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Abstract  1 

Background: Brain-computer interface (BCI) systems in neuro-rehabilitation use brain signals to control external 2 

devices. User status such as attention affects BCI performance; thus detecting the user’s attention drift due to 3 

internal or external factors is essential for high detection accuracy.  4 

New method: An auditory oddball task was applied to divert the users’ attention during a simple ankle 5 

dorsiflexion movement. Electroencephalogram signals were recorded from eighteen channels. Temporal and 6 

time-frequency features were projected to a lower dimension space and used to analyze the effect of two 7 

attention levels on motor tasks in each participant. Then, a global feature distribution was constructed with the 8 

projected time-frequency features of all participants from all channels and applied for attention classification 9 

during motor movement execution. 10 

Results: Time-frequency features led to significantly better classification results with respect to the temporal 11 

features, particularly for electrodes located over the motor cortex. Motor cortex channels had a higher accuracy 12 

in comparison to other channels in the global discrimination of attention level. 13 

Comparing with existing methods: Previous methods have used the attention to a task to drive external devices, 14 

such as the P300 speller. However, here we focus for the first time on the effect of attention drift while 15 

performing a motor task.  16 

Conclusions: It is possible to explore user’s attention variation when performing motor tasks in synchronous BCI 17 

systems with time-frequency features. This is the first step towards an adaptive real-time BCI with an integrated 18 

function to reveal attention shifts from the motor task. 19 

 20 

Keywords: 21 

Attention; Attention influence; Motor movement; Global feature space; Brain-computer interface; Movement-22 

related cortical potential 23 

Highlights: 24 

1. In real-world settings BCI users experience changes in attention to the main task. 25 
2. BCI performance is significantly reduced with shifts in the user’s attention. 26 

3. Attention to a task can be classified from EEG time and time-frequency features. 27 
4. EEG channels located over the motor cortex provided the highest classification accuracy. 28 

5. A General Gaussian distribution of time-frequency features improved BCI performance.  29 

 30 

 31 
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1. Introduction 1 

Brain computer interface (BCI) systems in neuro-rehabilitation aim to help disabled people by translating brain 2 

signals into some commands to control external devices (Hallett, 1994; Terada et al., 1995). The Performance of 3 

these systems is highly dependent on physiological states of the users such as fatigue (Murata et al., 2005), 4 

attention (Mangun and Buck, 1998) and emotion (Iacoviello et al., 2015). Fatigue increment, attention decrement 5 

and emotional variations may decrease BCI performance during detection of movement intention (Albares et al., 6 

2011; Käthner et al., 2014). These parameters deteriorate the timing of neurofeedback that is a vital criterion for 7 

inducing plasticity (Argente dos Santos et al., 2012; Stefan et al., 2004). To design a robust and reliable online 8 

BCI for applications outside of the clinical environment, it is desirable to quantify the influence of these factors. 9 

To approach this aim, BCIs apply preprocessing techniques on brain signals, extract desired features and finally 10 

send a command for external device control by output of a classifier (Wolpaw et al., 2002).    11 

Among these different parameters, we have focused on attention and we have shown in previous studies 12 

(Aliakbaryhosseinabadi et al., 2015a; Mrachacz-Kersting et al., 2015) that the attention level influences the 13 

features of EEG signals. Attention is the ability of individuals to select relevant/interesting stimuli while 14 

ignoring the other stimuli in the surrounding environment (Diez et al., 2015). Recently with an increasing 15 

interest for online BCIs, some studies have implemented techniques that have sought to identify the influence of 16 

cognitive states, such as attention, on signal properties commonly used in BCI (George and Lécuyer, 2010; 17 

Zander and Kothe, 2011). However, the effect of attention distraction during movement has not been widely 18 

explored (Antelis et al., 2012; Melinscak et al., 2016). In these studies spectral components of EEG signals were 19 

used for detection of attention focus. 20 

Variation in attention can modulate brain signals in both the time and frequency domain (da Silva-Sauer et al., 21 

2016; Horschig et al., 2015; O'Sullivan et al., 2015). The influence of cognitive demand on BCI performance 22 

was studied with the use of different features and classifiers in previous studies, with the purpose of translating 23 

BCI use into the natural environment (An et al., 2014; Parid et al., 2015; Schudlo and Chau, 2015). For BCI 24 

applications in rehabilitation, spectral, temporal and time-frequency features have been used to determine the 25 

alteration in the user’s state from single-trial electroencephalogram (EEG) signals (Liu et al., 2014; Lopez et al., 26 

2009; Tonin et al., 2012; Tonin et al., 2013; Xu et al., 2014). One of the signal modalities to extract temporal 27 

features is the movement-related cortical potential (MRCP) which is a low-frequency slow cortical potential. 28 

This has been successfully implemented for movement detection and classification (Hallett, 1994; Niazi et al., 29 

2013; Do Nascimento and Farina, 2008). The first initial negative part of this type of the control signal provides 30 

a source of information about movement preparation and user status (Aliakbaryhosseinabadi et al., 2015b; Roy 31 
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et al., 2013). In addition to temporal features obtained from the MRCP, a combination of spectral and temporal 1 

feature vectors lead to an improved classification of movement type in multi-class BCI systems (Dornhege et al., 2 

2004; Nicolas-Alonso et al., 2015). Event-related spectral perturbation (ERSP) is one type of time-frequency 3 

feature that can be extracted for BCI control. ERSP represents the effect of a stimulus (or event) on the EEG 4 

power spectrum. A decrease or an increase in the EEG power may indicate attention variations (Akimoto et al., 5 

2014; Jensen et al., 2007). 6 

This study aimed at comparing temporal and time-frequency features for distinguishing the effects of imposed 7 

changes in attention on motor tasks. Time-frequency features represented a relation of spectral and temporal 8 

features as they contained spectral information in different time domains. For this purpose, time and time-9 

frequency features were extracted from individual participants in a subject-by-subject optimized way as well as 10 

from the entire database as global features from eighteen channels located over three regions of the brain. After 11 

feature projection using the principal component analysis (PCA) method, a linear discriminant analysis (LDA) 12 

classifier was applied to discriminate normal and diverted attention status during performance of a motor task. 13 

Additionally, we intended to find a global model for attention diversion effects on the main the motor task 14 

according to the appropriate features and channels identified in the first step. For this purpose, the data from all 15 

participants were aggregated to determine a global model for feature distribution. Then these models were 16 

validated by applying them to single participant’s data. 17 

2. Method  18 

2.1. Experimental procedures 19 

2.1.1 Participants 20 

The experiment was conducted on twelve healthy participants (6 males, 6 females; mean age 24.25 ± 3.5 years). 21 

All volunteers had no history of hearing abnormality and neurological disease. The procedure was approved by 22 

the local ethical committee for the region Northern Jutland (N-20130039). 23 

2.1.2 Experiment setup 24 

Monopolar EEG signals were recorded from eighteen channels using an active EEG electrode system (g. 25 

GAMMAcap 
2
, Austria) and g.USB amplifier (gTec, GmbH, Austria) from AF3, AFz, AF4, F3, F1, Fz, F2, F4, 26 

FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4 based on the standard international 10-20 system. The reference 27 

and ground electrode were placed on FP1 and right ear lobe respectively. Bipolar surface electromyography 28 
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(EMG) signals were recorded from the tibialis anterior (TA) muscle. All signals were sampled at 256 Hz with 16 1 

bits accuracy. 2 

2.1.3 Experimental protocol 3 

Participants were seated on a comfortable chair approximately one meter away from a digital screen while their 4 

legs were placed on a step with the knee joint at 90
º
. The experiment contained a visual paradigm, displayed on a 5 

screen, and an auditory paradigm, which was played via a conventional headphone. 6 

Each participant was asked to complete two tasks with different attention demands. The normal attention 7 

demand was called ‘control’ and the diversion attention level called ‘complex secondary task (CST)’. The details 8 

are outlined as below: 9 

1. Control: In this level, the participants were asked to perform a real ankle dorsiflexion with the dominant foot 10 

timed to a visual paradigm which contained five phases of focus (2-3 sec), preparation (2 sec), task execution 11 

(0.2 sec), hold phase (2 sec) and rest time (3-5 sec). They performed 90 trials of dorsiflexion divided into three 12 

sets, each with 30 trials. Movement sets were separated by a 4-5 minutes rest period which participants were 13 

allowed to move. At the same time of movement execution, they heard auditory sounds via conventional 14 

headphones but they were asked to focus on the movement not on the sounds.  15 

2. Complex secondary task (CST): Participants were asked to do a dorsiflexion as described above concurrently 16 

with an auditory oddball task. The oddball paradigm contained three tones called standard (500 Hz) with a 17 

probability of 60%, target (1200 Hz) with a probability of 20 % and a deviate (1900 Hz) with a probability of 18 

20%. The sounds were played with a 75 dB sound pressure level, a five ms rise/fall time and a randomized inter-19 

stimulus interval of 2-3 sec. As for the control level, 90 movement executions were divided into three sets with 20 

30 trials each. Participants were asked to count the number of a special sequence of tones such as counting the 21 

number of target tone played after the standard tone while simultaneously performing ankle dorsiflexion. The 22 

type of sequences for counting was different among sets to avoid habituation.  23 

2.2 Data analysis 24 

2.2.1 Signal processing   25 

Matlab software (R2014b, Mathworks®) was used to filter continuous EEG signals using a 2
nd

 order band-pass 26 

Butterworth filter from 0.05-10 Hz to extract temporal features. EEGLAB (Delorme and Makeig, 2004) , an 27 

open source toolbox (Swartz Center for Computational Neuroscience, La Jolla, CA; 28 
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http://www.sccn.ucsd.edu/eeglab), was used for extracting time-frequency features where signals were high-pass 1 

filtered with a cut-off frequency of 0.5 Hz. Movement trials were extracted in the time window of [-2 2] s with 2 

respect to movement onset obtained from EMG analysis.  3 

2.2.2 Feature extraction 4 

The classification steps are illustrated in figure 1a. After EEG recording and signal preprocessing, two groups of 5 

features, time-domain and time-frequency domain features, were obtained from EEG trials and applied by the 6 

classifier. Figure 1b illustrates MRCP signals from different channels in two attention levels. The MRCP 7 

differed between these two attention levels, allowing the possibility to extract features from these signals for 8 

classification. 9 

(A) 

 

 

(B) 

http://www.sccn.ucsd.edu/eeglab
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 1 

Figure 1. (A) Diagram of classification procedure. Two groups of features were compared for single-subject classification when time-domain features had 2 

better classification performance. These features were applied for global classification. (B) A sample of MRCP signals between control and complex 3 

secondary task level. It is interpreted that right lobe channels represented more differences. 4 

2.2.2.1 Temporal features 5 

Nine temporal features were extracted from single trials of EEG signals. The amplitude and time of peak 6 

negativity and slopes in the time domains of [-2 -1] s, [-2 0] s and [-1 0] s where 0 is the movement onset, were 7 

considered as five initial features. Variability defined as the standard deviation of each trial was also extracted in 8 

the same time ranges as the slopes. In addition, the post-movement slope obtained in the range of [0 1] s 9 

regarding to movement onset was also extracted. 10 

2.2.2.2 Time-frequency features  11 

Fifteen time-frequency features were extracted from different time domains of various frequency bands. A 12 

gaussian-windowed sinusoidal moving Morlet wavelet with a linear increment in the number of cycles with 13 

frequency, from a minimum of one cycle for the lowest frequency (0.5 Hz) to 20 cycles for the highest frequency 14 

(80 Hz) were applied to each single trial to obtain ERSP (event-related spectral perturbation). ERSP represented 15 

the power of the coefficients within each window. Then, ERSP values in the time ranges of [-1 -0.5], [-0.5 0] and 16 

[0 0.5] sec with regard to movement onset in the Delta (0-4 Hz), Theta (4-8 Hz), Alpha (8-15 Hz), Beta (15-30 17 

Hz) and Gamma (30-60 Hz) bands were used as time-frequency features.  18 

2.3 Single participant performance 19 

2.3.1 Classification procedure 20 
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Each group of features was considered in a ten-fold test procedure to design a linear discriminant analysis (LDA) 1 

classifier [see details in (Kamavuako et al., 2015)]. In this method nine folds were used for the validation step to 2 

obtain the best LDA classifier and one remaining fold was applied to test the classifier. Following ten 3 

permutations, the results were averaged. The performance of the classification was quantified by the 4 

classification accuracy obtained from the average of the true positive rate (TPR) defined as the number of true 5 

classified points divided by the number of positive events (normal attention) and the false positive rate (FPR) 6 

defined as the portion of negative points (diverted attention) identified as positive. Dimensionality reduction 7 

using PCA was applied to the feature space prior to classification with five temporal and nine time-frequency 8 

features selected for classification.  9 

 10 

2.3.2 Statistical analysis 11 

The Mann-Whitney U test was used to quantify the ability of the classifier for detection of attention changes. 12 

The accuracy of the classifier was considered as the response factor while feature type with two levels (temporal 13 

and time-frequency) was the independent variable. The Kruskal-Wallis test was used to determine the effect of 14 

channel locations in representing attention alternation, with the response factor  representing accuracy while the 15 

groups of channels specified within three hemispheres (right lobe, middle channels and left lobe channels) and 16 

four brain lobes (anterio-frontal, frontal, central and fronto-central lobe) were considered as independent factor. 17 

The results were considered significant when p<0.05. 18 

2.4. Global attention threshold 19 

We aimed to find a global criterion for attention diversion from the motor movement. According to the results 20 

from the single participant classification, time-frequency features were superior to time domain features in 21 

identifying attention level during movement execution. We thus, focused on time-frequency features from the 22 

EEG channels for the next step. 23 

2.4.1 Features 24 

Time-frequency features in this part were the same as for single-participant classification.  25 

2.4.2 Global feature distribution  26 

Since we wanted to establish a global marker for quantification of attention during task execution, the extracted 27 

features from all participants were combined to obtain a global matrix of fifteen time-frequency features for each 28 

channel. Feature classification was performed for each single channel to identify the best channel(s) as 29 
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indicator(s) for attention drift. These features were projected using the PCA method to a lower dimension space. 1 

Nine significant features in the PCA space were selected according to the largest Eigen values. In the first step, 2 

normality of the features was tested according to the Shapiro-Wilk test  using SPSS software22. Then, the 3 

distribution parameters of the features such as mean and standard deviation values were obtained to design a 4 

multivariate Gaussian distribution function for these features. Finally, an evaluation test of the distribution was 5 

done with a Likelihood ratio method to classify the projected data of each participant to the same global feature 6 

space. The Likelihood ratio technique that is described with details in (Barkat, 2005), attempts to compare the 7 

goodness of fit of two models, in our experiment one of them is the normal attention state (H0) and the other one 8 

is the diverted attention status (H1). Equation (1) represents the log likelihood formula in multivariate Gaussian 9 

classification: 10 

𝐿𝐿(𝑥|µ, 𝛴) = ln 𝑝(𝑥|µ, 𝛴) = −
𝑑

2
ln(2π) −

1

2
ln|𝛴| −

1

2
(𝑥 − µ)𝑇𝛴−1(𝑥 − µ)                (Eq.1) 11 

Where d is the dimension of the feature space, µ and Σ is the mean matrix and covariance matrix of features. (ln) 12 

represents natural logarithm. 13 

3. Results 14 

3.1. Single participant performance 15 

3.1.1 Comparison of features 16 

Two groups of features were compared according to the single participant classification. Accuracy was 17 

significantly higher in the time-frequency features in comparison with temporal features (U=30.7, p<0.001) 18 

(Figure 2a illustrates this difference). Across all participants, the accuracy of the time-frequency features was 19 

71±10.9% while temporal features represented lower classification accuracy (65.3±8.7%). 20 

In the next step, we sought to identify which channel locations were more affected with changes in attention. 21 

3.1.1 Effect of channels 22 

To determine the effect of channel locations on the detection of attention shifts, classification accuracy was 23 

analyzed based on three channel hemispheres (left, midline and right hemispheres) and also according to four 24 

channel lobes (Anterio-frontal, Frontal, Centro-frontal and Central). In this way, left hemisphere channels 25 

contained AF3,F3,F1,FC3,FC1,C3,C1, right hemisphere channels included AF4,F2,F4,FC2,FC4,C2,C4 and 26 

middle channels were; AFz, Fz, FCz and Cz. In addition, channels placed in various lobes were considered as: 27 

anterio-frontal channels; AF3, AFz, AF4, frontal lobe channels; F3,F1,Fz,F2,F4, fronto-central channels; 28 

FC3,FC1,FCz,FC2,FC4; and central channels; C3,C1,Cz,C2 and C4.  29 
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Accuracy obtained from both groups of features did not show significant differences based on channel 1 

hemispheres. On average, midline and right channels had higher accuracies than left hemisphere channels. In 2 

temporal features the accuracies of right, midline and left hemispheres were: 67.7±7%, 68.1±8.8% and 3 

65.3±7.2%. For the time-frequency features right, midline and left accuracies were 72.7±10.7%, 71±11.1% and 4 

69.3±11% respectively (Figure 2b). 5 
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Figure 2. (A) Differences between time and time-frequency domain features (B) Effect of channel hemisphere on classification accuracy (C) Effect of 

channel lobe on classification accuracy. The significant levels are represented by (*). It is concluded that by using time-frequency features, effect of 

channel lobe is more than channel hemisphere when attention to a task is diverted. 

 1 

 A significant difference was found among lobes of channel placements only in accuracy according to time-2 

frequency features (H(3) = 8.4, p =0.04) . Pairwise comparison revealed a significant difference between central 3 

and anterio-frontal lobe (p=0.03), central and frontal lobe (p=0.04) and also between centro-frontal and anterio-4 

frontal lobes (p=0.04). The central and fronto-central channels had the best accuracy in comparison with the 5 

other lobes (Figure 2c). 6 

3.2. Global classification 7 

3.2.1 Feature distribution 8 

Based on the outputs of the Shapiro-Wilk test all data in the control and attention level in the global condition 9 

had a normal distribution (p<0.05). Thus, mean values and standard deviations of each feature were computed to 10 

design a multivariate Gaussian distribution. Figure 3 represents a sample of the feature distributions in channel 11 

Cz in two attention conditions. 12 

Both features had normal distribution while their mean value and standard deviation were different with regards 13 

to the attention state. Since the confidence intervals for each feature between the control and attention level were 14 

not overlapped, it was possible to separate two attention conditions by adjusting a threshold on the range of 15 

features.  16 

3.2.2 Evaluation results 17 

Discriminative features after PCA projection were inserted to the feature distribution and classified based on the 18 

log Likelihood ratio. Accuracy obtained from the evaluation of the classifier was compared according to the 19 

channel placement and only the central channel lobe had significant effect on attention classification (F(3,212)= 20 

16.2, p<0.001). Post-hoc analysis demonstrated that there are significant differences between the central and 21 

frontal lobe (p<0.01), central and anterio-frontal lobe (p<0.001) and also between fronto-central and anterio-22 

frontal lobe (p=0.01).  23 

4. Discussion 24 

In the first part of this study, temporal features extracted from the MRCP were compared with time-frequency 25 

features obtained from EEG signals according to the different levels of attention to the motor task in anterio-26 

frontal, frontal, fronto-central and central channels to investigate BCI performance under attention variations 27 

during movement execution. Results suggest that time-frequency features are more reliable than time  28 
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 1 

 

Figure3. Distributions of features 1 and 2 in channel Cz for two attention levels in the (A) Control level and (B) CST level. The feature spaces are 

separable between the two attention states as the overlap of feature ranges is not significant. The mean value and standard deviation of these features show 

different rages for the two attention levels. 

  2 

features for modulation of attention level  during performing of motor task. In the second part, the global 3 

distribution function was found for PCA projected features in two attention states to evaluate the criteria 4 

reflecting attention diversion. As for the result for single participant, channels located in the fronto-central and 5 

central regions have a significantly better performance than the other lobes. 6 
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 1 

4.1 Single-participant classification 2 

The time-frequency features from the MRCP which were used for attention classification during motor task 3 

execution, were statistically different.  Time-frequency features were obtained from different band power and 4 

different time blocks of EEG signals which have been used in previous studies on attention (Kim et al., 2015; 5 

Polomac et al., 2015). Better performance of tempo-spectral features is in line with previous studies that show 6 

superior movement detection performance with spectral or tempo-spectral features (Jochumsen et al., 2015; 7 

Kamavuako et al., 2015). These types of features represent a combination of time and frequency properties and 8 

thus contain more useful information for understanding the effect of attention on motor task performance. The 9 

classification performance of attention states is also comparable with previous studies using tempo-spectral 10 

features for movement classification under variations of task related parameters such as force level (70-80%) 11 

(Farina et al., 2007; Gu et al., 2009). 12 

According to the results of single channel analysis, we found that fronto-central and central lobes are the most 13 

affected parts of the brain under attention diversion from the main motor task. The central and fronto-central 14 

lobe demonstrated the best classification performance in comparison to the frontal lobe. Although this is partially 15 

in contrast with some previous studies which showed that the activation of the frontal lobe is increased due to 16 

dual-tasking in comparison to the other parts of the brain (Contreras-Rodríguez et al., 2015; Mirelman et al., 17 

2014). This may be due to a cognitive response to the more complex dual task conditions which enhance the 18 

level of oxygenated hemoglobin (HbO2).   In contrast, our results are in line with Wu et al. (2013) which suggest 19 

that the type of the tasks plays a key role in functional brain connection. Thus channels located over the motor 20 

cortex corresponded to a better performance compared to those located over the other lobes, presumably because 21 

this brain region provides the final output command to control motor activities (Fall and de Marco, 2008; Kleim 22 

et al., 2003).  23 

Although there was no statistically significant difference among channels located in the right, midline and left 24 

hemisphere, midline and right channels had higher attention detection accuracy during motor task execution. 25 

This is supported by previous studies that showed an increased activation of the right hemisphere with auditory 26 

spatial analysis (Weeks et al., 2000; Weeks et al., 1999). In the current study the classification accuracy for 27 

channels located in this hemisphere was significantly better than for those located in the other hemisphere 28 

(Figure 2). Thus it is likely that the right hemisphere was influenced to a greater extend by the auditory stimuli 29 

and thus significantly affected the attention to the main task (dorsiflexion). 30 

   31 

4.2 Global attention classification during motor task execution 32 
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The results of classification using the global time-frequency feature distribution showed that channels placed on 1 

the fronto-central and central lobes had the best performance in representing of attention level in motor task 2 

execution. Central channels have previously been shown to be the most optimal for motor movement 3 

classification (Miller, 2012; Yazawa et al., 1997). Better performance of these channels was predictable because 4 

upper and lower limb motor movements are mainly planned and controlled by connectivity of motor cortex 5 

regions (Crone et al., 1998; Volz et al., 2015). The effect of auditory selective attention can be monitored in 6 

channels of the same lobe in addition to the auditory cortex (Galbraith et al., 2003) as our results support this 7 

notion. 8 

The accuracy of the global model  obtained here suggests that it is possible to define a global criterion for 9 

investigating attention levels during motor task execution and to use this in online BCI systems for detection of 10 

plastic changes. Since plasticity induction is modulated with attention shifts (Conte et al., 2007; Stefan et al., 11 

2004), a BCI for neuromodulation must incorporate an element where attention states are detected. In this way 12 

the user can be provided with the appropriate neuro-feedback to direct attention back to the main task. The 13 

global model for attention diversion from the motor task can be implemented to avoid training the classifier for 14 

different participants. This is important in clinical applications to reduce to a minimum the time spent in user 15 

training.   16 

 4.3 Study limitation 17 

In this study, continuous EEG signals from 12 healthy participants were analyzed offline. It is vital to have 18 

online BCI systems since it is required for appropriate feedback when attention is drifted during BCI use. 19 

Furthermore, it is worthwhile to perform this experiment for patients such as stoke patients. The other limitation 20 

was the combination of motor movement and attention because attention was diverted while performing ankle 21 

dorsiflexion. So, it was not possible to analyze the effect of attention without considering the influence of dual 22 

tasking, although the main aim of this study was to quantify classification performance under attention diversion 23 

during task execution. 24 

Conclusion 25 

In the first part of this study, we aimed to explore the more reliable feature type from selected channels for 26 

attention classification during the execution of a simple motor task in BCI systems in healthy participants. 27 

Temporal and time-frequency features were extracted from channels in three different brain lobes. The results 28 

revealed that time-frequency features obtained from channels located over the motor cortex region have a 29 

significantly better performance for attention classification. In the second part of this paper, we aimed to find out 30 
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a global distribution for significant features of classification and then validate these functions on single 1 

participants. Multivariate normal distribution of features demonstrated the best performance in the channels 2 

located over the motor cortex. 3 
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