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Parametric equalization of an acoustic system aims to compensate for the deviati-
ons of its response from a desired target response using parametric digital filters. An
optimization procedure is presented for the automatic design of a low-order equali-
zer using parametric infinite impulse response (IIR) filters, specifically second-order
peaking filters and first-order shelving filters. The proposed procedure minimizes the
sum of square errors (SSE) between the system and the target complex frequency
responses, instead of the commonly used difference in magnitudes, and exploits a
previously unexplored orthogonality property of one particular type of parametric
filter. This brings a series of advantages over the state-of-the-art procedures, such as
an improved mathematical tractability of the equalization problem, with the possibi-
lity of computing analytical expressions for the gradients, an improved initialization
of the parameters, including the global gain of the equalizer, the incorporation of
shelving filters in the optimization procedure, and a more accentuated focus on
the equalization of the more perceptually relevant frequency peaks. Examples of
loudspeaker and room equalization are provided, as well as a note about extending
the procedure to multi-point equalization and transfer function modeling.

0 INTRODUCTION

Parametric equalization of an acoustic system aims
to compensate for the deviations of its response from
a target response using parametric digital filters. The
general purpose is to improve the perceived audio qua-
lity by correcting for linear distortions introduced by
the system [1–4]. Linear distortions, usually perceived
as spectral coloration (i.e. timbre modifications) [5,6],
are related to changes in the magnitude and phase of
the complex frequency response with respect to a tar-
get response. Even though phase distortions are per-
ceivable in some conditions [7], their effect is usually
small compared to large variations in the magnitude of

*To whom correspondence should be addressed. Tel:
+32-16-321817; e-mail: giacomo.vairetti@esat.kuleuven.be

the frequency response [8]. Consequently, a low-order
equalizer should focus on correcting the magnitude re-
sponse of the system, rather than its phase response.

Parametric equalizers using cascaded infinite im-
pulse response (IIR) filter sections consisting of pea-
king and shelving filters are commonly used [9–12], es-
pecially when a low-order equalizer is required. Indeed,
the possibility of adjusting gain, central frequency and
bandwidth of each section of the equalizer results in a
greater flexibility and, if the values of the parameters
are well-chosen, in a reduced number of equalizer pa-
rameters w.r.t. , for instance, a graphic equalizer with
fixed central frequencies and bandwidths, or a finite
impulse response (FIR) filter. However, since manu-
ally adjusting the values of the control parameters,
as often done, can be difficult or may lead to unsa-
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tisfactory results, the availability of automatic design
procedures is beneficial.

For a parametric equalizer design procedure to be
fully automatic, various relevant aspects should be
considered, such as the number of filter sections avai-
lable, typically fixed between 3 and 30 based on the
application, and the structure of the filter sections,
which can have different characteristics and be para-
metrized in different ways, especially in terms of the
bandwidth parameter [9]. Other design choices pertain
the definition of a target response, based on a pro-
totype or defined by the user, and its 0-dB line, relative
to which the global gain of the equalizer will be set, as
well as preprocessing operations, such as smoothing of
the system frequency response. Once all these aspects
are determined, an automatic design procedure requi-
res the definition of an optimization criterion (or cost
function), typically in terms of a distance between the
equalized system magnitude response and the target
magnitude response, as well as the choice of an optimi-
zation algorithm for the estimation of the parameter
values of the filter sections. The focus of this paper
is on automatic parametric equalizer design procedu-
res operating in a sequential way, optimizing one filter
section at a time, starting with the one that reduces
the cost function the most, i.e. in order of importance
in the equalization [13, 14]. The idea is to select an
initial filter section, to search for better parameter va-
lues by minimizing the cost function using an iterative
optimization algorithm, and then move to the initiali-
zation and optimization of the next filter section.

The choice of the cost function has a fundamental
role in determining the final performance of the design
procedure. The characteristics of the first- and second-
order peaking and shelving filters used in minimum-
phase low-order parametric equalizers are well suited
for the equalization of the magnitude response and
have only a small influence on the phase response. As
a consequence, the cost function generally chosen uses
the difference between the magnitudes of the equali-
zed response and the target response, discarding the
phase response. The procedure described by Ramos
et al. [13] uses a cost function which is the average
absolute difference between the equalized magnitude
response and the target magnitude response, compu-
ted on a logarithmic scale. More recently, Behrends et
al. [14] proposed a series of modifications to the afore-
mentioned procedure, including the evaluation of the
cost function on a linear scale. Such a choice is meant
to favor the equalization of frequency peaks, which
are known to be more audible than dips [15]. This is
a desirable feature, especially for low-order equalizers,
which also limits the selection of filters producing a
sharp boost in the response that may cause clipping
in the audio system.

In the proposed procedure, the focus on equalizing
peaks is even more prominent. The cost function em-
ployed uses the sum of squared errors (SSE) between
the equalized and the target complex frequency re-

sponses. Minimizing the SSE does not explicitly aim at
maximizing the ‘flatness’ of the equalized magnitude
response, as for the procedures cited above, but rather
at compensating for the deviations of the equalized re-
sponse by putting more emphasis in the equalization of
energetic frequency peaks over dips. Even though the
use of the SSE may be a less intuitive way of defining
the equalization problem, it brings some advantages
over using the magnitude response error. Specifically,
the SSE gives the possibility of computing analytical
expressions for the gradients of the cost function w.r.t.
the parameters of the filter sections, such that effi-
cient line search optimization algorithms can be used,
and of estimating the global gain of the equalizer (i.e.
the 0-dB line). Moreover, if only the linear-in-the-gain
structure of the parametric filters [9, 10] is used, the
gain parameters can be estimated in closed form using
least squares (LS), thus enabling the use of a grid se-
arch procedure for the initialization of the other filter
parameters, as well as the inclusion of first-order shel-
ving filters in the optimization procedure. It follows
that most of the design aspects to be considered are
based on the minimization of the cost function and
not on arbitrary choices or assumptions regarding the
magnitude response to be equalized, as in the proce-
dures in [13] and [14], briefly described in Section 1.

The present paper is organized as follows: Section 1
gives an overview of the state-of-the-art procedures
for automatic equalizer design using parametric IIR
filters. Section 2 formalizes and discusses the equaliza-
tion problem defined in terms of the SSE. In Section 3,
linear-in-the-gain (LIG) parametric IIR filters are des-
cribed and the closed-form expression for the gain pa-
rameter is derived. The proposed automatic procedure
for parameter estimation of a low-order parametric
equalizer is detailed in Section 4. In Section 5, re-
sults of the equalization of a loudspeaker response are
evaluated using different error-based objective mea-
sures [4], as well as objective measures of perceived
audio quality [6, 16, 17]. In Section 6, application to
room response equalization is also considered. The mo-
dification to the proposed procedure for multi-point
equalization and transfer function modeling is briefly
discussed in Section 7. Section 8 concludes the paper.

Terminology
The following terms and conventions are defined and

used throughout the paper. The term system response
H0(k) indicates the frequency response to be equali-
zed, which could be either a loudspeaker response, a
room response, or a joint loudspeaker-room response.
The radial frequency index k refers to the evaluation
of the transfer function on the unit circle at the kth

radial frequency bin ωk (k is short for ejωk/fs , with fs
the sampling frequency). The equalized response Hs(k)

is defined as the system response filtered by the pa-
rametric equalizer having s filter sections. The term
parametric equalizer refers to the cascade of S para-
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metric filters, while the term parametric filter refers to
either a peaking filter with filter order m = 2 or a shel-
ving filter with filter order m = 1. A parametric filter
has two possible implementation forms: a LIG form,
typically used in the literature with a positive gain
(in dB) to generate a boost in the filter response, and
a nonlinear-in-the-gain (NLIG) form, typically used
with a negative gain (in dB) to generate a cut in the
filter response (see Section 3).

1 STATE-OF-THE-ART PROCEDURES

The purpose of parametric equalization is to com-
pensate for the deviations of the system frequency re-
sponse H0(k) from a user-defined target frequency re-
sponse T (k) using a parametric equalizer of order M
with overall response FM (k). In other words, the pur-
pose is to filter H0(k) with the equalizer FM (k) in order
to approximate the target response as closely as pos-
sible, based on the following error:

EM (k) = W (k)
{
H0(k) · FM (k)− T (k)

}
. (1)

with W (k) a weighting function used to give more or
less importance to the error at certain frequencies.

Different cost functions are possible. In the proce-
dure proposed by Ramos et al. [13], the mean absolute
error between the magnitudes in dB of the equalized
response and the target response, computed on a lo-
garithmic frequency scale, was chosen to account for
the ‘double logarithmic behavior of the ear’,

εdBM =
20

N

∑
k

∣∣∣W (k)
{

log10 |H0(k) · FM (k)| − log10 |T (k)|
}∣∣∣,

(2)

with N the number of frequencies included in the
frequency range of interest. The system magnitude
response |H0(k)|, as commonly done in low-order
parametric equalization, is smoothed by a certain
fractional-octave factor (usually 1/8th or 1/12th) in order
to remove narrow peaks and dips that are less audi-
ble [15] and to facilitate the search for the optimal
parameter values. For each filter section, the proce-
dure in [13] uses a heuristic algorithm to optimize the
parameters. The procedure was extended in [18] to in-
clude second-order shelving and high-pass (HP) and
low-pass (LP) filters in the equalizer design. The de-
cision of including shelving filters has to be made by
analyzing the error areas above and below the target
magnitude response at the beginning and at the end of
the frequency range of interest. A shelving (or HP/LP)
filter is then included if the error area is larger than a
predefined threshold, with the values of the filter para-
meters optimized using the same heuristic algorithm.
Another extension proposed in [13] adds the possibi-
lity of reducing the order of the parametric equalizer
by removing the peaking filters that are correcting for
inaudible peaks and dips, according to psychoacoustic
considerations [15].

In Behrends et al. [14], the higher perceptual rele-
vance of spectral peaks is directly taken into account
in the definition of the cost function by considering
the error on a linear magnitude scale, instead of a lo-
garithmic scale, i.e.

εlinM =
1

N

∑
k

∣∣∣W (k)
{
|H0(k) · FM (k)| − |T (k)|

}∣∣∣. (3)

While the cost function used in Eq. (2) equally weights
the error produced by deviations of the equalized mag-
nitude response above and below the target response,
the evaluation of the cost function on a linear scale as
in Eq. (3), gives more importance to the portions of
the equalized magnitude response that lie above the
target, thus favoring the removal of frequency peaks,
rather than the boosting of the dips, In [14], Behrends
et al. also suggest to employ a derivative-free algo-
rithm, called the Rosenbrock method [19], which offers
a gradient-like behavior, and thus faster convergence.

A critical aspect of the procedures by Ramos et
al. [13] and Behrends et al. [14] is the selection of the
initial values of the parameters of each new parame-
tric filter. The selection is done by computing the areas
of the magnitude response above and below the tar-
get, using either (2) or (3). The largest area becomes
the one to be equalized, with the half-way point be-
tween the two zero-crossing points and the negation
of its level (in dB) defining the central frequency and
gain of the filter section, respectively, and the -3 dB
points defining the bandwidth (or Q-value). This ap-
proach assumes that the system magnitude response is
a combination of peaks and dips above and below the
target magnitude response. The problem with such an
assumption is that, in case of highly irregular system
magnitude responses, the initial filter placement ap-
proach may provide initial values quite distant from
a local minimizer. In this case, the reduction in the
cost function provided by the initial filter may even
be quite limited. Furthermore, the placement of the 0-
dB line becomes an important aspect of the procedure,
for which a clear solution was not provided.

An example system magnitude response, similar to
an example in [14], is given in Figure 1, also sho-
wing the filter responses for the initial values com-
puted with different procedures. Between 100 Hz and
16 kHz, there are seven error areas A1 −A7 above and
below the predefined flat target magnitude response.
The procedure by Ramos et al. [13] places the initial
filter based on the largest error area computed accor-
ding to (2), which is A3 in the example; the parameters
of the initial filter are chosen as described above; the
irregularity of the system magnitude response makes
the selection based on the half-way point of the area
far from optimal, with the initial filter far from the
optimal solution (also shown in the figure). The lar-
gest error area for the procedure in [14], computed
according to (3), is instead A2. As shown in the figure,
using the same approach as in [13] leads to similar
problems. A peak finding approach, as also suggested
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Fig. 1: Initialized (thick lines) and optimized (thin lines) responses of a single filter section using different procedures.

in [14], may provide a better initialization in this par-
ticular example, but it may not be effective in general
and introduces the problem of defining the initial value
for the bandwidth. The initial filter obtained with the
proposed procedure is also shown in the figure. The
initialization, which will be described in Section 4, is
not based on the largest error area approach, but on a
grid search with optimal gain (in LS sense) computed
w.r.t. the SSE. It can be seen that initial parameters
are found quite close to the optimal ones.

Other examples of automatic parametric equalizer
design can be found in [20], where nonlinear optimi-
zation is used to find the parameters of a parame-
tric equalizer starting from initial values selected using
peak finding; in [21], where the gains of a parametric
equalizer with fixed frequencies and bandwidths are
estimated in closed form exploiting a self-similarity
property of the peaking filters on a logarithmic scale;
and in [22], where a gradient-based optimization of
the parameters of an equalizer is proposed, which uses
filters parametrized using the numerator and denomi-
nator coefficients of the transfer function and not a
constrained form defined in terms of gain, frequency
and bandwidth, as the one used in this paper.

2 EQUALIZATION BASED ON THE SSE

In this paper, a cost function is used based on the
SSE between the frequency responses, i.e.

εSSEM =
1

N

∑
k

(
W (k)

[
H0(k) · FM (k)− T (k)

])2
. (4)

Such formulation, even though less intuitive than (2)
and (3), brings some advantages, as will be detailed la-
ter on: (i) it provides an improved mathematical trac-
tability of the equalization problem, with the possibi-
lity of computing analytical expressions for the gra-
dients w.r.t. the filter parameters; (ii) when the pa-
rametric filter is in the LIG implementation form, it
leads to a closed-form expression for the gain para-
meters (see Section 3), which simplifies the automatic
design procedure; (iii) it provides a better way to ini-
tialize a parametric filter prior to optimization; (iv) it

allows to include first-order shelving filters, and (v) to
estimate the global constant gain in closed-form; and
(vi) it focuses on the equalization of the more percep-
tually relevant frequency peaks rather than the dips.

The parametric equalizer considered, comprising a
cascade of minimum-phase parametric filters, has a
minimum-phase response. An interesting property of
a minimum-phase response is that its frequency re-
sponse H(ω) is completely determined by its magni-
tude response. The phase φH(ω) is, indeed, given by
the inverse Hilbert transform H−1{·} = −H{·} of the
natural logarithm of the magnitude [23,24]:

H(ω) = |H(ω)|ejφH (ω),

with φH(ω) = −H{ln |H(ω)|}.
(5)

This is a consequence of the fact that the log frequency
response is an analytic signal in the frequency domain

lnH(ω) = ln |H(ω)|+ jφH(ω), (6)

whose time-domain counterpart is the so-called cep-
strum [23]. In the digital domain, the phase response
of the minimum-phase frequency response H(k) can be
obtained as the imaginary part I of the DFT of the
folded real periodic cepstrum ĥ(n) = IDFT{ln |H(k)|}

φH(k) = I{DFT{fold{ĥ(n)}}} (7)

where the DFT and IDFT operators indicate the dis-
crete Fourier transform and its inverse, and the fold
operation has the effect of folding the anti-causal part
of ĥ(n) onto its causal part. More details can be found
in [25] or [26]. Thus, given the relation between the
magnitude and the phase of a minimum-phase fre-
quency response as given in (5), minimizing the cost
function in (4), remarkably, still corresponds to a
magnitude-only equalization.

The use of the SSE in (4) compared to the linear
function in (3) puts more emphasis on the error gene-
rated by strong peaks, as described in more detail in
Appendix A.1. Here an intuitive interpretation is given
as follows. In Figure 2, the boost magnitude response
of two peaking filters with positive gains G = 3 dB and
G = 6 dB is considered. A cut in the filter magnitude
response, having the same central frequency and band-
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Fig. 2: Two peaking filters with gains G = 3 dB and G =
6 dB (thick lines), and the corresponding cut filter respon-
ses (thin lines) with gain optimized to give equal error
using different cost functions.

width, is obtained using a negative gain. The negative
gain parameter is optimized such that the error w.r.t.
the 0-dB line computed with the cost functions in (2),
(3) and (4), is equal to the one obtained for the boost
response. For the cost function in (2), the cut filter
response is obviously specular to the boost filter re-
sponse on a logarithmic scale (the gain is −G), whe-
reas for the cost functions in (3) and (4) it is not. This
is the consequence of the fact that the evaluation of
the error on a linear scale puts more weight on va-
lues above the 0-dB line. Whereas for the G = 3 dB
gain case (left plot) the cost function in (3) and (4)
produce almost the same error, for higher gains (see
right plot for G = 6 dB) the SSE gives more emphasis
to errors above the 0-dB line.

3 LINEAR-IN-THE-GAIN PARAMETRIC FILTERS

Digital IIR filters used in parametric equalizers are
first- and second-order IIR filters, with constraints on
the filter magnitude response defined at the zero fre-
quency, at the Nyquist frequency, and, for peaking fil-
ters, at the central frequency. Different parameteriza-
tions satisfying these constraints are possible, with dif-
ferent methods to compute the filter coefficients. Ho-
wever, even though the various parameterizations have
different definitions for the bandwidth parameter, all
parameterizations satisfying the same constraints are
equivalent [9]. Among different possibilities, the struc-
ture of first- and second-order parametric filters ori-
ginally proposed by Regalia and Mitra [10] is cho-
sen here. This structure, shown in Figure 3, comprises
an all-pass (AP) filter Am(z) of order m and a feed-
forward path. If the AP filter is independent from the
gain parameter V , the parametric filter has a transfer
function Fm(z) which is linear in V ,

Fm(z) =
1

2
[(1 + V ) + (1− V )Am(z)] (8)

=
1

2
[(1 +Am(z)) + V (1−Am(z))], (9)

x(n)

Am(z)
z(n)

1−V
2

ym(n)

1+V
2

(a)

x(n)

Am(z)
z(n)

+

+
yη(n)

1/2

ym(n)

x(n)

−

+

yβ(n)
V/2

(b)

Fig. 3: The Regalia-Mitra parametric filter

where expression (9), corresponding to the equiva-
lent filter structure in Figure 3b, highlights this linear
dependency [11, 12]. Given that for V > 0 the filter
response is minimum-phase, whereas for V < 0 it is
maximum-phase [10], only filters with positive linear
gain will be considered.

Another characteristic of this filter structure, which
is exploited in the proposed procedure, follows from
the energy preservation property [27] of the AP fil-
ter: since the energy of the output signal of the AP
filter is equal to the energy of its input signal, the
signals yη(n) = x(n) + z(n), corresponding to a notch,
and yβ(n) = x(n)− z(n), corresponding to a resonance,
are found to be orthogonal to each other. An intui-
tive proof is provided in Appendix A.2. If follows that,
when the gain parameter V does not appear in the AP
filter transfer function, the gain V is only acting on the
resonant response yβ(n), whereas the notch response
yη(n) is not changed when V is modified. This can be
seen in Figure 4, showing the magnitude response of
two shelving filters (left) and two peaking (right) filters
in LIG form with gains V = 2 and V = 0.5, together
with the corresponding notch and resonance respon-
ses. If should be noticed that the LIG filter structure
is able to produce both a boost and a cut in the re-
sponse, even though the cut response tend to have a
reduced bandwidth [10], as discussed below.

3.1 First-order shelving filters
A shelving filter is used whenever the lowest or hig-

hest portion of the system frequency response has to
be enhanced or reduced. Shelving filters are described
by a set of two parameters, namely the gain V and
the transition frequency fc, defined as the -3 dB notch
bandwidth. By using the filter structure in (8) or (9),
a first-order shelving filter at low frequencies (LFs) or
at high frequencies (HFs), respectively, by defining a
first-order AP filter as

ALF
1 (z) =

aLF − z−1

1− aLFz−1
, AHF

1 (z) =
aHF + z−1

1 + aHFz−1
. (10)

J. Audio Eng. Soc., Vol. x, No. x, 2018 May 5
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Fig. 4: Shelving and peaking filters in LIG form

The LIG form is obtained by defining the parameter
a in terms of the transition frequency fc and the sam-
pling frequency fs as

abLF =
1− tan(πfc/fs)

1 + tan(πfc/fs)
, abHF =

tan(πfc/fs)− 1

tan(πfc/fs) + 1
. (11)

As a consequence, the AP filter does not depend on
the gain V . However, for 0 < V < 1, when the filter re-
presents a cut, the effective transition frequency of the
filter response tends towards lower (or higher for the
HF case) frequencies (see left plot of Figure 4 or [10]).
To obtain a cut response, for 0 < V < 1, with response
specular to the one obtained with the LIG form when
V is replaced by 1/V , the parameter a has to be modi-
fied to be dependent on the gain [12],

acLF =
V − tan(πfc/fs)

V + tan(πfc/fs)
, acHF =

tan(πfc/fs)− V
tan(πfc/fs) + V

(12)

which yields the NLIG form of a shelving filter.
Another option would be to redefine the parameter

a in order to obtain a single expression that provides
specular responses for a boost with gain V and a cut
with gain 1/V [1, 9, 28]. However, the resulting filter
structure of the proportional shelving filter is nonlinear
in the gain parameter.

Finally, it should be noticed, also from the left plot
of Figure 4, that the notch response yη(n) of the LF
shelving filter corresponds to a first-order HP filter
(i.e. when V = 0). The same is true also for the notch
response of the HF shelving filter, which corresponds
to a first-order LP filter.

3.2 Second-order peaking filters
Peaking filters are used to compensate for peaks or

dips in the system magnitude response. As for first-
order shelving filters, second-order peaking filters can
be implemented with the filter structure in (8) by de-
fining a second-order AP filter as

A2(z) =
a+ d(1 + a)z−1 + z−2

1 + d(1 + a)z−1 + az−2
, (13)

with d = − cos(2πf0/fs), where f0 is the central fre-
quency of the peaking filter. The LIG form is obtained

by defining the bandwidth parameter a as

ab = − tan(πfb/fs)− 1

tan(πfb/fs) + 1
, (14)

with fb defined as the -3 dB notch bandwidth obtained
for V = 0 [9, 10]. Similar to first-order shelving filters,
peaking filters do not show a specular response when
replacing V by 1/V (see right plot of Figure 4 or [10]).
In order to obtain symmetric boost and cut responses,
either the NLIG form [12] for 0 < V < 1, with

ac = − tan(πfb/fs)− V
tan(πfb/fs) + V

, (15)

or the proportional filters in [1, 9, 28] could be used.
In both cases, the linear dependency w.r.t the gain
parameter is lost. Only the LIG form is used in the
proposed automatic equalization procedure. It is pos-
sible in any case to convert the parameters of a filter,
either shelving or peaking, from the LIG form to the
NLIG or the proportional form.

3.3 LS solution for the gain parameter
The advantage of the LIG form is that the linearity

and orthogonality properties described above enable a
closed-form solution for the estimation problem of the
gain parameter. When the equalizer is made of only
one parametric filter, the cost function in (4) can be
written as

εSSEm =
1

N

∑
k

(
W (k)

{1

2
H0(k)[F ηm(k) + V F βm(k)]− T (k)

})2
,

(16)
where F ηm(k) = 1 +Am(k) and F βm(k) = 1−Am(k), re-
spectively, and k = 1, . . . , N . The minimization of the
cost function is performed by setting to zero the first-
order partial derivative of εSSEM w.r.t. V . The LS solu-
tion is obtained by

V̂ =

∑
k |W (k)|2 F β∗m (k)H∗0 (k)T (k)∑
k |W (k)|2|H0(k)|2|F βm(k)|2

(17)

with {·}∗ indicating complex conjugation, which is in-
dependent from F ηm(k) because of the orthogonality be-
tween F ηm(k) and F βm(k) (see details in Appendix A.2
and A.3). This feature will be also used in the pa-
rameter initialization, as described in Section 4. In-
deed, if the equalizer is designed one parametric filter
at a time, the optimal value V̂s of the gain parame-
ter of the sth filter section, is obtained by substituting
the system frequency response H0(z) in (17) with the
equalized response Hs−1(z).

4 PROPOSED DESIGN PROCEDURE

The aim of the proposed procedure is to design a
parametric equalizer of order M as a cascade of S
filter sections, each consisting of a parametric filter
of order ms = 1 (shelving) or ms = 2 (peaking) having
frequency response Fms(k) defined as in (8-9), i.e.

FM (k) = C

S∏
s=1

Fms(k), with M =

S∑
s=1

ms, (18)
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Fig. 5: Schematics of the proposed design procedure.

where s indicates the filter section index and C a glo-
bal gain.. The parameter values of the sth filter section
are optimized so as to minimize the cost function
F(as, ds, Vs), defined as

εSSEs,ms =
1

N

∑
k

(
W (k)

{
Hs−1(k)Fms(k)− T (k)

})2
, (19)

with Hs−1 the system response filtered by the equalizer
comprising the previous s− 1 filter sections.

The proposed design procedure consists of the steps
depicted in Figure 5 and detailed in the rest of the
section. A preliminary step is to define a target re-
sponse T (k) and a minimum-phase preprocessed ver-
sion of the system response H0(k). Optionally, the va-
lue of the global gain C can be estimated in closed-
form using LS. The design of each new filter section
can be divided into two stages. The first stage provides
initial parameter values by means of a grid search, in
which the optimal gain parameter for predefined dis-
crete values of the central frequency and bandwidth is
estimated as described above. The second stage con-
sists of a line search optimization, which is intended
to iteratively refine the initial parameter values and
reach a local minimum of the cost function.

4.1 Spectral Preprocessing
The spectral preprocessing of the system frequency

response follows the steps outlined in [25]: first, the
system magnitude response |H0(k)| is smoothed accor-

ding to the Bark frequency scale, in order to approx-
imate the critical bands of the ear, using a moving-
average (MA) filter with bandwidth increasing with
frequency. Apart for frequencies below 500 Hz, at
which the smoothing is performed over a fixed 100 Hz
interval, the bandwidth of the filter is set to an interval
equal to 20% of the frequency. The amount of smoo-
thing can then be controlled by the length of the win-
dow of the MA filter; either fractional critical band-
width smoothing or fractional-octave smoothing can
be easily used instead.

The second (and optional) step of the spectral pre-
processing in [25] is to warp the frequency axis in or-
der to approximate the Bark frequency scale, i.e. to
allocate a higher resolution to the LFs. An alterna-
tive, also adopted in this paper, is to resample the fre-
quency axis from linear to logarithmic, by defining a
logarithmically spaced axis, e.g. with 1/48th-octave re-
solution as in [13], and thus evaluating the magnitude
response at those frequency points (e.g. using Horner’s
method [23], after the phase retrieval step explained
below). Yet another way of favoring the equalization
of a given frequency range, which can be used in con-
junction with the strategies above, is to tune the weig-
hting function W (k) in (19) accordingly.

Finally, the cost function in (19) requires the
minimum-phase response H0(k) to be retrieved from
the preprocessed system magnitude response. A com-
mon solution, also suggested in [25], to create a
minimum-phase frequency response is by means of the
cepstral method [23,25], where the smoothed (and/or
warped) magnitude response is used to retrieve the
corresponding phase response, as given in (5-7). No-
tice that, in order to avoid time-aliasing given by deep
notches that can remain in the magnitude response
after smoothing (e.g. towards 0 Hz), it is advisable to
increase the FFT size to a high power of two and to
clip the response, as suggested in [26].

4.2 Target Response
Although the choice of the target response is arbi-

trary, it should be made cautiously. If the target re-
sponse is too distant from the system frequency re-
sponse, the equalization will be more difficult to be
realized. For instance, if the lower cut-off frequency of
the target response is below the lower cut-off frequency
of the loudspeaker, the equalizer would contain a pa-
rametric filter with positive gain, which would move
the loudspeaker driver outside its working range.

There is no complete agreement on the optimal tar-
get response for loudspeaker/room response equaliza-
tion, and no single target for all sound reproduction
purposes and all listeners can be defined [29]. It is out
of the scope of this paper to discuss the characteris-
tics of an optimal, according to some criterion, target
response for different sound reproduction systems and
situations. Here only a brief overview of different ap-
proaches and guidelines is given. The target response
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can be defined in its magnitude and then its phase can
be retrieved with the cepstral method.

Prototype-based: A prototype target magnitude re-
sponse can be defined as, e.g., a band-pass filter trans-
fer function or the magnitude response of a different
loudspeaker. In this case, particular attention should
be given to matching the cut-off frequencies of the sy-
stem magnitude response and of the prototype target
response, in order to avoid overloading of the loudspea-
ker driver. Another option is to use a strongly smoot-
hed version of the system magnitude response, such as
the one-octave smoothed response [20] or smoothing
based on power averaged sound pressure [30], which
eliminates peaks and dips, while preserving the coarse
spectral envelope of the system response.

User-defined: A target magnitude response can be
obtained as an interpolation of a set of points defi-
ned w.r.t. the system magnitude response [14]. In this
way, it is easy to match the cut-off frequencies of the
system magnitude response and to determine any de-
sired characteristic of the response in the pass-band.

Mixed strategies: A combination of the two appro-
aches can be used. For instance, the target magnitude
response may be obtained by smoothing the system
magnitude response in the LFs and in the HFs, whe-
reas the response in the middle range may be defined
by the user, e.g. a flat response or a boost at LFs.

4.3 Optimal Global Gain
Another aspect to consider is the optimization of the

global gain C of the parametric equalizer, or, equiva-
lently, the setting of the 0-dB line. Indeed, this has an
influence on the characteristics of the filters selected
by the design procedure. Centering a loudspeaker re-
sponse around 0 dB would most likely avoid the se-
lection of wide-band filters. However, in case of a room
response, it is more difficult to determine the level at
which the response should be centered, so that wide-
band filters, with possibly high gains, are more likely
to be selected, especially if the target response is not
chosen carefully.

As described in Section 1, the placement of the 0-
dB line is a critical aspect in the procedures proposed
in [13] and [14]; the requirement for the system mag-
nitude response to be centered around the 0-dB line of
the target response in order to create error areas to be
equalized is somewhat arbitrary. A possibility would
be to place the 0-dB line by visual inspection or as the
mean of the magnitude response of the system within
a frequency range of interest (e.g. mid frequencies).
This solution is not guaranteed to be an optimal one.

The use of the cost function based on the SSE,
instead, allows the estimation of a global gain using
LS, similarly to the estimation of the linear gain descri-
bed in Section 3.3; by replacing the parametric equa-
lizer FM (k) in (4) by a constant C, an estimate for the

global gain Ĉ is given as

Ĉ =

∑
k |W (k)|2H∗0 (k)T (k)∑
k |W (k)|2|H0(k)|2 (20)

This global gain C can be regarded as a scaling fac-
tor that centers the system response around the 0-dB
line that minimizes the cost function in (4). Since the
SSE puts more emphasis on the peaks (see Section 2),
the system magnitude response will tend to have dips
that are more prominent than the peaks w.r.t. the tar-
get response. This may not be desirable, as the design
procedure may favor the boost of spectral dips rather
then the cut of spectral peaks. If desired, this may be
avoided by adding an offset of a few dB to the global
gain in order to restore the emphasis on the equaliza-
tion of peaks over dips.

4.4 Grid Search Initialization and Constraints
The initialization of the parameters of each new pa-

rametric filter in the cascade, as well as the selection
of either a peaking or a shelving filter, is performed in
an automatic way by means of a grid search using a
discrete set of possible frequency and bandwidth va-
lues. A pole grid is defined, similarly to [31], where
the radius and angle of complex poles determine re-
spectively the bandwidth fb and central frequency f0
of the peaking filters. The radius of the real poles
defines the transition frequencies fc of LF (positive
real poles) and HF (negative real poles) shelving fil-
ters. The gain for the filters built using each pole p

in the grid is defined by LS estimation as described
in Section 3.3, and the parameters of the filter that
reduces the SSE the most are selected as initial para-
meter values of the current filter section. The gain can
be limited based on hardware specifications, by de-
fining a minimum (e.g. Vmin = 0.25) and a maximum
value (e.g. Vmax = 4). Note that, being the system re-
sponse minimum-phase, the gain V will always be po-
sitive [10].

Given the critical-band smoothing and the loga-
rithmic resolution of the frequency axis, the angle
σ = 2πf0/fs of the complex poles, which define peaking
filters, can be discretized according to a logarithmic
or a Bark-scale distribution, with minimum and max-
imum angles defined, for instance, by the frequency
limits of the equalization. The radius ρ =

√
a of the

complex poles p = ρejσ can be defined between a lo-
wer and an upper limit determined by the constraints
imposed on the gain and bandwidth parameters for
the different values of σ. It is common to define con-
straints in terms of the Q-factor, which provides an
indication of the filter bandwidth relative to its cen-
tral frequency [12]. The parameter a can be converted
into the corresponding Q-factor in closed form, but the
two cases of V > 1 and V < 1 must be addressed sepa-
rately. Filters in the LIG form defined in terms of the
parameters a and d (see Section 3.2), can be conver-
ted in the corresponding LIG boost form and NLIG cut
forms defined in terms of Q and the auxiliary variable
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Fig. 6: Magnitude response of constant-Q (top) and con-
stant relative bandwidth (bottom) peaking filters.

K = tan(πf0/fs) as in [12], respectively with

Qb =
sin(2πf0/fs)

2 tan(πfb/fs)
=

sin(σ)

2 1−ab
1+ab

if V > 1 , (21)

Qc =
sin(2πf0/fs)

2V tan(πfb/fs)
=

sin(σ)

2V 1−ab
1+ab

if V < 1 . (22)

The Q-factor can be limited as well in order to avoid
filters too narrow-band (e.g. Qmax = 10) or too wide-
band (e.g. Qmin = 0.5).

However, for given fixed values of Q and V , the ac-
tual bandwidth (in octaves) of a peaking filter reduces
for increasing frequencies and the filter response on a
logarithmic scale becomes asymmetric when f0 appro-
aches fs/2 (top plot of Figure 6). In order to keep the
relative bandwidth approximately constant over the
whole frequency range (bottom plot of Figure 6), the
radius ρ of the complex poles is set to decrease expo-
nentially with increasing angle σ, according to ρ = R

σ
π ,

with R the value of the radius defined at the Nyquist
frequency [32]. The value for R can be computed to
match the response of a filter defined in terms of a
given Q [12] at a given angular frequency σq. The pa-
rameter aq is computed from (21-22) as

abq =
2Qb − sin(σq)

2Qb + sin(σq)
if V > 1, (23)

acq =
2V Qc − sin(σq)

2V Qc + sin(σq)
if V < 1, (24)

from which the corresponding R = a
π

2σq
q is obtained.

The limits for R are computed the same way inser-
ting the constraints in (23-24). The minimum and
maximum radius at the Nyquist frequency for V > 1

(Rbmin, Rbmax) are computed from (23) for Q = Qbmin

and Q = Qbmax, whereas for V < 1, Rcmin and Rcmax are
computed from (24) for Q = Qcmin and Q = Qcmax, with
V = Vmin. This results in two partially overlapping al-
lowed areas of the unit disc, one valid when V > 1 and
the other when V < 1, , where generally Rcmin < Rbmin

and Rcmax < Rbmax.

In general, the bandwidth constraints for filter with
V > 1 (Qb) and filters with V < 1 (Qc) can be chosen
to be different, with the limitation dictated by the re-
quirement of having a positive value for a (and thus
ρ real). From (24) with σq = π/2, it is required that
Qcmin > 1/2Vmin, thus trading-off between sharp cut fil-
ters with high gain and broader cut filters with limi-
ted gain. Also, it is required from (23) that Qbmin > 0.5

(which is anyway quite wide, approximately 2.5 octa-
ves). Notice that for very large bandwidths, the filter
responses tend to skew towards the Nyquist frequency,
but less dramatically than for the filters with fixed Q

(see Figure 6). A unique allowed area could be found
by setting Qcmin = Qbmin/Vmin and Qcmax = Qbmax/Vmin, but
this would lead to filters with cut responses (V < 1)
much narrower compared to boost responses (V > 1).

Regarding the values for R between Rcmin and Rbmax,
it is suggested in [31] to set the desired number of
radii (for each angle) and distribute them logarithmi-
cally in order to increase density towards the unit ci-
rcle (obtaining the so-called Bark-exp grid [31]) and
thus to increase the resolution of narrow peaking fil-
ters. If the allowed areas do not coincide, the com-
plex poles with smaller radius are valid only for V̂ < 1

(i.e. cut responses), whereas they would produce too
wide boost responses for V̂ > 1. On the other hand,
complex poles very close to the unit circle, valid for
V̂ > 1, would produce too narrow cut responses for
V̂ < 1. It is then necessary to check the constraints af-
ter the estimation of the optimal gains V̂ , and select
the initial filter as the one that minimizes the cost
function within the constraints. This can be done by
checking that the parameter as = ρ2s of the selected
complex pole ps = ρse

jσs satisfies abmin ≤ as ≤ abmax or
acmin ≤ as ≤ acmax, where abmin and abmax are computed
from (23) for Q = Qbmin and Q = Qbmax, and acmin and
acmax from (24) for Q = Qcmin and Q = Qcmax, with V =

Vmin, where σq is replaced by σs.
Finally, the radius of the real poles, determining the

transition frequency fc of the shelving filters, may be
set arbitrarily within the range of equalization. The
effective transition frequency corresponding to ρ can
be easily computed from (11) and (12), for V > 1 and
V < 1, respectively. An upper and a lower limit for
the radius of real poles can be imposed using (11) for
V > 1 and using (12) with V = Vmin for V < 1. It is
also possible to include first-order HP/LP filters in the
grid search by forcing the gain of the shelving filters
to zero, effectively using only their notch responses, as
mentioned in Section 3.

An example Bark-exp pole grid is shown in Fi-
gure 7, with Qcmin = Qbmin = 0.75 and Qcmax = Qbmax = 10,
and with Vmax = 1/Vmin = 4, where abq and acq in (23)
and (24) are evaluated at σq = π/4, giving a good ba-
lance between narrow and wide band filters. The cen-
tral frequencies f0 are distributed between 100 Hz and
21 kHz, with poles having 75 possible angles, and 20
possible radii. The cut-off frequencies fc of the can-
didate shelving and high/low-pass filters are linearly
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Fig. 7: A Bark-exp pole grid for the grid-search.

distributed between 100 Hz and 1 kHz, and between
18 kHz and 21 kHz.

4.5 Line Search
Once the pole ps = ρse

jσs corresponding to the op-
timal parametric filter in the grid search is selected,
the parameters d(0)s = − cos(σs) and a

(0)
s = ρ2s are used

as the initial conditions of a line search optimiza-
tion [33], meant to refine their value and reduce the
cost function F(as, ds, Vs) further. In the optimization,
σ
(0)
s is used instead of d(0)s to take into account its cosi-

nusoidal nature, important in the computation of the
search direction. The cost function in (19), indeed, al-
lows the computation of the gradients w.r.t. to the
filter parameters, thus enabling the use of gradient-
based algorithms, such as steepest descent (SD), quasi-
Newton or Gauss-Newton (GN) algorithms, which
guarantee fast convergence to a local minimum, pro-
vided that the initial values are chosen properly. The
assumption that the initial filter parameters obtained
with the grid search are sufficiently close to a local
minimum is reasonable, as long as the density of the
poles in the grid is sufficiently high. The same assump-
tion is required also for the derivative-free algorithms
in [13] and in [14], in order to guarantee convergence
in a relatively small number of iterations, with the ex-
ception that in those cases the initial filter parameters
are obtained by an indirect minimization of the cost
function, without verifying if the initial values provide
a good starting point for the equalization.

The parameter vector, initialized as θ(0) =

[a
(0)
s , σ

(0)
s ]T for a complex pole (peaking filter), or

θ
(0)
s = a

(0)
s for a real pole (shelving filter), is updated

at each iteration i = 0, 1, 2, . . . as

θ(i+1)
s = θ(i)s + µ(i)p(i), (25)

where µ(i) indicates the step size, and p(i) the search
direction along which the step is taken in order to
reduce the cost function in (19), such that

F(θ(i)s + µ(i)p(i), V (i)
s ) < F(θ(i)s , V (i)

s ), (26)

where V
(0)
s is the gain estimated in the grid search,

which is updated by LS estimation at each evalu-
ation of the cost function. In other words, the se-
arch direction p(i) has to be a descent direction, i.e.
p(i)T∇F (i)

s < 0 with ∇F (i)
s = ∇F(θ

(i)
s , V

(i)
s ) the gra-

dient of the cost function (i.e. the vector of its first-
order partial derivatives) w.r.t. the parameters in θ(i)s ,

∇F (i)
s = ∂F(i)

s /∂θ(i)s = [∂F
(i)
s /∂a(i)s , ∂F

(i)
s /∂σ(i)s ]T , (27)

with {·}T indicating the vector transpose. The analytic
expressions for the gradient are given in Appendix A.4.

The search direction generally has the form

p(i) = −{B(i)}−1∇F (i)
s , (28)

where B(i) is a symmetric and nonsingular matrix,
whose form differentiates the different methods. When
B(i) is an identity matrix, p(i) is the SD and (28) cor-
responds to the SD method. When B(i) is the exact
Hessian ∇2F (i)

s (i.e. the matrix of second-order par-
tial derivatives), (28) corresponds to the Newton met-
hod. The Hessian can be approximated at each ite-
ration without the need for computing the second-
order partial derivatives, leading to quasi-Newton met-
hods, such as the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm. The GN method, instead, compu-
tes the search direction by expressing the derivatives
of F (i)

s in terms of the Jacobians ∇e(i)s , as

p(i) = −
(
∇e(i)H∇e(i)

)−1

∇e(i)He(i), with

∇e(i) = ∂e(i)/∂θ(i)s = [∂e
(i)
/∂a(i)s , ∂e

(i)
/∂σ(i)s ]T ,

e(i) = [e(1,θ(i)s , V (i)
s ), . . . , e(N,θ(i)s , V (i)

s )]T ,

e(k,θ(i)s , V (i)
s ) = W (k)

{1

2
Hs−1(k)F (i)

ms(k)− T (k)
}
,

F (i)
ms(k) = Fms(k,θ(i)s , V (i)

s ) (29)

with {·}H indicating Hermitian transpose, where the
Jacobians are obtained as an intermediate step in
the calculation of the gradients (see Appendix A.4).
The GN method approximates the Hessian with
∇e(i)H∇e(i), thus having convergence rate similar to
the Newton method, i.e. faster than the SD method.

The convergence rate of line search algorithms also
depends on the choice of the step size µ(i). In order
to select a value of µ(i) that achieves a significant re-
duction of F (i)

s without the need to optimize for µ(i),
backtracking with the Armijo’s sufficient decrease con-
dition [33] is used. The backtracking strategy consists
in starting with a large step size µ(i) < 1 (µ(i) = 1 for
Newton and quasi-Newton methods) and iteratively
reducing it by means of a contraction factor κ ∈ (0, 1),
such that µ(i) ← κµ(i). At each repetition of the back-
tracking, a sufficient decrease condition is evaluated
to ensure that the algorithm gives reasonable descent
along p(i). The condition in (26) is however not suf-
ficient to ensure convergence to a local minimum. A
different condition is then required, such as the com-
monly used Armijo’s sufficient decrease condition

F(θ(i)s + µ(i)p(i), V (i)
s ) ≤ γµ(i)p(i)T∇F(θ(i)s , V (i)

s ) (30)

with γ ∈ (0, 1), which states that a decrease in F (i)
s is

sufficient if proportional to both µ(i) and p(i)T∇F (i)
s .

A final value for µ(i) is obtained when the Armijo’s
condition is fulfilled, or when it becomes smaller than
a predefined value µmin. Also, the parameters in θ(i)s +

10 J. Audio Eng. Soc., Vol. x, No. x, 2018 May



PAPERS AUTOMATIC PARAMETRIC EQUALIZER DESIGN

µ(i)p(i) should be checked to ensure that a(i)s and σ
(i)
s

still satisfy the constraints described in the previous
section. Stability is guaranteed by amax < 1.

The line search for the current stage terminates
when p(i)T∇F (i)

s ≤ τ , with τ a specified tolerance or
when a maximum number of iterations I is reached.
It should be mentioned that it is possible to include
a closed-form expression of V in terms of as and ds in
the filter transfer function Fms(k) in (19), at the ex-
pense of more complicated analytic expressions for the
gradients. Another alternative is to include the gain V

in the vector of parameters θi and perform the line-
search without updating the gain parameter between
two iterations. However, experimental results showed
that the speed of convergence and the final result of
these two alternatives are comparable to the results of
the line-search algorithm described above.

5 LOUDSPEAKER EQUALIZATION EXAMPLE

In this section, an example of parametric equali-
zation of a loudspeaker response is presented. The
aim is to show the performance of the proposed pro-
cedure described above, in comparison to the state-
of-the-art procedures presented in Section 1. In an
attempt to keep the comparison as fair as possible,
the same target response, the same range of equaliza-
tion 100 Hz-21 kHz, and the same pre-processing (lo-
garithmic frequency axis, Bark-scale smoothing, etc.)
is used for the three procedures considered. The target
response is built to match the pass-band characteris-
tics of the loudspeaker response, using second-order
high-pass and low-pass Butterworth filters with cut-
off frequency of 250 Hz and 22 kHz, respectively. The
loudspeaker response is scaled so that the 0-dB line of
the target response corresponds to the response mean
value between 400 Hz and 6 kHz, which satisfies the
requirement of the state-of-the-art procedures of ha-
ving peaks and dips to be equalized (see Figure 8).
The same termination conditions are used for all pro-
cedures; the algorithm moves to the next filter section
whenever either a maximum number of iterations (e.g.
I = 100) is reached, or the step size gets smaller than
a given value (e.g. µmin = 10−4), or the reduction in
the cost function in a number of previous iterations
(e.g. 10) is less than a predefined tolerance value (e.g.
τ = 10−8). The Rosenbrock method [19] is applied for
both the state-of-the-art procedures, using a step ex-
pansion factor α = 1.5 and a step contraction factor
ζ = 0.75, starting from an initial variation of 0.5% of
the value of the initial filter parameters (see [14]). In
the procedure by Ramos et al. (R) [13], the Q-factor
of the filter is initialized based on the bandwidth of
the selected error area, while in the one by Behrends
et al. (B) [14] it is set to Q0 = 2.

The Bark-exp grid used in the proposed proce-
dure (P) is the one in Figure 7. In the example, the
GN algorithm is used in the line search, which provides
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Fig. 8: Loudspeaker equalization. Top: the unequalized re-
sponse (solid) with the target response (dotted) and the
ideal high-order FIR equalizer (thick); From top to bottom
(10 dB offset): the equalized response (solid) and the cor-
responding equalizer (thick) using procedures R, B and P.

very similar results as SD in a much smaller number
of iterations. The initial step size is set to µ(i) = 0.9,
the contraction factor for the backtracking to κ = 0.8,
and the Armijo’s condition constant to γ = 0.05. The
global gain C is estimated as explained in Section 4.

The error produced by the different procedures with
increasing number of filter sections s is shown in Fi-
gure 9. As expected, the proposed procedure (P) per-
forms best in minimizing the normalized SSE (NSSE),
i.e. the error in (19) normalized w.r.t. the error in(4)
computed without equalizer (FM (k) = 1) and conver-
ted to decibels; the procedure by Ramos et al. (R),
with cost function as in (2), outperforms the other
procedures in minimizing the logarithmic error, whe-
reas the procedure by Behrends et al. (B) fails to mi-
nimize the linear cost function in (3) more than the
other procedures (at least in this example). Procedure
P is the one that, for all cost functions considered, is
able to achieve the largest error reduction in the first
two stages. Also, the error for procedure P exhibits a
staircase-like behavior, which is due to the vicinity of
the initial parameter values to a local minimum and
the subsequent small improvement given by the line se-
arch. In general, the different procedures for an incre-
asing number of stages are not too different from each
other in terms of equalization performance, all capa-
ble of attaining the target response to a certain degree,
as can be seen in Figure 8 for s = 15. A difference is
found in the total number of iterations (ni), with pro-
cedure P using the GN algorithm having an order of
magnitude less than the other procedures, including
the backtracking (see Table 1), due to the efficiency of
both the initialization and the GN algorithm. Howe-
ver, the grid search and each iteration of the line search
are computationally more demanding than the iterati-
ons of the Rosenbrock algorithm, eventually obtaining
similar execution times for the different procedures.

Apart from the performance evaluation based on
the different cost functions themselves, other measu-
res are considered, namely the spectral flatness mea-
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Fig. 9: The error produced by the different procedures at each stage according to the different cost functions.

sure (SFM) and the spectral distance measure (SDM)
described in [4]. The SFM is the ratio between the
geometric mean and the arithmetic mean of the po-
wer spectrum (on a linear frequency scale). The tar-
get response not necessarily being flat in the range of
equalization, the measure is computed using the power
spectrum of the equalized system response divided by
the target response H̃s(k) = Hs(k)/T (k)

SFMs = N

N
√∏

k |H̃s(k)|2∑
k |H̃s(k)|2

, (31)

so that the ideal high-order FIR equalizer defined as
D(k) = T (k)/H0(k) has SFM=1. The SDM is also based
on the power spectrum of the responses, and it is given
by

SDMs =

√√√√∑
k

∣∣∣∣ |H̄s(k)|2 − |T̄ (k)|2
N

∣∣∣∣2, (32)

where in this case H̄s(k) and T̄ (k) are the loudspea-
ker and target responses resampled on a logarithmic
frequency scale with 1/5 octave resolution [4]. Results
for these two measures are shown in Table 1 for the
different procedures using equalizers with 5, 10 and
15 parametric filters. For both measures, the greatest
improvement is achieved with 5 filters only, with smal-
ler improvements for increasing number of filters. It is
interesting to notice that, even though not specifically
designed to maximize the SFM of the loudspeaker re-
sponse as for procedures B and R, the proposed pro-
cedure (P) achieves a good level of flatness. Regarding
the SDM, procedure P achieves a performance close to
that of procedure R. Also notice that the optimization
of the global gain (at s = 0) already contributes to a
reduction of the SDM.

From a subjective point of view, it is commonly
accepted that a flat (in the pass-band) frequency re-
sponse is perceived as more natural, and that de-
viations from this are perceived as spectral colora-
tion. Perceptual objective measures based on these as-
sumptions are used here for speech and music stimuli.
These are the average log-spectral difference measure
(LSDM) [16], and a measure based on a linear distor-

measure procedure s = 0 s = 5 s = 10 s = 15

ni

R 0 232 552 824
B 0 260 593 885
P 0 29 53 70

SFMs

R 0.922 0.991 0.996 0.998
B 0.922 0.986 0.990 0.993
P 0.922 0.983 0.991 0.995

SDMs

R 0.435 0.100 0.045 0.030
B 0.435 0.118 0.078 0.051
P 0.375 0.101 0.064 0.035

Table 1: Error-based objective measures

tion auditory model [17], referred to here as perceptual
linear distortion measure (PLDM).

The LSDM is the square difference between the lo-
garithm of the magnitude responses of a clean speech
segment convolved with the target response ST (k) (re-
ference) and the same speech segment convolved with
the equalized loudspeaker response SHs(k),

LSDMs =

√
1

N

∑
k

[
log(SHs(k))− log(ST (k))

]2
(33)

The average LSDM is then computed for those seg-
ments (in this case of 25 ms with 15 ms overlap) where
active speech is detected. The PLDM is a measure
of the perceived subjective naturalness of speech or
music w.r.t. linear distortions, represented by spectral
ripples and tilts in the magnitude response (see [17]
for detailed information).

Results obtained using a male voice speech sig-
nal [34] and a music signal consisting of the instru-
mental introduction of a rock song [35] (having a wide-
band spectrum) are shown in Table 2. For both measu-
res considered, a strong improvement for the low-order
equalizers (s = 5) is shown, with procedure R slightly
better than procedure P, except for the LSDM using
the music signal. For the LSDM, the use of higher-
order equalizers improves the scores only slightly, whe-
reas a more consistent improvement is still visible for
the PLDM with s = 10. Notice, however, that small
differences in the score values will most likely not be
perceived as a difference in sound quality.
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measure procedure s = 0 s = 5 s = 10 s = 15

LSDMspeech

R 0.350 0.144 0.118 0.099
B 0.350 0.158 0.143 0.135
P 0.350 0.160 0.142 0.118

LSDMmusic

R 0.308 0.165 0.143 0.127
B 0.308 0.171 0.163 0.159
P 0.296 0.146 0.136 0.110

PLDMspeech

R 0.785 0.349 0.222 0.178
B 0.785 0.366 0.258 0.174
P 0.785 0.399 0.259 0.217

PLDMmusic

R 0.960 0.380 0.267 0.224
B 0.960 0.414 0.314 0.257
P 0.960 0.405 0.278 0.238

Table 2: Perception-based objective measures

6 ROOM EQUALIZATION EXAMPLE

The proposed procedure can be applied to the
equalization of the combined loudspeaker/room re-
sponse without major modifications. Differently from
loudspeaker equalization, the purpose of room trans-
fer function (RTF) equalization is not only to obtain
a more balanced response w.r.t. a target response,
but also to compensate (as much as possible) for
strong resonances at LFs. Thus, the smoothing should
be less prominent, with fractional-octave smoothing
(e.g. 1/6th) preferred over Bark-scale smoothing, which
has constant resolution below 500 Hz. Based on the
amount of smoothing, which determines the level of
detail in the spectral envelope of the response, the
number of parametric filters required to attain the tar-
get response with a certain accuracy may vary.

The definition of the target response is a critical is-
sue. RTFs have a more irregular frequency structure
than loudspeaker responses, which cannot be easily re-
cognized as deviations from a flat response. Moreover,
spectral complexity combined with a less aggressive
smoothing result in less smooth error surfaces produ-
ced by the cost functions, presenting a large number
of local minima. In order to obtain a target response
that produces peaks and dips in the RTF to be equa-
lized, as required by the state-of-the-art procedures,
one could use a strongly smoothed (e.g. one-octave re-
solution) version of the response as the target, which
however may not provide a desired response. These
procedures can be still used in general, but are more
likely to incur into problems.

The proposed procedure is instead less sensitive to
the selection of the target response, and will always
start optimizing a new filter section from an initial
point reasonably close to a useful local minimum, pro-
vided that the density of the poles in the grid is pro-
portional to the amount of smoothing applied. In this
example, the number of possible angles was increased
to 300. This, however, makes the grid search at each
stage more computationally demanding. If efficiency
is an issue, an option is to start from a dense grid and
effectively use only a subset of the grid points, diffe-
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Fig. 10: Room equalization. Top: the unequalized response
(solid) with the target response (dotted) and the ideal
high-order FIR equalizer (thick); From top to bottom
(15 dB offset): the equalized response (solid) and the cor-
responding equalizer (thick) using procedures R, B and P.

rent for every filter section (e.g., by taking one every
n = 4 angles and shift over one angle for the following
n− 1 filter sections). Simulation results show that this
solution leads to very similar results to those obtained
with the solution based on the full grid.

In the example shown here, the magnitude of a RTF
measured in the parliament hall of the Provinciehuis
Oost-Vlaanderen in Ghent, Belgium, having a rever-
beration time of 1.5 s, has been smoothed with 1/6 oc-
tave resolution and the equalization is evaluated in
the range 30 Hz-18 kHz. The target response used is
a combination of a forth-order high-pass Butterworth
filter with cut-off frequency of 45 Hz and a first-order
low-pass Butterworth filter with cut-off frequency of
3 kHz, which produces a slight roll-off at higher fre-
quencies (see Figure 10). Table 3 provides results of
the different error functions and other error measures
produced by the different procedures. Given the more
complicated error function surfaces, the GN algorithm
in the proposed procedure (P) now needs more itera-
tions than in the previous example, but still two or
three times fewer than the other two procedures. As
in the loudspeaker example, all procedures are able to
achieve equalization with a comparable accuracy (see
also Figure 10 for s = 30), with the strongest impro-
vement obtained in the first 10 stages. The proposed
procedure achieves better results in terms of NSSE
and of SDM, and slightly worse performances in the
error measures related to the flatness of the equalized
response. Also in this example, procedure B is slig-
htly outperformed by the other procedures in its own
cost function, but has better performance in terms of
the SFM. It should also be noted that procedure R
do not achieve any improvement with the inclusion of
the last 10 filter sections (s = 30). In this particular
case, the Rosenbrock method gets stuck into a local
minimum and is unable to correct for the largest error
area, which is then selected at each new filter initializa-
tion, thus failing to produce any further performance
improvement.
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measure procedure s = 0 s = 10 s = 20 s = 30

ni

R 0 642 1150 1584
B 0 668 1353 2026
P 0 231 595 792

NSSEs

R 0 -12.6 -14.6 -14.6
B 0 -9.4 -13.9 -16.5
P 0 -11.9 -15.7 -18.3

εdBs /N (2)
R 3.91 0.80 0.54 0.54
B 3.91 0.96 0.57 0.42
P 3.91 0.94 0.65 0.51

εlins /N (3)
R 0.402 0.077 0.051 0.051
B 0.402 0.082 0.052 0.037
P 0.402 0.077 0.048 0.037

SFMs (31)
R 0.915 0.966 0.979 0.978
B 0.915 0.986 0.992 0.995
P 0.915 0.960 0.966 0.979

SDMs (32)
R 1.146 0.176 0.106 0.104
B 1.146 0.186 0.106 0.066
P 1.146 0.146 0.078 0.049

Table 3: Error-based objective measures (RTF)

7 NOTE ON MULTI-POINT EQUALIZATION AND
TRANSFER FUNCTION MODELING

When the aim is to improve the response of a
loudspeaker at multiple listening angles or the room
response at multiple positions, a single equalizer can
be designed based on a prototype response which
contains the common acoustic features of the multi-
ple responses. Averaging and smoothing the magni-
tude responses was proven to offer an effective solu-
tion [36], which also increases robustness to spatial
variations. The proposed procedure can then be exten-
ded to multi-point equalization by including an aver-
aging operation in the prepocessing step.

A very similar procedure to the one described for
automatic design of a parametric equalizer can be app-
lied to the problem of transfer function modeling. This
idea can be useful, for instance, to model the ideal FIR
equalizer D(k) = T (k)/H0(k) using a low order parame-
tric filter, the response of a graphic equalizer [21], or
more generally any minimum-phase transfer function.
For the modeling problem, the cost function becomes

εSSEM =
1

N

∑
k

(
W (k)

[
D(k)− FM (k)

])2
. (34)

Also in this case, LIG parametric filters can be used,
with the possibility of computing the gradients w.r.t.
the other filter parameters.

8 CONCLUSION

An automatic procedure for the design of a low-
order parametric equalizer has been proposed, which
uses a series of second-order peaking filters and first-
order shelving filters. The proposed procedure minimi-
zes the SSE between the system response and the tar-
get responses, instead of the commonly used difference

in the magnitude responses, bringing some advantages,
such as an improved mathematical tractability of the
equalization problem, with the possibility of compu-
ting analytical expressions for the gradients w.r.t. the
filter parameters and a closed-form solution for the
estimation of the gain parameters, an improved para-
meter initialization, the inclusion of shelving filters in
the optimization procedure, and a more accentuated
focus on the equalization of frequency peaks over dips.
Examples of loudspeaker and room response equali-
zation have shown that effective equalization using a
small number of parametric filters can be achieved.
The proposed procedure can be extended to multi-
point equalization, by means of a prototype average
response, and to transfer function modeling.
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APPENDIX A
A.1 SSE minimum-phase cost function

Here the SSE cost function in (4) for the minimum-
phase equalization problem is analyzed, using the re-
lation by which the frequency response of a minimum-
phase transfer function H(k) can be written as

H(k) = |H(k)|e−jH{ln |H(k)|} (A.1)

For simplicity, the weighting matrix in (4) is set to
W (k) = 1 and the notation is simplified. The cost
function in (4) can be elaborated in terms of mag-
nitude and phase of the frequency responses involved,
as shown in (A.2), where the Euler’s rule and the li-
near property of the Hilbert transform have been used
({·}∗ indicates complex conjugation). It can be noti-
ced that the optimal equalizer, for which E2(k) = 0, is
defined as F (k) = T (k)

H(k)
= |T (k)|
|H(k)|e

j(φT (k)−φH (k)).
This cost function has a quadratic form, which assu-

mes large values whenever the power of the equalized
magnitude response is significantly larger than the po-
wer of the target response, and whenever the difference
between their magnitude responses on a natural loga-
rithmic scale is large (i.e. when the value of cos is far
from one). To simplify the analysis even further, a
zero-phase, flat target response (T (k) = 1) is conside-
red, for which the cost function assumes the form

E2(k) = |H̃(k)|2 + 1− 2|H̃(k)| cos(−jH{ln |H̃(k)|})
(A.3)

In this case, it is easy to see that the error is larger
when the equalized magnitude response of H̃(k) has
values larger than one, with the error increasing more
than linearly for increasing magnitude, which explains
the focus on the equalization of strong peaks.

A.2 The orthogonality property of the
Regalia-Mitra parametric filters

A brief explanation of the property introduced in
Section 3 is provided here. Define a vector x containing
N samples of the input signal x(n) and the vector z
containing N samples of the output signal z(n) of the
all-pass filter Am(z). A known property of an all-pass
filter is the preservation of the energy, such that the
energy of the input signal is equal to the energy of the
output signal

∞∑
n=−∞

|z(n)|2 =

∞∑
n=−∞

|x(n)|2 (A.4)

or, in terms of vector inner products, 〈z,z〉 = 〈x,x〉.
With reference to Figure 3b, the output of the fil-
ter ym(n) is formed from the weighted summation

of two signals, yη(n) = x(n) + z(n) and yβ(n) = x(n)−
z(n). The orthogonality of these two signals can be
assessed from their inner product,

〈yn,yr〉 = 〈x+ z,x− z〉 (A.5)

= 〈x,x〉 − 〈x,z〉+ 〈z,x〉 − 〈z,z〉 = 0, (A.6)

which follows from the equality stated above, 〈z,z〉 =

〈x,x〉, and from 〈x,z〉 = 〈z,x〉.

A.3 Gain LS estimation
The first-order partial derivative of the cost function

in (19) w.r.t. the gain parameter V is given by equa-
tion (A.7). Since orthogonality in the time domain
(see Appendix A.2) implies orthogonality also in the
frequency domain, the first summation in the equa-
tion equals zero (F ηm(k) and F βm(k) are orthogonal). By
setting ∂εSSEm /∂V = 0, the following equation is obtained

V
∑
k

(1

2
F β∗m (k)H∗s (k)W ∗(k)

)(1

2
W (k)Hs(k)F βm

)
=
∑
k

(1

2
F β∗m (k)H∗s (k)W ∗(k)

)(
W (k)T (k)

)
.

(A.8)

which provides an estimate for the gain as

V̂ =

∑
k

[
F β∗m (k)H∗s (k)W ∗(k)

][
W (k)T (k)

]∑
k

[
F β∗m (k)H∗s (k)W ∗(k)

][
W (k)Hs(k)F βm(k)

]
(A.9)

which is equivalent to the expression in (17).

A.4 Gradients and Jacobians expressions
Based on the method chosen to perform the line se-

arch at each stage, the search direction pi requires the

computation of the gradients ∇F (i)
s = ∂F(i)

s /∂θ(i)s (in the
SD and quasi-Newton methods) or of the Jacobians

∇e(i)s = ∂e
(i)
s /∂θ(i)s (in the GN method), where1

F (i)
s =

1

N

∑
k

e(k,θ(i)s , V (i)
s )2 =

1

N
e(i)Hs e(i)s (A.10)

The gradient of the cost function can be written as

∇F (i)
s =

2

N

∑
k

∂e
(i)
s (k)

∂θ
(i)
s

e(i)s (k) =
2

N
∇e(i)Hs e(i)s , (A.11)

where the Jacobian is given by, for k = 1, . . . , N ,

∂e
(i)
s (k)

∂θ
(i)
s

=
1

2
W (k)Hs−1(k)

∂Fms(k,θ
(i)
s , V

(i)
s )

∂θ
(i)
s

, (A.12)

so that the partial derivatives
∂F

(i)
ms (k)

∂θ
(i)
s

for peaking and

shelving filters are required. In order to use the New-

ton method, the exact Hessian ∇2F (i)
s = ∂2F(i)

s /∂θ(i)2s

should be computed. Analytic expressions for the
second-order partial derivatives can be obtained, but
the advantages of using the Newton method are out-
weighed by a higher complexity.

1For convenience here k stands for e−j
ωk/fs , so that the

transfer functions are evaluated at z = ej
ωk/fs , and z−1 can

be substituted by k. {·}H indicates Hermitian transpose.
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PAPERS AUTOMATIC PARAMETRIC EQUALIZER DESIGN

E2(k) =(H(k)F (k)− T (k))∗(H(k)F (k)− T (k)) = (F ∗(k)H∗(k)− T ∗(k))(H(k)F (k)− T (k))

=|F (k)H(k)|2 + |T (k)|2 − |F (k)H(k)T (k)|
(
e−j(φF (k)+φH (k)−φT (k)) − ej(φF (k)+φH (k)−φT (k)))

=|F (k)H(k)|2 + |T (k)|2 − 2|F (k)H(k)T (k)| cos(φF (k) + φH(k)− φT (k))

=|F (k)H(k)|2 + |T (k)|2 − 2|F (k)H(k)T (k)| cos(−jH{ln |F (k)|} − jH{ln |H(k)|+ jH{ln |T (k)|})
=|F (k)H(k)|2 + |T (k)|2 − 2|F (k)H(k)T (k)| cos(−jH{ln |F (k)|+ ln |H(k)| − ln |T (k)|})
=|H̃(k)|2 + |T (k)|2 − 2|H̃(k)T (k)| cos(−jH{ln |H̃(k)| − ln |T (k)|})

(A.2)

∂εSSEm

∂V
=

1

N

∑
k

(1

2
W (k)Hs(k)F βm(k)

)∗(
W (k)

[
Hs(k) · Fm(k)− T (k)

])
=

1

N

∑
k

(1

2
F β∗m (k)H∗s (k)W ∗(k)

)(1

2
W (k)Hs(k)F ηm

)
+

1

N

∑
k

(1

2
F β∗m (k)H∗s (k)W ∗(k)

)(V
2
W (k)Hs(k)F βm

)
(A.7)

− 1

N

∑
k

(1

2
F β∗m (k)H∗s (k)W ∗(k)

)(
W (k)T (k)

)
.

Peaking filters
The frequency response of peaking filters in the LIG

form can be written, substituting (13) in (9), as

F2(k) =
(1 + a)(1 + 2dk + k2) + V (1− a)(1− k2)

2(1 + d(1 + a)k + ak2)
,

(A.13)

and its first-order partial derivatives w.r.t. the para-
meters a and σ = cos−1(−d) as

∂F2(k)

∂a
=

(1− V )(1− k2)(1 + 2dk + k2)

2(1 + d(1 + a)k + ak2)2
(A.14)

∂F2(k)

∂σ
=

sin(σ)(1− V )(1− k2)(1− a2)k

2(1 + d(1 + a)k + ak2)2
. (A.15)

Shelving and HP/LP filters
The frequency response of LF and HF shelving fil-

ters in the LIG form can be written, substituting (10)

in (9), respectively as

FLF
1 (k) =

(1 + a)(1− k) + V (1− a)(1 + k)

2(1− ak)
(A.16)

FHF
1 (k) =

(1 + a)(1 + k) + V (1− a)(1− k)

2(1 + ak)
, (A.17)

and its partial derivatives w.r.t. the parameter a as

∂FLF
1 (k)

∂a
=

(1− V )(1− k2)

2(1− ak)2
(A.18)

∂FHF
1 (k)

∂a
=

(1− V )(1− k2)

2(1 + ak)2
. (A.19)

The frequency response for HP and LP filters is
obtained by setting V = 0 in (A.16) and (A.17), re-
spectively, and their partial derivatives w.r.t. a by set-
ting V = 0 in (A.18) and (A.19).
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