added and incubated for 1hr at 20°C. The plate was washed five times again. Finally, 100μL 3,3′,5,5′-tetramethylbenzidine (TMB) was added and incubated for 15 min at 20°C in the dark. The colorimetric reaction was stopped by adding 100μL stopping solution (1% H₂SO₄) and measured at 450nm with 650nm as the reference.

The inter- and intra-plate variation were determined by ten independent runs of the quality control panel

The inter- and intra-plate variation were determined by ten independent runs of the quality control panel in duplicate. The lower limit of detection (LLOD) was calculated as 3SD of the mean value of 21 zero standards. The optimal range for quantitative measurements is defined as the boundary between the lower limit of quantification (LLOQ) and the upper limit of quantification (ULOQ). Linearity of the assay was

 evaluated.

In vitro cleavage of human cartilage and western blot

Articular cartilage biopsies from OA patients who underwent knee replacement surgery were obtained from Gentofte Hospital (Gentofte, Denmark). The collection and retrieval of the biospecimens complied with international ethical guidelines for handling human samples and patient information. All participants signed informed consent, and the study was approved by Danish authority. To identify the enzymes responsible for the cleavage of the A⁴⁷⁸-⁴⁷⁹G bond in Col10, a knee cartilage pool of 10 OA patients undergoing knee replacement surgery was cleaved by numerous proteases including matrix metalloproteases-2, -9, -13 Cathepsins K, B, S, and A disintegrin and metalloprotease domains with thrombospondins motifs-4, -5. Briefly, pulverized cartilage sample (30mg) was incubated with 1µg each enzyme in a 0.5ml Eppendorf with 250µL digestion buffer as previously reported¹⁶. The digestion was carried out for 24h in replicates. The reaction was quenched by adding EDTA (5mM) or E64 (5mM).

97 Cleaved products from Cathepsin K and control were suspended in the gel-loading buffer and electrophoresed on 4-12% Tris-Glycine gradient gel and transferred to nitrocellulose by iBlot®. The blots were blocked with 5% BSA in TBST, washed and probed with antibodies of 2F4 or 11G8 (antibody against the carboxyl end of type X collagen developed in our previous study)¹⁷, in the absence or presence of blocking peptides in parallel.

102

103

104

105

106

107

108

109110

111

112

Immunohistochemistry (IHC)

Cartilage with bone specimens for IHC study was performed in collaboration with Frederikshavn Hospital (Denmark) approved by Danish authority (N-20110031). All participants signed informed consent. The specimens isolated from OA patients who underwent knee replacement surgery were fixed and decalcified, and then embedded in paraffin. Cartilage sections (5µm) were deparaffinized and hydrated, followed by antigen retrieval using Pronase E (10165921001, Roche) at 37°C for 10 min. The sections were treated with 0.5% casein in Tris Buffered Saline (TBS) for 30min at room temperature to block unspecific binding. Immunostaining was performed using antibody 2F4 or 11G8. Non-sense mouse IgG was used as a negative control (X0931, Dako, Denmark). Immunoreactivity was visualized with peroxidase-labeled anti-Mouse and diaminobenzidine (DAB, Dako, Denmark). Counterstaining was with Mayer's hematoxylin. The micrographs were taken using an Olympus microscope BX60 equipped with an Olympus C5050 digital camera.

113114

115

Study participants

- Plasma samples were retrieved from two cohorts, the C4Pain study approved by the local ethics committee
- 117 (N-20100094)¹⁸ and the NYU OA progression study by the institutional review board (IRB) of NYU School of
- 118 Medicine ^{19,20}. All participants provided informed consent before enrollment.
- Briefly, the C4Pain is a cross-sectional study. It comprised 281 individuals with radiographic KL grade 0-4.
- Since most patients had bilateral knee OA, the knee with the maximal pain intensity for the last 24 hours
- was selected as the signal knee. Sufficient samples were available only from 253 enrollees and categorized
- into four groups based on the KL grade since the radiographic features instead of pain were the primary
- focus of the current study.
- 124 The NYU study comprised 21 non-OA healthy controls (KL≤1 and no pain in either knee), 146 symptomatic
- knee OA patients and 36 RA patients at baseline. These 146 OA patients were further followed up for 24
- months. The inclusion and exclusion criteria, radiographic assessments were taken at baseline and 24
- months and plasma were collected at baseline as described previously 19,20. Plasma samples were available
- from 20 non-OA healthy controls, 142 OA subjects and 34 RA subjects at baseline. In the present study, we
- only investigated the level of Col10neo in different groups at baseline.

130						
131	Statistics					
132	Data were analyzed using GraphPad Prism 6 or MedCalc 16.8. For normality check, a Shapiro-Wilk test for					
133	all variables of interest was performed. Between-group comparison for age, BMI and VAS score, the one-					
134	way ANOVA with post-hoc Tukey-Kramer test was used. Plasma Col10neo data were logarithmic					
135	transformed in all analyses. The ROC curve analysis was performed. The area under the curve was used to					
136	determine how well Col10neo can distinguish between OA and RA groups. A P value<0.05 was considered					
137	statistically significant. One asterisk (*) if p<0.05; two (**) if p<0.01; three (***) if p<0.001 and four (****) if					
138	p<0.0001.					
139						
140						
141	Results					
142	Sequence alignment of the selected peptide across species					
143	Two fragments sharing the identical C-terminal end, 463PGSKGDPGSPGPPGPA478 and					
144	⁴⁶⁵ SKGDPGSPGPPGPA ⁴⁷⁸ were identified by mass spectrometry in the urine samples of OA patients (Fig. 1A),					
145	indicating the presence of a cleavage site existing between A^{478} - 479 G. A 10aa length peptide from the free N-					
146	terminus generated by the cleavage, 479 GIATKGLNGP, has been chosen for immunization. The blast shows					
147	the sequence is unique to human type X collagen. Sequence similarity across species shows 100% identity					
148	between human and mouse, while a mismatched aa contained in rat or bovine compared to human					
149	sequence.					
150						
151	Technical performance of the Col10neo assay					
152	A monoclonal antibody 2F4 (isotype: IgG2b, κ) targeting the neo-epitope, ⁴⁷⁹ GIATKG, was produced from a					
153	hybridoma and purified by HiTrap Protein G affinity column. To test the specificity, the reactivity of 2F4					
154	toward a biotinylated synthetic peptide, GIATKGLNGP-k(Biotin), completely displaced by adding of 500nM					
155	selective peptide or equivalent amount of truncated recombinant type X collagen with free $^{479}\text{Glycine}$ (AA					
156	479-680). In contrast, a slight or no displacement of binding between the immobilized specific peptide and					
157	2F4 was observed either with elongation/truncation of the specific peptide or cleavage-spanning					

recombinant type X collagen (AA 450-680) at the same concentration (Fig. 1B). This indicated that 2F4 was

specific to the neo-epitope instead of intact type X collagen.

158

159

160	. The technical performance of this assay is summarized as follows: IC50 of 41.9ng/ml, inter-, intra CV% of 4
161	and 9.7%,. The detection range was 15-426ng/mL. 8-64 fold for EDTA-plasma and 4-32 fold for serum
162	samples are of high dilution linearity. (See supplementary table S1).

Cathepsin K-derived 479GIATKG

To investigate the responsible enzyme for cleaving Col10 A⁴⁷⁸-⁴⁷⁹G bond, various proteases at similar concentration and incubation time were incubated with human cartilage and evaluated their relative efficiency to generate the neo-epitope of ⁴⁷⁹GIATKGLNGP. We did not identify release of Col10neo in all tested MMPs or ADAMTSs compared to untreated control. However, among the proteases, Cathepsin K yielded substantial amount of Col10neo release (Fig. 2A). In an immunoblot, major band detected by 2F4 mAb in Cathepsin K degraded cartilage was ~50kDa representing the trimeric form of the NC1 domain. In a completion Western blot, GIATKGLNGP peptide blocked 2F4 mAb recognition of fragment carrying the neoepitope of ⁴⁷⁹GIATKGLNGP. Furthermore, mAb 11G8 detected a 18kDa protein band was which is most likely the monomeric NC1 domain of type X collagen (Fig. 2B).

Immunolocalization of ⁴⁷⁹GIATKG in cartilage

To further define the distribution of ⁴⁷⁹GIATKG, serial sections of articular cartilage from 3 TKR (total knee replacement) patients were stained with mAb 2F4 (Col10neo) and 11G8 (anti-C terminus of type X collagen) and non-sense mouse IgG of cartilage. A representative histological images of damaged and undamaged cartilage biopsies 1) the normal-arranged chondrocytes, smooth surface and mild degradation of superficial zone proteoglycan (Fig. 3A), 2) loss of smooth surface and moderate loss of proteoglycan (according to Mankin grading system²¹) (Fig. 3B) and 3) chondrocyte clusters, fibrillated surface, cleft and severe reduction in safranin O/Fast green (Fig. 3C) were used for general assessment of degree of loss of proteoglycan, chondrocyte morphology, and Col10neo expression. In mild and moderate degradation of cartilage, GIATKG neo-epitope was localized to the peri-cellular matrix of chondrocytes, while in severe OA its presence was extended to the territorial matrix of chondrocyte clusters and more prominent in superficial fibrillation (Fig. 3D-F). The similar staining pattern was observed with C-terminus 11G8 mAb (Fig. 3G-I).. We did not observe any staining with non-sense mouse IgG (Fig. 3J-L).

Association between KL grade and plasma Col10neo levels in the C4Pain study

The demographic characteristics of these four groups based on radiogrpahic KL score are summarized in table 1. Because the mean age of the participants was >60 years, few with a KL 0 and those with a KL of 1

- 192 were classified into the same group. 57% of the subjects involved in this study were with a KL of 2 and 193 assigned to group 2. There was no significant difference in gender distribution within each group. The mean 194 age of KL 4 group was significantly higher than KL 0-1 group (p< 0.005). There was a clear, but not significant trend of increased BMI with increased radiographic grades.. There was a relationship between 195 196 the VAS score and K/L grade, but did not reach statistical significance. 197 The mean ± 95Cl% concentrations of Col10neo for in each KL groups: KL 0-1 2.6 [2.316-2.884] µg/mL, KL2 $3.288[2.885-3.691] \mu g/m L$, KL3 $3.435[2.729-4.141] \mu g/m L$ and KL4 $3.517[2.599-4.435] \mu g/m L$, respectively. 198 199 Although increased Col10neo levels associated with a higher KL grade, but it was not statistically significant 200 (Fig. 4A). However, when subjects were divided into tertiles based on Col10neo levels, we found that the 201 number of subjects with a KL 3-4 was greatest in the highest tertile of the Col10neo group (Fig. 4B). 202 Plasma Col10neo levels in the NYU study 203 204 The result from the C4Pain study encouraged us to investigate the potential use of Col10neo as a diagnostic 205 biomarker in another independent cohort of control and OA subjects. We utilized NYU Progression study 206 which consists of non-OA healthy control, OA, and RA. In this cohort, percentage of females was higher in 207 OA and RA groups than in the healthy control group. The mean age was significantly different in control and 208 OA groups (P<0.05). However, the subjects were significantly younger in RA than in the OA group (Table 2; 209 p<0.0001). There was no significant difference in BMI across groups. 210 The mean ± 95CI% concentrations of Col10neo in control, OA and RA groups were 2.95 [2.71-3.19] µg/mL, 211 4.04 [3.84-4.25] µg/mL and 2.55 [2.29-2.81] µg/mL, respectively (Fig. 5A). Plasma Col10neo level was 212 significantly higher in OA than healthy control (p=0.0002) and RA (p<0.0001). Tests of Between-Subjects 213 Effects have shown that there was an overall statistically significant difference in Col10neo levels between 214 different groups when adjusted for covariates (p<0.001). After adjusting for covariates -age, gender, and 215 BMI, Col10neo level remained significantly higher in the knee OA patients compared to other two groups 216 (Table 3). 217 ROC analysis was carried out to evaluate the discriminative power of Col10neo between OA and RA. The 218 area under the ROC curve (AUC) was 0.875 [0.806-0.943] (P<0.0001), indicating there is good separation of Col10neo between the two groups (Fig. 5B). 219 Discussion 220 221 Our current findings suggest that the Cathepsin K-generated neo-epitope of type X collagen,

222

223

⁴⁷⁹GIATKGLNGP can be detected in blood circulation, where its concentration reflects the hypertrophic

change in phenotype of chondrocytes in articular cartilage and shows good separation of OA from RA.

224 Therefore, this neo-epitope can serve as a biomarker for hypertrophic chondrocytes and may have many 225 potential clinical applications. Type X collagen is a short and non-fibril forming collagen containing three identical chains. Type X collagen 226 is well-recognized as a specific marker for hypertrophic chondrocytes²². It is synthesized primarily by 227 hypertrophic chondrocytes in the growth plate of fetal cartilage and believed to regulate bone 228 mineralization during endochondral ossification²³. The evidence for the up-regulation of type X collagen in 229 230 osteoarthritic cartilage on mRNA level or protein level by immunohistochemistry has been found in multiple studies 10,24,22,25,26. In the current study, we have observed that type X collagen was stained 231 232 pericellularly with antibodies to the neo-epitope or C-terminus of type X collagen and distributed 233 extracellularly around chondrocyte clusters in the fibrillated superficial layer of osteoarthritic cartilage. This is consistent with previous studies regarding the deposition of type X collagen by chondrocytes in OA 234 cartilage^{10,22}. Our findings confirm the notion of chondrocyte phenotype modulation in OA that 235 236 chondrocytes in diseased cartilage undergo terminal differentiation to hypertrophy. Moreover, some 237 characteristics of OA such as remodeling of extracellular matrix by proteases, vascularization and focal calcification of joint resemble the physiological differentiation process of chondrocyte during skeletal 238 development^{4,27,7,12,6}. 239 The *in vitro* cleavage of human cartilage suggests that the neo-epitope of type X collagen, ⁴⁷⁹GIATKGLNGP, 240 241 was efficiently generated by Cathepsin K among a series of tested proteases. Collagenase is known to be capable of cleaving type X collagen at least two cleavage sites, G^{151} and G^{479} and G^{479} within its triple-helical 242 domain^{28,29}. One site is near the amino-terminus of the triple helix, and another site is close to the carboxyl 243 244 terminus of the triple helix. As a consequence, these two cleavages generate three products, a 32-kDa fragment containing the major triple-helix domain, a 9-kDa fragment from the amine-end of type X collagen 245 246 and another 18-kDa fragment containing the entire globular domain at the carboxyl end. Interestingly, the newly identified cleavage site from human OA urine in the current study was verified to be generated by 247 Cathepsin K. This cleavage site at A⁴⁷⁸-⁴⁷⁹G bond is located an amino acid apart from the proposed 248 collagenase G⁴⁷⁹-⁴⁸⁰I. Not surprisingly, both bonds are in the same region where the Gly-Ile-Ala triplet was 249 250 disrupted by two additional amino acids from the next triplet. Because of the interruption, the region is 251 inevitably susceptible to attacks by a protease. Furthermore, increased expression and activation of 252 Cathepsin K has been reported in a transgenic mouse model for osteoarthritis and human osteoarthritic cartilage^{30,31}. It is still uncertain whether cleavage of collagenases occurs prior to cleavage of Cathepsin K. 253 254 Further investigation is required. To sum up, our data suggest that Cathepsin K is potentially involved in the 255 turnover of type X collagen which is expressed by hypertrophic chondrocytes in OA.

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270271

272273

274

275

276277

278

279

280

281

282

283

284

285

286

287

Most interestingly, a recently published study has shown that a group of fragments containing the entire C1q domain and variable portions of the attached linker and collagenous region designated as CXM, was a degradation product of type X collagen during endochondral ossification and an ideal biomarker for the overall growth plate activity³². The serum-based assay for CXM used in this study was built upon a monoclonal antibody X34 specifically targeting a multimeric form of the NC1 domain, the ~50kDa NC1 region¹⁰. In the present study, a similar major band of 50 kDa was detected in the Cathepsin K-generated human cartilage products by 2F4, a mAb specific to the neo-epitope ⁴⁷⁹GIATKGLNGP. It most likely consists of the compact coiled C1q-like domain which has been reported to resist further proteolysis in other studies^{33,34}. In our previous study, 11G8, an antibody raised against the last 10 amino acids at the carboxyl end of type X collagen only recognizes the monomeric NC1 domain, ~18kDa ¹⁷. Given that the dominant form of the NC1 domain in circulation is an intact trimer, it is not surprising that Col10neo levels are generally higher than C-Col10 in the same samples of clinical study C4Pain. To the best of knowledge, it is the first time that a single biomarker has shown the possibility of distinguishing OA from RA. Although both arthritis diseases affect joint, the molecular mechanisms of cartilage breakdown are quite different in OA and RA. The role of terminally differentiated hypertrophic chondrocytes in OA is still controversial. One study has shown the loss of expression of SOX-9, a transcription factor inhibiting the differentiation progression of chondrocytes during endochondral ossification, but a significant down-regulation of type X collagen gene expression in chondrocytes from OA patients compared to age-matched controls³⁵. However, there is increasing evidence to support changes in the phenotypic state of chondrocytes in OA. One important study demonstrated that the chemokines were retained by binding to heparan sulfate proteoglycans to maintain chondrocyte resting phenotype. The release of chemokines during cartilage degradation in OA contributes to chondrocyte phenotype shift³⁶. Further damage is caused by proteolytic enzymes secreted by hypertrophic chondrocytes which in return will lead to more loss of stability of chondrocytes, amplifying a vicious circle. To explain the discrepancy between studies, there might be different patient subgroups existing as shown by the scattered Col10neo levels in the OA group in the current study. The question if chondrocyte hypertrophy differentiation is a generalized phenomenon in OA needs to be further investigated. RA is a chronic systemic inflammatory disease instead, which is characterized by synovial lining cell proliferation, inflammatory cell infiltration, and destruction of cartilage and bone. Therefore, the underlying molecular mechanisms behind the pathogenesis of OA and RA may be different. We speculate that in OA, the hypertrophy phenotypic changes in chondrocyte embedded in cartilage play a critical role in the degradation of cartilage matrix.

However, in RA, fibroblast-like synoviocytes (FLS) are the predominant cell type and contribute to the

288	destruction of cartilage ³⁷ . This might explain the findings from the present study that Col10neo, a
289	degradation biomarker of type X collagen, is significantly higher in OA than RA.
290	The limitations of this study were: 1) the tissue-specificity of the serological Col10neo level. Although type X
291	collagen is exclusively expressed by hypertrophic chondrocytes in cartilage, it has been found in human
292	lumbar intervertebral discs ^{38, 39} . We previously reported that C-Col10, an assay measuring the C-terminus
293	of type X collagen, was significantly higher in spondyloarthritis (SpA) patients due to the syndesmophyte
294	outgrowth similar to osteophyte formation in OA ⁴⁰ . Thus, the origin of serological Col10neo is worthy of
295	further investigation. 2) Small sample size study. A study with larger sample size is needed to see if the
296	findings from this study can be generalized. 3). The unequal sample size in different groups, which might
297	minimize the statistical power. We noted that it was an exploratory research and cohorts with larger
298	samples might be useful for validating this biomarker in the future research.
299	In conclusion, our findings raise the possibility that Col10neo linked to hypertrophic chondrocyte could be
300	used as a biochemical marker for knee OA with a diagnostic potential in OA and RA, and also help get a
301	better understanding of the role of hypertrophic chondrocytes in the pathogenesis of OA.
302	
	Author Contributions
303	Author Contributions
304	MK, ACBJ, and YHE are in charge of overall direction and planning. YHE carried out all the experiments and
305	took the leading role in writing manuscript. TMJ participated in monoclonal antibodies development. KKP
306	and LAN contributed to the preparation of the C4Pain cohort. JSA, SAB, and MAT contributed to the
307	preparation of the NYU progression cohort. TCH contributed to the human cartilage sample preparation.
308	All authors contributed to and approved the final manuscript.
309	
310	

Acknowledgements

Thanks to Tülay Dastan who did the monoclonal antibody production in Denmark. We also thank Helene Sofie Hector for picking up human cartilage samples at the hospital. The study was founded by the Danish Research NIH funded study (R01-AR- -052873) to SBA.

317 Conflict of interest

- 318 MK, and ACBJ were full-time employees and shake holders of Nordic Bioscience A/S. YHE and TMJ are the
- full-time employee at Nordic Bioscience A/S. The rest co-authors have no conflict of interest to report.

320 References

- 321 1. Breedveld FC. Osteoarthritis--the impact of a serious disease. *Rheumatology (Oxford)*. 2004;43 Suppl 322 1:i4-8. doi:10.1093/rheumatology/keh102.
- Buckwalter JA, Martin J, Mankin HJ. Synovial joint degeneration and the syndrome of osteoarthritis.
 Instr Course Lect. 2000;49:481-489. http://www.ncbi.nlm.nih.gov/pubmed/10829201.
- 325 3. Heidari B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. *Casp J Intern Med*. 2011;2(2):205-212. http://www.ncbi.nlm.nih.gov/pubmed/24024017.
- Dreier R. Hypertrophic di ff erentiation of chondrocytes in osteoarthritis: the developmental aspect
 of degenerative joint disorders. 2010.
- 5. Kamekura S, Kawasaki Y, Hoshi K, Shimoaka T, Chikuda H, Maruyama Z , et al. Contribution of runtrelated transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. *Arthritis Rheum*. 2006;54(8):2462-2470. doi:10.1002/art.22041.
- 332 6. Pesesse L, Sanchez C, Delcour JP, Bellahcène A, Baudouin C, Msika P, et al. Consequences of chondrocyte hypertrophy on osteoarthritic cartilage: Potential effect on angiogenesis. *Osteoarthr Cartil.* 2013;21(12). doi:10.1016/j.joca.2013.08.018.
- 7. Van der Kraan PM, Van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? *Osteoarthr Cartil*. 2012;20(3):223-232. doi:10.1016/j.joca.2011.12.003.
- 338 8. Sun MMG, Beier F. Chondrocyte hypertrophy in skeletal development, growth, and disease. *Birth*339 *Defects Res Part C Embryo Today Rev*. 2014;102(1):74-82. doi:10.1002/bdrc.21062.
- Kamekura S, Hoshi K, Shimoaka T, Chung U, Chikuda H, Yamada T, et al. Osteoarthritis development
 in novel experimental mouse models induced by knee joint instability. *Osteoarthr Cartil*.
 2005;13(7):632-641. doi:10.1016/j.joca.2005.03.004.
- 343 10. Girkontaite I, Frischholz S, Lammi P, Wagner K, Swoboda B, Aigner T, et al. Immunolocalization of 344 type X collagen in normal fetal and adult osteoarthritic cartilage with monoclonal antibodies. *Matrix* 345 *Biol.* 1996;15(4):231-238. doi:10.1016/S0945-053X(96)90114-6.
- Heum. 1998;41(7):1287-1295. doi:10.1002/1529-0131(199807)41:7<1287::AID-ART20>3.0.CO;2-D.

- 12. Fuerst M, Bertrand J, Lammers L, Dreier R, Echtermeyer F, Nitschke Y ,et al. Calcification of articular
- 350 cartilage in human osteoarthritis. *Arthritis Rheum*. 2009;60(9):2694-2703. doi:10.1002/art.24774.
- 351 13. Murphy G, Knäuper V, Atkinson S, Butler G, English W, Hutton M, et al. Matrix metalloproteinases in
- arthritic disease. *Arthritis Res.* 2002;4 Suppl 3:S39-49. doi:10.1186/ar572.
- 14. Fosang AJ, Rogerson FM, East CJ, Stanton H. ADAMTS-5: the story so far. *Eur Cell Mater*. 2008;15:11-
- 354 26. http://www.ncbi.nlm.nih.gov/pubmed/18247274.
- 355 15. Pap T, Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis--two unequal siblings.
- 356 *Nat Rev Rheumatol.* 2015;11(10):606-615. doi:10.1038/nrrheum.2015.95.
- 357 16. Zhen EY, Brittain IJ, Laska DA, Mitchell PG, Sumer EU, Karsdal MA, et al. Characterization of
- metalloprotease cleavage products of human articular cartilage. Arthritis Rheum. 2008;58(8):2420-
- 359 2431. doi:10.1002/art.23654.
- 360 17. He Y, Siebuhr AS, Brandt-Hansen NU, Wang J, Su D, Zheng Q, et al. Type X collagen levels are
- delevated in serum from human osteoarthritis patients and associated with biomarkers of cartilage
- degradation and inflammation. BMC Musculoskelet Disord. 2014;15(1):309. doi:10.1186/1471-2474-
- 363 15-309.
- 364 18. Arendt-Nielsen L, Eskehave TN, Egsgaard LL, Petersen KK, Graven-Nielsen T, Hoeck HC, et al.
- Association between experimental pain biomarkers and serologic markers in patients with different
- degrees of painful knee osteoarthritis. *Arthritis Rheumatol (Hoboken, NJ)*. 2014;66(12):3317-3326.
- 367 doi:10.1002/art.38856.
- 368 19. Attur M, Statnikov A, Samuels J, Li Z, Alekseyenko AV, Greenberg JD, et al. Plasma levels of
- interleukin-1 receptor antagonist (IL1Ra) predict radiographic progression of symptomatic knee
- 370 osteoarthritis. *Osteoarthr Cartil.* 2015;23(11):1915-1924. doi:10.1016/j.joca.2015.08.006.
- 371 20. Attur M, Krasnokutsky S, Statnikov A, Samuels J, Li Z, Friese O, et al. Low-Grade Inflammation in
- 372 Symptomatic Knee Osteoarthritis: Prognostic Value of Inflammatory Plasma Lipids and Peripheral
- 373 Blood Leukocyte Biomarkers. *Arthritis Rheumatol*. 2015;67(11):2905-2915. doi:10.1002/art.39279.
- 374 21. Pauli C, Whiteside R, Heras FL, Nesic D, Koziol J, Grogan SP, et al. Comparison of cartilage
- 375 histopathology assessment systems on human knee joints at all stages of osteoarthritis
- 376 development. *Osteoarthr Cartil*. 2012;20(6):476-485. doi:10.1016/j.joca.2011.12.018.
- von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Glückert K, et al. Type X collagen synthesis in
- 378 human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. *Arthritis Rheum*.
- 379 1992;35(7):806-811. doi:10.1002/art.1780350715.
- 380 23. Kwan, Pang, Zhou, Cowan. Abnormal Compartimentalization of Cartilage Matrix Components in
- 381 Mice Lacking Collagen X: Implications for Function. *J Cell Biol*. 1997;136(2):459-471.

- 382 24. Hoyland JA, Thomas JT, Donn R, Marriott A, Ayad S, Boot-Handford RP, et al. Distribution of type X
- collagen mRNA in normal and osteoarthritic human cartilage. Bone Miner. 1991;15(2):151-163.
- http://www.ncbi.nlm.nih.gov/pubmed/1764631.
- 385 25. Aigner T, Reichenberger E, Bertling W, Kirsch T, Stöss H, von der Mark K. Type X collagen expression
- in osteoarthritic and rheumatoid articular cartilage. Virchows Arch B Cell Pathol Incl Mol Pathol.
- 387 1993;63(4):205-211. http://www.ncbi.nlm.nih.gov/pubmed/8099458.
- 388 26. von der Mark K, Frischholz S, Aigner T, Beier F, Belke J, Erdmann S, et al. Upregulation of type X
- collagen expression in osteoarthritic cartilage. *Acta Orthop Scand Suppl.* 1995;266:125-129.
- 390 http://www.ncbi.nlm.nih.gov/pubmed/8553841.
- 391 27. Lories RJU, Luyten FP. Osteoarthritis, a disease bridging development and regeneration. *Bonekey*
- 392 *Rep.* 2012;1(8):1-6. doi:10.1038/bonekey.2012.136.
- 393 28. Schmid TM, Mayne R, Jeffrey JJ, Linsenmayer TF. Type X collagen contains two cleavage sites for a
- 394 vertebrate collagenase. *J Biol Chem*. 1986;261(9):4184-4189.
- 395 29. Welgus HG, Fliszar CJ, Seltzer JL, Schmid TM, Jeffrey JJ. Differential susceptibility of type X collagen
- to cleavage by two mammalian interstitial collagenases and 72-kDa type IV collagenase. *J Biol Chem.*
- 397 1990;265(23):13521-13527. http://www.ncbi.nlm.nih.gov/pubmed/2166034.
- 398 30. Morko JP. Up regulation of cathepsin K expression in articular chondrocytes in a transgenic mouse
- 399 model for osteoarthritis. *Ann Rheum Dis.* 2004;63(6):649-655. doi:10.1136/ard.2002.004671.
- 400 31. Kozawa E, Cheng XW, Urakawa H, Arai E, Yamada Y, Kitamura S et al. Increased expression and
- activation of cathepsin K in human osteoarthritic cartilage and synovial tissues. J Orthop Res.
- 402 2016;34(1):127-134. doi:10.1002/jor.23005.
- 403 32. Coghlan RF, Oberdorf JA, Sienko S, Aiona MD, Boston BA, Connelly KJ. A degradation fragment of
- 404 type X collagen is a real-time biomarker for bone growth velocity. 2017.
- doi:10.1126/SCITRANSLMED.AAN4669.
- 406 33. Gadher SJ, Schmid TM, Heck LW, Woolley DE. Cleavage of collagen type X by human synovial
- 407 collagenase and neutrophil elastase. *Matrix*. 1989;9(2):109-115.
- 408 http://www.ncbi.nlm.nih.gov/pubmed/2542740.
- 409 34. Bogin O, Kvansakul M, Rom E, Singer J, Yayon A, Hohenester E. Insight into Schmid metaphyseal
- 410 chondrodysplasia from the crystal structure of the collagen X NC1 domain trimer. *Structure*.
- 411 2002;10(2):165-173. doi:10.1016/S0969-2126(02)00697-4.
- 412 35. Brew CJ, Clegg PD, Boot-Handford RP, Andrew JG, Hardingham T. Gene expression in human
- 413 chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without
- evidence of generalised chondrocyte hypertrophy. Ann Rheum Dis. 2010;69(1):234-240.

415		doi:10.1136/ard.2008.097139.
416	36.	Sherwood J, Bertrand J, Nalesso G, Poulet B, Pitsillides A, Brandolini L ,et al. A homeostatic function
417		of CXCR2 signalling in articular cartilage. Ann Rheum Dis. 2015;74(12):2207-2215.
418		doi:10.1136/annrheumdis-2014-205546.
419	37.	Bustamante MF, Garcia-Carbonell R, Whisenant KD, Guma M. Fibroblast-like synoviocyte
420		metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther. 2017;19(1):110.
421		doi:10.1186/s13075-017-1303-3.
422	38.	Boos N, Nerlich AG, Wiest I, Von Der Mark K, Aebi M. Immunolocalization of type X collagen in
423		human lumbar intervertebral discs during ageing and degeneration. Histochem Cell Biol.
424		1997;108(6):471-480. doi:10.1007/s004180050187.
425	39.	Roberts S, Bains MA, Kwan A, Menage J, Eisenstein SM. Type X collagen in the human invertebral
426		disc: an indication of repair or remodelling? <i>Histochem J.</i> 1998;30(2):89-95.
427		http://www.ncbi.nlm.nih.gov/pubmed/10192549.
428	40.	Gudmann NS, Munk HL, Christensen AF, Ejstrup L, Sørensen GL, Loft AG, et al. Chondrocyte activity
429		is increased in psoriatic arthritis and axial spondyloarthritis. Arthritis Res Ther. 2016;18(1):141.
430		doi:10.1186/s13075-016-1040-z.
431		

Figure Legends

- 1. Schematic illustration of the positions of neo-epitope, collagenase cleavage site and antibody-binding sites on type X collagen. (A)The red line is the location of neo-epitope recognized by 2F4 in the triple helix domain. The purple line is the binding site of 11G8 at the C-terminal of NC1 domain. The yellow line is the proposed cleavage site by collagenase in other studies. The C1q-like C-terminal NC1 domain forms a stable homotrimer. (B)The specificity of 2F4 tested by three synthetic peptides: selection peptide, elongated peptide, and truncated peptide, and two truncated recombinant type X collagen proteins: Col10 with free 479Gly (AA 479-680) and Col10 (AA 450-680), 30aa longer and spanning the cleavage site A 478-479 G.
- 2. in vitro cleavage of cartilage by enzymes. (A) The cleaved human cartilage by MMPs, ADAMTSs, and Cathepsins was applied to Col10neo assay. It has been shown that Cathepsin K was the only one among tested proteases to release the neo-epitope. The data were shown as mean±SD. (B) Western blot of human cartilage cleaved by Cathepsin K. Equivalent blots was probed with antibodies to 2F4 (left panels) or in the presence of selection peptide (middle panel) or elongated peptide (right panel) or 11G8 (the fourth panel).
- 3. **Immunolocalization of** ⁴⁷⁹**GIATKG in cartilage.** (**A-C**). Histology with Safranin O/Fast green. A. The normal-arranged chondrocytes, smooth surface and mild degradation of superficial zone proteoglycan in first biopsy and B. less smooth surface and moderate degradation of proteoglycan in the cartilage matrix in the second biopsy. C. chondrocyte cluster, fibrillated surface, cleft and severe reduction in safranin O/Fast green was found. (**D-F**) immunostaining with the ⁴⁷⁹GIATKG antibody. G-I immunostaining with C-terminus 11G8. (**J-L**) with non-sense mouse IgG as negative control. Scale bar in A-C=100μm; Scale bar in D-L=20μm.
- 4. Association between KL grade and Col10neo level in the plasma of subjects in the C4Pain study. The data were shown as mean±95Cl%. (A) There was a trend toward a higher level of Col10neo in subjects with greater KL score, but do not reach statistical significance. (B) The greatest percent of subjects with KL3-4 was in the highest tertile of Col10neo. The one-way ANOVA with post-hoc Tukey-Kramer test was used. Plasma Col10neo data were logarithmic transformed in all analyses. A P value<0.05 was considered statistically significant.
- 5. Plasma Col10neo levels in the NYU study. (A)The data were shown as mean±95Cl%. Col10neo was statistically higher in OA than control (p=0.0002) or RA (p<0.0001), and no significant difference was seen between control and RA. The one-way ANOVA with post-hoc Tukey-Kramer test was used. Plasma Col10neo were logarithmic transformed in all analyses. P value<0.05 was considered statistically significant. (B) ROC curve analysis. The area under the ROC curve (AUC) was 0.875 (95% confidence interval 0.806-0.9427; P<0.0001), indicating there was a good separation of Col10neo of two groups

Table 1. Demographics of subjects in the C4Pain study

KL grade	No. of women	No. Of men	Total	VAS grade	Age, years	BMI, kg/m ²
0-1	23	27	50	37±30	61.8±8.5	26.4±3.1
2	79	66	145	42±29	64.6±7.3	28.2±3.8
3	17	19	36	56±21	64.3±7.1	29.3±5.6
4	12	10	22	54±24	67.8±7.7 ^{\$}	29.5±3.9

Except where indicated otherwise, values are the mean \pm SD. Vas grade=maximal pain intensity for the last 24 hour, BMI = body mass index.

 $\,$, P<0.05 compared to KLO-1 group

Table 2. Demographics of subjects in the NYU study

	Non-OA Controls	OA	RA
No. of men	12	56	6
No. of women	8	86	28
Total No.	20	142	34
Age, years	56.7±8.7 [#]	62.5±10.1	53.2±10.5 ^{\$\$\$\$}
BMI, kg/m ²	26.75±4.14	26.58±3.62	27.99±5.70
KL score Treatments	rg/m² 26.75±4.14 re ≤1	KL 0-4 21.8 percent of the 142 enrolled OA patients were taking NSAIDs.	

Except where indicated otherwise, values are the mean \pm SD. BMI = body mass index.

^{#,} p<0.05 compared to OA group

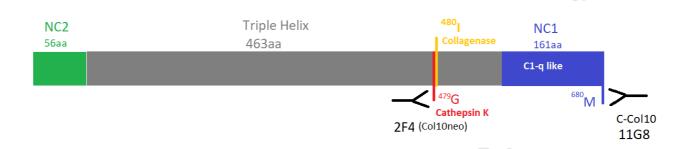

^{\$\$\$\$,} p<0.0001 compared to OA group

Table. 3 ANCOVA analysis of plasma Col10neo levels adjusted for age, gender, and BMI.

Factors			Mean difference	Std. Error	P ^a	95% CI a
OA	-	Non-OA control	0.1152	0.02926	0.0003	0.04453 to 0.1866
	-	RA	0.2176	0.02477	<0.0001	0.1578to 0.2774
Non-OA control	-	OA	-0.1152	0.02926	0.0003	-0.1859 to -0.04453
	-	RA	0.1024	0.03487	0.0112	0.01819to 0.04453

a Bonferroni corrected

Fig.1 A.

В.

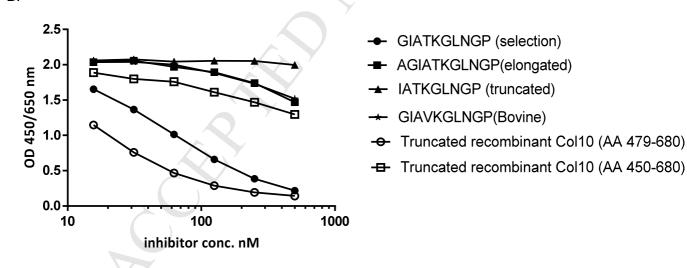
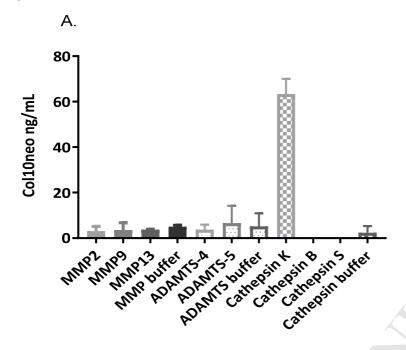



Fig. 2

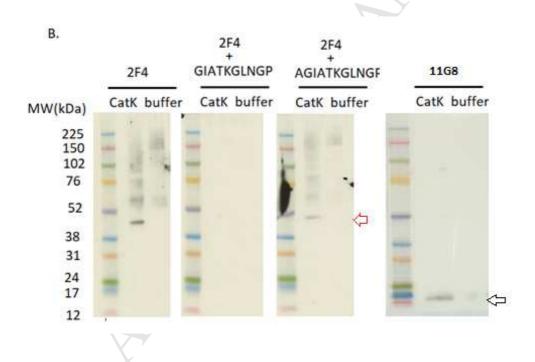


Fig3.

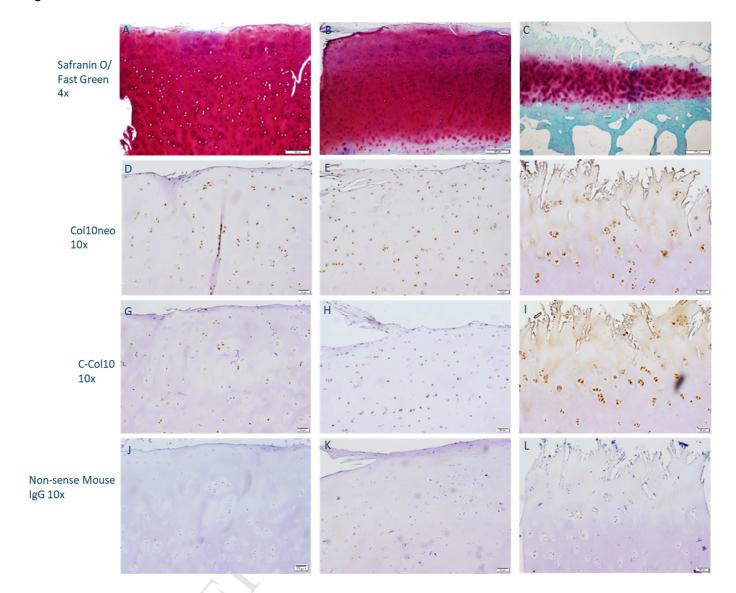


Fig. 4

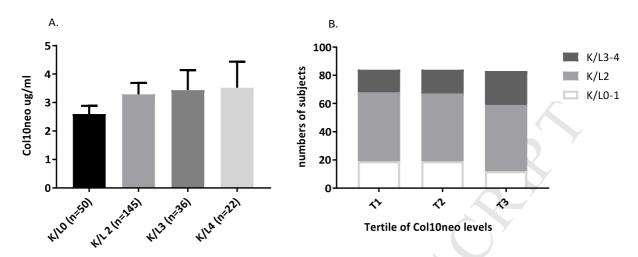
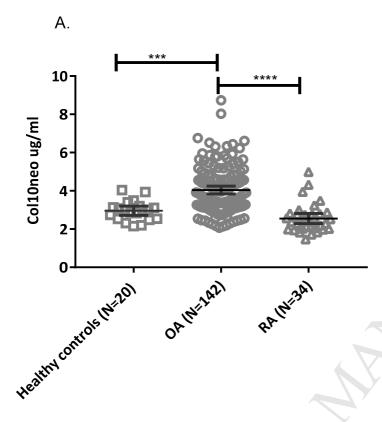
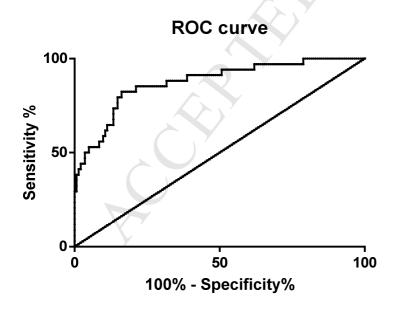




Fig. 5

В.

