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Abstract
Advances in speech signal analysis facilitate the development
of techniques for remote biomedical voice assessment. Howe-
ver, the performance of these techniques is affected by noise
and distortion in signals. In this paper, we focus on the vo-
wel /a/ as the most widely-used voice signal for pathological
voice assessments and investigate the impact of four major ty-
pes of distortion that are commonly present during recording or
transmission in voice analysis, namely: background noise, re-
verberation, clipping and compression, on Mel-frequency cep-
stral coefficients (MFCCs) – the most widely-used features in
biomedical voice analysis. Then, we propose a new distortion
classification approach to detect the most dominant distortion in
such voice signals. The proposed method involves MFCCs as
frame-level features and a support vector machine as classifier
to detect the presence and type of distortion in frames of a given
voice signal. Experimental results obtained from the healthy
and Parkinson’s voices show the effectiveness of the proposed
approach in distortion detection and classification.
Index Terms: distortion analysis, MFCC, remote biomedical
voice assessment, support vector machine

1. Introduction
Sustained vowels are widely used for evaluation of pathologi-
cal voice caused by a range of medical disorders. Vowels have
two main advantages: first, the complexity of modeling articu-
latory movement during running speech is avoided [1], and se-
cond, experimental studies show that most dysphonic speakers
cannot produce steady, sustained vowel sounds [2]. Among vo-
wels, the vowel /a/ is sufficient for many voice analysis appli-
cations [3], [4]. During production of the vowel /a/, the vocal
tract is more open than other vowels resulting in minimal air
pulse reflections between the vocal tract and the vocal folds [1].
Using clean and sustained /a/ vowels, Tsanas et al. [4] achieved
almost 99% overall accuracy in detecting Parkinson’s disease
(PD) from voice recordings, for example.

Due to advances in automatic voice analysis, remote voice
assessment is becoming feasible [5], [6]. For example, recently
smartphones are being investigated as tools for measuring pat-
hological voice [7] since smartphones are ubiquitous and inex-
pensive devices with built-in, high-quality microphones. Com-
pared to samples recorded in a clinic or a sound booth, recor-
dings from smartphones in most environments are subject to
many types of linear and nonlinear distortion. The presence
of distortion in voice signals degrades the performance of al-
gorithms designed to quantify medical symptoms from voice
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recordings [8]. In particular, the performance of different al-
gorithms for PD detection under a variety of acoustic conditi-
ons has been evaluated in [9] and it has been demonstrated that
background noise and the use of codecs significantly degrade
detection performance.

Several approaches to detect different types of noise and
distortion in voice signals have been studied, most of have fo-
cused on detecting a single and specific kind of distortion in
voice [10–14]. In this study, we consider the vowel /a/ and aim
to detect four different types of noise and distortion that are
commonly present during recording or transmission in remote
voice analysis, namely: background noise, room reverberation,
peak clipping and coding (i.e. speech compression). Although
there are an infinite number of possible levels, types and combi-
nations of distortion in real-world scenarios, this study aims to
provide a simplified approach to detect the most dominant dis-
tortion in the signal, which would be useful in practical applica-
tions where it is important to know whether a frame is distortion
free or needs enhancement. We assume that if a given frame is
considered as corrupted, there is a specific type of noise or dis-
tortion which dominates over other distortions. Following this,
we investigate the behavior of Mel-frequency cepstral coeffi-
cients (MFCCs, widely-used features in voice-based biomedi-
cal applications [8], [15]) in the presence of the four kinds of
distortion and noise. Then, a new method is proposed which
uses a support vector machine (SVM) as classifier and MFCCs
as features for that classifier, to detect distortion in each frame.
MFCCs are selected because of their sensitivity to changes in
signal characteristics due to noise, distortions or articulatory
movements [16].

2. Effects of distortion on MFCCs
The proposed method is based upon experimental observations
of the effect of distortions on MFCCs reported next. This expe-
rimental analysis reveals that different levels and types of dis-
tortion cause MFCCs to shift to different regions of the space
spanned by the MFCC values, and changes the covariance of
these values. To explore this effect, we take successive frames
from the center of the clean vowel /a/ uttered by 45 healthy spea-
kers and extract the MFCCs under different types and levels of
distortion and noise. We then evaluate the shift in the sample
mean and covariances of the MFCCs computed on the distorted
signals.

2.1. MFCC Features

MFCCs are based on the source-filter theory of speech pro-
duction [17]. To compute MFCCs, we take the discrete Fou-
rier transform (DFT) of the speech frames. Then, the power
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spectrum is computed and passed through a set of triangular
filter banks, linearly spaced on the Mel-frequency scale. The
log-energy output of the filter bank, which is sensitive to small
changes in signal characteristics due to noise, distortions or ar-
ticulatory movements [16], is then passed through the discrete
cosine transform (DCT). The MFCCs are the amplitudes of the
DCT coefficients. Specifically, the pth MFCC coefficient of the
kth frame is calculated as [8]:

φk[p] =
1

M + 1

M∑
q=1

log |S̃k(q)| cos

(
πq

M + 1
p

)
, (1)

where M is the number of Mel-band filters and S̃k(q) is the
estimate of the spectral energy in the qth band calculated as:
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maximum frequency in the Mel domain, ∆fMel/2 is the width
of the Mel bands and Sk is the short-time DFT of the kth frame.
The transformation from the linear domain to the Mel domain
is performed by [18]:
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)
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In this study, 13 MFCC coefficients are extracted for each
frame. In addition, delta and double-delta coefficients, defined
as the first- and second-order time-differences of the MFCC
coefficients which capture the dynamic changes between fra-
mes, are appended to the MFCCs to form a 39-dimensional vec-
tor.

Considering (1) – (3), the effects of distortions on MFCCs
are complex since during the MFCC calculations, a corrupted
signal passes through several nonlinear functions. These effects
can even be more complex when a signal has been subject to a
nonlinear distortion such as clipping or compression. To eva-
luate the behavior of MFCCs in the presence of noise and dis-
tortion, we take successive 30 ms long frames of the vowel /a/
uttered by 45 healthy speakers and compute the change in the
covariance matrix and the mean of the MFCCs under different
types and levels of distortion. Specifically, the mean shift can
be defined as:

ξ(j) =
1

N

N∑
n=1

‖ µdj
n − µc

n ‖2, (4)

whereN is the number of speakers, ‖·‖2 represents the 2-norm,
and µc

n and µdj
n are the means of the MFCCs computed respecti-

vely from clean signal and distorted signals from the nth speaker
subject to the j th distortion level. ξ = 0 indicates that the mean
of the corrupted MFCCs is unchanged in feature space. The lar-
ger the value of ξ, the farther the MFCC vector is moved with
respect to the clean one. The change in the covariance matrix of
the MFCC under the j th distortion level is measured as:
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)
tr
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) , (5)

where Σc
n and Σdj

n are respectively the covariance matrices of
the MFCCs extracted from the clean and corrupted utterances

of the nth speaker, and tr(·) is the trace operator that maps
the MFCC covariance matrix to a single real number which re-
presents the sum of variances for individual dimensions of the
MFCC vector. δ = 1 represents no change in covariance. A va-
lue of δ < 1 indicates a reduction in covariance with respect to
the covariance of the clean MFCC. That is, the MFCCs become
more compact in the feature space.

2.2. Impact of different distortions on MFCCs

In the first experiment, we investigate the impact of background
noise on MFCCs by corrupting clean vowels /a/ uttered by 45
healthy speakers by three commonly-encountered environmen-
tal noise types, namely “white Gaussian noise”, “quiet office
ambience noise” and “babble noise” under different signal-to-
noise ratio (SNR) conditions (ranging from -20 dB to 60 dB in
1 dB steps). Babble noise, which consists of multiple speakers
talking in the background, has rapid, time-evolving structure
and is considered a challenging type of noise in many speech-
based applications due to its similarity to the target speech [19].
The office environment noise represents a general atmosphere
of a medium size room including the sound of air conditioning
systems and very weak background noise from outside. Figure
1(a) shows the impact of different types and levels of noise on
the mean and the covariance matrix of MFCCs. The left vertical
axis represents the amount of mean shift as defined in (4) and
the right vertical axis represents the relative change in the cova-
riance matrix as defined in (5). The plot suggests that variable
noise levels shift the mean of MFCCs to different, but predic-
table, regions in the feature space. It can be observed that the
amount of shift monotonically increases as the level of noise in-
creases. Moreover, it can be noticed that the covariance of the
noisy MFCCs is always smaller than that of the clean one. Ho-
wever, the covariance does not monotonically reduce. This is
probably due to the fact that as the SNR goes below 0 dB, the
noise dominates the signal and the MFCCs take on a different
profile.

Reverberation in voice recordings is caused by superimpo-
sed reflections of the original sound wave coming from different
surfaces in an acoustic environment and is known to have a det-
rimental impact on numerous signal processing tasks. To study
the effect of reverberation on MFCCs, we filtered the clean sig-
nal with synthetic room impulse responses (RIRs) of reverbe-
ration times (RTs) varying from 150 ms to 1 s measured at a
room of dimension 5m×4m×3m. Furthermore, to evaluate the
effect of different source-to-receiver distances on the MFCCs,
the experiments are repeated with three different speaker-to-
microphone distances, namely 0.5 m, 1 m and 1.5 m. The
RIRs are generated using the image method [20] which is im-
plemented using the RIR Generator toolbox [21] in MATLAB.
Figure 1(b) illustrates similar trends for MFCCs under different
speaker-to-microphone distances. The mean shift increases as
the RT increases. We can observe that when the microphone re-
cords from a close distance, the amount of shift is always smal-
ler than when the microphone is recording from a larger distan-
ces from the speaker. For large speaker-to-microphone distan-
ces, however, we observe a different trend as the RT exceeds
250 ms. Reverberation reduces the covariance of the MFCCs as
the RT increases.

Peak clipping and speech coding are two common nonli-
near speech signal modifications. Peak clipping occurs when
the amplitude of a speech signal exceeds the dynamic range
of the analogue-to-digital converter which introduces nonlinear
distortion into the signal and affects the subjective quality of
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Figure 1: Impact of different types and levels of distortion on the mean and covariance matrix of the MFCCs. The left vertical axes
represent ξ defined in (4) which is the amount of mean shift. ξ = 0 indicates that the mean of the corrupted MFCCs is not shifted in
the feature space. The larger the value of ξ, the farther the MFCC vector is positioned with respect to the clean one. The right vertical
axes represent δ defined in (5) which is the relative change in the covariance matrix. δ = 1 indicates no change in covariance of the
corrupted MFCCs, δ > 1 represents increase in covariance with respect to the covariance of the clean MFCCs and δ < 1 indicates
that the MFCCs become more compact in the feature space.

speech [22]. On the other hand, communication channels ty-
pically use lossy codecs such as code-excited linear prediction
(CELP) to compress speech signals to lower bit rates, which in-
evitably degrades the quality of the speech [23]. To study the
effect of peak clipping on MFCCs, we define the clipping level
as a proportion of the unclipped peak absolute signal amplitude
to which samples greater than this threshold are limited. The
clean recordings of the vowel /a/ are clipped with clipping le-
vels varying from 0.1 to 1 in 0.025 steps. Figure 1 (c) illustrates
the impact of peak clipping on the MFCCs. As the clipping le-
vel increases, the mean of the MFCCs is positioned farther away
from that of the clean signal. MFCCs of a clipped signal possess
smaller covariance matrix values compared to that of the clean
MFCCs and become smaller as the clipping level increases. To
investigate the behavior of MFCCs when a speech signal has
undergone the distortion of a speech codec, the clean vowels /a/
are coded by a CELP codec with three different standard bit ra-
tes, namely 6.3, 9.6 and 16 kbps [24]. Figure 1 (d) shows the
impact of speech compression on MFCCs. The plot is produced
by fitting a second order power function to the calculated ξ and
δ as:

ξ̃(j) = −2.35× 10−5 × j3.88 + 3.59 (6)

δ̃(j) = 1797× j−4.89 + 0.91 (7)

We can observe that speech compression shifts the MFCCs to a
farther position (with respect to the position of the clean ones)
as the compression rate increases. On the other hand, although
MFCCs of a voice signal coded at 16 kbps and 9.6 kbps possess
smaller covariance matrices compared to the covariance of the
clean one, we observe a larger covariance than that of the clean
MFCCs when a signal is coded at 6.3 kbps. The empirical curve
fitted to δ also suggests that MFCCs of a signal compressed at
7.3 kbps are expected to have a comparable covariance matrix
with respect to the covariance of the clean MFCCs.

3. The proposed distortion classification
system

Motivated by the experimental findings above, we introduce a
new method for noise and distortion classification to detect the
presence and type of noise/distortion in /a/ vowels. Although a
recording can be subject to an infinite number of possible types
and levels of noise and distortion in real scenarios, our appro-
ach focuses on detecting the most dominant corruption present
in any frame. We assume the simplifying model that if a given
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Figure 2: Block diagram of the proposed method for distor-
tion/noise classification, training and testing phases.

frame of a voice recording is corrupted, there is a single type of
noise or distortion which dominates. The block diagram of the
proposed approach in training and testing phases is illustrated
in Figure 2. Using a Hamming window, recordings are segmen-
ted into frames of 30 ms. For each frame of a vowel (which
can be clean or corrupted), a 39-dimensional MFCC vector is
computed. Using an energy-based voice activity detection al-
gorithm [25], silent frames at the beginning and the end of the
signals are excluded. Then, a multiclass SVM with a radial ba-
sis function kernel estimated on the training frames is used to
classify distortion in an unseen frame during testing. Introduced
by Vapnik et.al [26], SVMs are powerful discriminative pattern
classifiers which find an optimal separating hyperplane in a high
dimensional nonlinear feature space formed using kernels app-
lied to the input feature space.

4. Experimental setup
The proposed system for distortion/noise recognition in /a/ vo-
wels was developed and validated using two different databa-
ses. The first database consists speech samples of healthy spea-
kers. This database contains different clean vowels uttered by
45 men, 48 women and 46 childeren, recorded by a dynamic mi-
crophone, sampled at 16 kHz and range from 370 ms to 780 ms
long [27]. There is no dysphonia variability. The only uncon-
trolled parameter is the speaker variability. From this database,
we have chosen 93 samples of /a/ vowels produced by 45 male
and 48 female speakers. Furthermore, to evaluate the proposed
system with more realistic pathological voice signals, we used
a PD voice database since the vast majority of people with PD
exhibit some form of vocal disorder [28]. This database was ge-
nerated through collaboration between Sage Bionetworks, Pa-
tientsLikeMe and Dr. Max Little as part of the Patient Voice
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Table 1: Frame- and recording-level classification performance for the healthy voice and the Parkinson’s voice databases in the form
mean ± STD computed using a 5-fold CV.

Database
Frame-Level Classification Accuracy (in %± STD) Recording-Level Classification Accuracy (in %± STD)

Clean Noisy Clipped Coded Reverb. Overall Clean Noisy Clipped Coded Reverb. Overall

Healthy voice 61±6 92±3 82±3 71±6 85±4 78±1 77±12 100±0 98±3 82±11 90±7 89±4

Parkinson’s voice 48±5 89±3 74±6 77±8 66±5 72±4 55±11 97±4 82±7 85±9 77±4 79±3

Analysis study (PVA)1. The samples of this database are the te-
lephone recordings of the sustained vowels /a/ produced by 779
PD patients of both genders, sampled at 8 kHz and range from 3
s to 30 s long. From this database, we randomly selected 48 fe-
male and 26 male samples of 7 s to 15 s duration. Then, we used
3 s of the middle of the signals, where the speakers produced a
steady sustained vowel. This database has both speaker- and
dysphonia- variability. Moreover, the recordings may have al-
ready some types of distortion such as background noise and re-
verberation or may have been through one or more codec since
they are collected over the telephone network, which makes the
noise/distortion classification more challenging.

To create a database for distortion/noise detection, we en-
larged the databases by adding the distorted versions of all re-
cordings by applying different types and levels of noise and dis-
tortion which typically present in the recordings of remote voice
analysis. Specifically, for noise, we added “babble”, “white
Gaussian” and “office ambiance” noises at 15 dB, 10 dB and
5 dB. For peak clipping, the clipping level was set to 0.3, 0.4,
0.5 and 0.6. Signals were compressed using 6.3 kbps, 9.6 kbps
and 16 kbps CELP codecs. To provide reverberant signals, re-
cordings were filtered by 8 different real RIRs of the AIR da-
tabase [29]. The RIRs are measured with mock-up phone in
hand-held and hands-free positions in four realistic indoor en-
vironments, namely an office, a lecture room, a corridor and a
stairway. The measured RTs range from 390 ms to 1.47 s [30].
Then, using a Hamming window of length 30 ms, we created a
database of 30 ms clean and corrupted frames for both databa-
ses. The recordings of each database are then divided into two
subsets: a training subset consisting of 80% of the speakers, and
a testing subset consisting of 20% of the speakers. The resulting
training and testing subsets of the enlarged healthy vowel data-
base consist of 5105 and 1360 frames, respectively. The training
and the testing subsets of the enlarged PD voice database consist
of 30150 and 7800 frames, respectively. The enlarged databases
have the same number of frames per class of noise/distortion.

To detect different types of distortion in a given frame, a
multiclass SVM classifier implemented in the LIBSVM tool-
box [31] in MATLAB is used. The hyper-parameters of the
SVM, namely the RBF kernel spread and SVM regularization
parameter, were selected by 5-fold cross-validation (CV) on
10% of the training data assigned as the tuning subset.

5. Results and discussion
We used 5-fold CV to evaluate the classification performance
in terms of the number of correctly classified test frames. The
results over all CV repetitions using healthy and the PD voi-
ces are reported in the first and the second rows of Table 1,
respectively. Assuming that the most dominant distortion in an
utterance usually affects the majority of frames, we also extend
the proposed method to the recording-level by applying a ma-
jority voting algorithm over all frames of a signal. The table

1They were obtained through Synapse ID [syn2321745]

reports the classification accuracy both at frame and recordings
levels in the form mean± one standard deviation. The reported
numbers for different classes are the diagonal elements of the
corresponding confusion matrices and the last columns report
the overall classification accuracy.

The effectiveness of MFCCs in distortion classification
(particularly for noisy frames) can be observed. The results
for healthy voices are consistent with the behavior of MFCCs
in the presence of different types and levels of distortion obser-
ved in Section 2.2. Considering Figure 1, MFCCs of the coded
signals are, on average, positioned closer to the MFCCs of the
clean signals, while noise, clipping and reverberation shift the
MFCCs farther away from the position of clean MFCCs. Mo-
reover, the covariance of MFCCs extracted from coded signals
is comparable to that of the clean signal, while the MFCCs for
noisy, reverberant and clipped signals are more compact in the
feature space. Taking these two observations into account, the
MFCCs of the coded and clean frames are more likely to be
overlapping in the feature space which results in misclassifica-
tion, particularly when there is speaker variability in the data.

Although the proposed method is effective in distortion
classification for both healthy and pathological voices, we ob-
serve a degradation in overall classification performance (parti-
cularly for clean frame detection) when the system is evaluated
using the PD voice database. The first factor affecting the re-
sults is the dysphonia variability in the PD voice database since
the presence of pathologies in speech is related to signal varia-
bility. Moreover, bearing in mind that the recordings in the PD
voice database have been collected over the telephone, these
signals may have already been through one or more codecs.
This means that some coded frames have been presented to the
classifier as “clean” ones during the training phase which will
result in some classification performance degradation.

6. Conclusions
In this study, the impact of four major types of distortion,
namely background noise, reverberation, clipping and speech
compression on MFCCs of the frames of the vowel /a/ has been
analyzed. These distortions are commonly present in voice sig-
nals during recording or transmission in remote pathological
voice assessments. It has been demonstrated experimentally
that introducing different types and levels of distortion to the
vowel results in predictable changes in mean and covariance
matrix of the MFCCs. Motivated by this observation, a new
approach for detecting the dominant type of distortion is propo-
sed, which uses MFCCs as frame-level acoustic features and an
SVM as the classifier. Experimental results using recordings of
healthy speakers and speakers with PD (as an example of people
with voice disorders) show the effectiveness of the proposed sy-
stem in distortion classification. Since the presence of disorders
in speech is closely related to signal variability, a slight degrada-
tion in classification performance has been observed when the
PD voices were analyzed.
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