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A Scalable Algorithm for Physically Motivated and
Sparse Approximation of Room Impulse Responses

with Orthonormal Basis Functions
Giacomo Vairetti, Enzo De Sena, Member, IEEE,

Michael Catrysse, Søren Holdt Jensen, Senior Member, IEEE,
Marc Moonen, Fellow, IEEE, and Toon van Waterschoot, Member, IEEE

Abstract—Parametric modeling of room acoustics aims at
representing room transfer functions (RTFs) by means of digital
filters and finds application in many acoustic signal enhancement
algorithms. In previous work by other authors, the use of
orthonormal basis functions (OBFs) for modeling room acoustics
has been proposed. Some advantages of OBF models over all-zero
and pole-zero models have been illustrated, mainly focusing on
the fact that OBF models typically require less model parameters
to provide the same model accuracy. In this paper, it is shown
that the orthogonality of the OBF model brings several additional
advantages, which can be exploited if a suitable algorithm for
identifying the OBF model parameters is applied. Specifically,
the orthogonality of OBF models does not only lead to improved
model efficiency (as pointed out in previous work), but also leads
to improved model scalability and model stability. Its appea-
ling scalability property derives from a previously unexplored
interpretation of the OBF model as an approximation to a
solution of the inhomogeneous acoustic wave equation. Following
this interpretation, a novel identification algorithm is proposed
that takes advantage of the OBF model orthogonality to deliver
efficient, scalable and stable OBF model estimates, which is not
necessarily the case for nonlinear estimation techniques that are
normally applied.

Index Terms—Parametric modeling, orthonormal basis
function models, room acoustics, matching pursuit.

I. INTRODUCTION

PARAMETRIC modeling of room acoustics aims at re-
presenting room transfer functions (RTFs) by means of

rational expressions in the z-transform domain, implemented
through digital filters, and finds application in a variety of
acoustic signal enhancement tasks, e.g. echo cancellation,
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feedback cancellation, and dereverberation, as well as in
auralization systems. The most common parametric models
are All-Zero (AZ) models [1], which define a finite impulse
response (FIR) filter as a truncation of a sampled room impulse
response (RIR). AZ models enable achieving an arbitrary
degree of accuracy, but a good approximation of a RIR usu-
ally requires a large number of model parameters. Pole-Zero
(PZ) models [2], which produce an infinite impulse response
(IIR), are used sometimes in order to reduce the number of
parameters. PZ models have a more meaningful motivation
from a physical point of view, in the sense that the resonant
behavior of room acoustic responses can be represented by
means of complex-conjugate poles in the transfer function.
This is particularly true when a PZ model is implemented
using the parallel form of fixed-pole IIR filters [3, p.359].
This parallel filter (PF), proposed in recent years for RTF
modeling and audio equalization [4]–[8], consists of second-
order all-pole filters, each of which is defined by a pair
of complex-conjugate poles. Its transfer function is given
by a linear combination of resonances, in analogy with the
physical definition of a RTF as an infinite summation of room
modes [9]–[11]. However, since RTFs are characterized by
a complicated time-frequency evolution and a large number
of room resonances, the improvement in modeling efficiency
obtained with PZ models compared to AZ models is in some
cases only marginal [12]. Moreover, PZ models often suffer
from instability and ill-conditioning issues in the estimation of
the model parameters, especially for high model orders, which
is why AZ models are usually preferred.

In order for models producing an IIR to become a va-
lid alternative to AZ models, models with improved model
efficiency and with stable and numerically well-conditioned
identification algorithms (and possibly other interesting pro-
perties) are sought. Fixed-pole models based on Orthonormal
Basis Functions (OBFs) [13]–[16] can be derived directly from
an orthogonalization of PF models. OBF models span the
same approximation space of PF models for the same set of
poles, with the difference that the outputs of each second-
order all-pole filter are made orthogonal to each other by a
sequence of all-pass filters (i.e. by zero-pole cancellation).
The use of single-pole OBF models for acoustic echo can-
cellation [17], [18], and of multiple-pole OBF models for
loudspeaker response equalization and modeling of room and
musical instrument responses [19]–[23] have been previously
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motivated by the possibility of positioning the poles anywhere
inside the unit circle, thus providing stability of the filter and
giving freedom in the allocation of the frequency resolution. It
has been shown that these properties, together with orthogo-
nality, provide a more accurate representation of the RTF for a
given number of model parameters, compared to conventional
models. Differently from PF models, orthogonality makes the
estimation of the parameters that appear linearly in OBF
models straightforward and numerically well-conditioned. The
poles, on the other hand, appear nonlinearly in the model,
which makes their estimation a difficult problem, requiring
in principle nonlinear estimation techniques. In [18], the pole
parameters of single-pole OBF models were optimized using
the Gauss-Newton method. In [19]–[23], multiple poles were
estimated with a nonlinear iterative algorithm for FIR-to-IIR
filter conversion, called the Brandenstein-Unbehauen (BU)
method [24], resembling the Steiglitz-McBride method for PZ
modeling [25]. The BU method exploits the orthogonality of
OBF filters by minimizing the energy of a target RIR with a
sequence of all-pass filters. Although this method is capable
of producing accurate pole estimates, it is not exempt from
numerical problems for high model orders, in which case
the algorithm can converge to a local minimum and even
produce unstable poles. Modifications of the BU method have
been proposed to overcome this problem, such as through
prewarping of the target RIR (warped BU – wBU) [21], [26],
in order to approximate a desired frequency resolution, or
partitioning of the target RIR in frequency subbands or in
time [27]. Furthermore, the BU method and its variants require
the model order to be determined before estimation, resulting
in a non-scalable algorithm that has to be run every time the
number of poles to be estimated changes.

The nonlinear problem of estimating the poles was bypassed
in [28] by applying convex optimization to a discrete grid
of candidate stable poles. A sparse solution was obtained by
selecting basis functions out of a large non-orthogonal dictio-
nary. In [29], a matching-pursuit-based algorithm called OBF-
MP was introduced. A similar algorithm was also suggested in
[30] for the estimation of the poles of a RIR model described
as the linear combination of sampled exponentially decaying
sinusoids, but not considering any particular filter implemen-
tation of the model (if not the implicit use of FIR filters);
however, the choice of this model implies a non-orthogonal
dictionary and, consequently, ill-conditioning problems in the
estimation of the parameters, which would require the use
of computationally more complex versions of the algorithm,
such as Orthogonal MP as in [31], or suboptimal iterative pro-
cedures [30]. The OBF-MP algorithm [29], instead, exploits
the appealing properties of OBF models, i.e. orthogonality,
stability and numerical well-conditioning, in order to deliver
efficient, scalable and stable OBF model estimates for room
acoustic modeling, which can be directly implemented through
a stable IIR filter. It is shown in the present work that the
scalability property of the algorithm stems from a previously
unexplored interpretation of OBF models as an approximation
to a solution of the inhomogeneous acoustic wave equation.
Indeed, OBF models are physically motivated in the modal
region, where the RTF is a linear combination of room

resonances, sparse in frequency. The OBF-MP algorithm thus
provides a sparse approximation of the most dominant modes
in the low-frequency region of the RTF, while approximating
the spectral envelope at higher frequencies. In this paper, the
OBF-MP algorithm is further investigated and its performance
in terms of efficiency and computational complexity is studied
for a large set of measured RIRs.

The paper is organized as follows. In Section II, funda-
mentals of the theory of room acoustics are briefly reviewed,
together with an overview of conventional parametric models.
In Section III, the OBF models are reviewed in detail, as well
as their use in the approximation of a target RIR. The OBF-
MP algorithm is described in Section IV and its computational
complexity is analyzed. In Section V, the concept of model and
filter complexity of different parametric models is introduced.
Simulation results are shown in Section VI, comparing the
performance in the approximation of a large set of measured
RIRs of OBF models estimated using the OBF-MP algorithm
with respect to conventional models and OBF models esti-
mated using the BU method. A discussion of the results and
future work can be found in Section VII, which also concludes
the paper.

II. PARAMETRIC MODELING OF ROOM ACOUSTICS

This section reviews elements of room acoustics and provi-
des an overview of conventional parametric models.

A. Fundamentals of room acoustics

The RTF between an omnidirectional point source s(r, t) =
s(t)�(r � rs) at position rs = (xs, ys, zs) (with s(t) a given
source function and �(·) the Kronecker delta function) and
a receiver at position r = (x, y, z), can be seen as a linear
superposition of room modes, mutually orthogonal in the space
dimension, with the mode amplitudes depending on r and rs,
and on the strength of the source. This is described by the
Green’s Function (GF) of the inhomogeneous acoustic wave
equation, which, neglecting higher-order terms such as the
variability of the temperature and of the density of the medium
[9], [10], is given by

P (r, rs,!) = G(!)

1X

i=1

 i(r) i(rs) j!

!2 � !2
i � 2j⇣i!i + ⇣2i

, (1)

with P (r, rs,!) the sound pressure in a room at the driving
frequency ! for given receiver and source positions r and
rs, and G(!) a frequency-dependent gain constant. The ei-
genfrequencies !i, also called resonance frequencies [9], are
the values of ! for which the acoustic wave equation has
non-zero solutions satisfying the boundary conditions. The
eigenfunction  i corresponding to eigenfrequency !i defines a
three-dimensional standing wave, called a room mode. A given
room mode is dominant when the driving frequency ! is close
to its resonance frequency !i, while it has no contribution to
the sound field when the source or the receiver is placed on one
of its nodal surfaces, i.e. where either  i(rs) or  i(r0) is zero.
The damping constant ⇣i accounts for frequency-dependent
energy losses at the walls and determines the half-bandwidth
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at -3 dB of the room resonance, which is B = ⇣i/⇡ (in Hz) [9],
[10].

The inverse Fourier Transform (FT) of (1) gives the RIR,
which, for t � 0, is a sum of exponentially decaying sinusoids,

h(r, rs, t) =

1X

i=1

cie
�⇣it cos(!it+ �i), (2)

where the ith sinusoid has amplitude ci and phase �i, reso-
nance frequency !i and a decay determined by the damping
constant ⇣i. The GF describes the sound field for any possible
position of the source and the receiver inside any kind of
room. However, a closed-form analytical expression for  i

exists only for simple room shapes and for simple boundary
conditions.

The problem of modeling a RIR presents many challenges,
mainly because of its complicated time-frequency structure.
The RIR measured in a reverberant room has typically a
very long duration and presents a complicated pattern of the
arrival of reflections. An example of a typical RIR is shown
in Fig. 1. Furthermore, the modal density increases with the
square of the frequency !, i.e. the approximate number of
eigenfrequencies per Hz is given by

n!i(!) ⇡
V

c3⇡
!2 , (3)

with V the volume of the room and c the sound velocity.
The expression (3) is derived for rectangular rooms, but
is asymptotically valid for rooms of any shape [9], [10].
It follows that the modes are well separated only at low
frequencies, while they tend to overlap at higher frequencies.
The so-called ‘Schroeder frequency’ [32] gives an indication
as to where the transition between these two regions occurs:

fSch ⇡ 2000

r
T

V
, (4)

where T is the reverberation time, defined as the time it
takes for the RIR to decay to 60 dB below its starting level,
which depends on the damping characteristics of the walls [9].
This expression shows that the overlap is strong already at
low frequencies especially for large halls and for rooms with
highly absorptive surfaces, for which resonances have larger
bandwidth. A consequence of the overlap is that in diffuse
field conditions, i.e. above the Schroeder frequency fSch, the
number of magnitude peaks in the RTF in a given range is
much lower than the theoretical number of modes [9]. The
idea of modeling a RTF using OBF models is then to use a
finite number of resonant responses, as opposed to the infinite
summation in equations (1) and (2), to model accurately
low-frequency well-separated dominant room modes and to
approximate the spectral envelope of overlapping modes at
higher frequencies.

B. Conventional parametric models for room acoustics

Parametric modeling of room acoustics aims at approxima-
ting the GF in (1) by a rational function in the z-domain,

H(r̈, z) =
B(r̈, z)

A(r̈, z)
=

PQ
i=0 bi(r̈)z

�i

1 +
PP

i=1 ai(r̈)z
�i

, (5)
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Fig. 1. RIR measured in the Speech Lab at KU Leuven [33].

where r̈ = (rs, r) denotes a particular source-receiver po-
sition pair. Common assumptions to be made are stability,
causality, linearity, and time-invariance of the acoustic system.
The expression in (5) can be rewritten in a pole-zero form
by factorizing the numerator and denominator polynomials,
yielding

H(r̈, z) =
B(r̈, z)

A(r̈, z)
= b0(r̈)

QQ
i=1 {1� qi(r̈)z

�1}
QP

i=1 {1� pi(r̈)z�1}
. (6)

The zeros qi represent anti-resonances and time delays in the
RIR, while poles pi are associated with room resonances.

AZ models [1], for which A(r̈, z) = 1, can achieve
an arbitrary degree of accuracy by using a high-order FIR
filter. The main problem is that the number of parameters
of the filter necessary to model the resonant behavior of the
system often has to be quite large, depending on the sampling
frequency fs and the reverberation time T . Furthermore, the
RIR strongly depends on the source and receiver position, so
that the parameter values obtained for approximating a RIR at
a given source-receiver position r̈1 = (rs

1

, r1) are in general
significantly different from those for a RIR at another position
r̈2 = (rs

2

, r2).
Models producing an IIR are used in an attempt to reduce

the number of parameters needed to approximate a target RIR
[34]. PZ models [2] uses both zeros and poles, so that both
room resonances and time delays can be modeled, as well
as the non-minimum-phase components of the RTF. Howe-
ver, since both A(r̈, z) and B(r̈, z) in (6) are non-constant
polynomials in z�1, no closed-form solution exists to the mo-
del parameter estimation problem and nonlinear optimization
methods are required. These methods usually start from the
estimation of an all-pole model and then iteratively compute
optimal parameter values in the Least Squares (LS) sense. The
most popular one is the so-called Steiglitz-McBride (STMCB)
method [25], which, however, is not guaranteed to converge
and may become unstable, especially for high model orders.
Another difficulty lies in determining the optimal values for
Q and P in (5) or (6), i.e. the order of the numerator and
denominator polynomial, respectively.

PF models, which use the parallel form of fixed-pole IIR
filters [3, p.359] consisting of a parallel of second-order all-
pole filters, result from a partial fraction expansion (PFE) of
the transfer function in (5), which, for Q < P , can be written
as

H(r̈, z) =

PX

i=1

Ri(r̈)

(1� pi(r̈)z�1)
, (7)
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where Ri are the residues of the poles pi. If Q � P , an
FIR filter of order Q � P + 1 should be added to the right-
hand side of the equation [3, pp.112-114], [7], [35]. When the
coefficients of A(z) and B(z) in (5) are real, complex poles
will occur in conjugate pairs, so that for each one-pole filter
defined by (Ri, pi) there will be a one-pole filter defined by
(R⇤

i , p
⇤
i ). These two terms can be added together to form a

real second-order section, so that (7) becomes

H(r̈, z) =

P/2X

i=1

⇢
Ri(r̈)

1� pi(r̈)z�1

+
R⇤

i (r̈)

1� p⇤i (r̈)z
�1

�
, (8)

whose impulse response, with n = tfs the discrete time
variable, is given by

h(r̈, n) =

P/2X

i=1

{Ri(r̈) [pi(r̈)]
n
+R⇤

i (r̈) [p
⇤
i (r̈)]

n} , (9)

which is a finite sum of pairs of geometric series, each for a
pair of complex-conjugate poles. After some elaborations, this
can be shown to be equivalent to

h(r̈, n) =

P/2X

i=1

2|Ri(r̈)|⇢ni cos(�in+ \Ri(r̈)), (10)

with ⇢i and �i respectively the radius and the angle of
the pole pi = ⇢ie

j�i , which is a finite linear combination
of exponentially decaying sinusoids sampled in time, with
amplitude and phase determined by the residues Ri. It is
evident by comparing the expressions in (10) and (2) that a
RIR can be approximated by a PF model using poles with
radius and angle defined by the damping constants ⇣i and the
resonance frequencies !i as

⇢i = e�⇣i/fs ,

�i = !i/fs .
(11)

Notice that, when ⇢i is small and �i is close to either 0 or ⇡,
the resonance generated by pi is influenced by the resonance
generated by p⇤i , so that their magnitude peaks have frequency
slightly different from ±!i [35], [36]. The PF model as an
approximation of the GF was first discussed in [11] in relation
to the modeling of a RTF by using common acoustical poles
and their residues (CAPR). It has been shown that the GF
in (1) is a PFE for the resonance frequencies, which can be
approximated by a PF model, assuming ⇣i ⌧ !i. It is also
shown that the residues Ri(r̈) are related to the eigenfunctions
 i of the GF, thus expressing the variation of the RTF at
different source and receiver positions.

The transfer function of the PF in (8) can be rearranged as

H(r̈, z) =

P/2X

i=1


di,0(r̈) + di,1(r̈)z

�1

(1� pi(r̈)z�1)(1� p⇤i (r̈)z
�1)

�
,

di,0(r̈) = Re{Ri(r̈)} = |Ri(r̈)| cos(\Ri(r̈)), (12)

di,1(r̈) = Re{Ri(r̈)p
⇤
i (r̈)} = |Ri(r̈) pi| cos(�i � \Ri(r̈)),

and implemented as a parallel of second-order filters, shown
in Fig. 2, which is linear in the parameters {di,0, di,1}, but
nonlinear in the poles {pi, p⇤i }. Each second-order section

�(n)

1
(1�p

1

z�1)(1�p⇤
1

z�1)
1

(1�piz�1)(1�p⇤
i z

�1)
1

(1�pMz�1)(1�p⇤
Mz�1)

z�1 z�1 z�1

d
1,0 d

1,1 di,0 di,1 dM,0 dM,1

h(n,p,d)

'
1,0 (n) '

1,1 (n) 'i,0 (n) 'i,1 (n) '
M,0

(n) '
M,1

(n)

Fig. 2. The PF model structure (with M = P/2). The impulse responses to
the second-order IIR filters, denoted by 'i,0 and 'i,1 for i = 1, . . . ,M , are
used as basis functions in a linear-in-the-parameters model structure.

models a room resonance, with resonance frequency and band-
width determined by the position of {pi, p⇤i }, within the unit
circle in order to ensure stability. Particular attention should be
given to repeated poles, which produce polynomial amplitude
envelopes on the decaying exponentials [35], the order of
which is determined by the multiplicity of the repeated pole.
It should be noticed that, in the presence of repeated poles,
the model structure in Fig. 2 has to be modified accordingly.

III. ORTHONORMAL BASIS FUNCTION MODELS

Parametric models based on OBFs can be derived from
an orthogonalization of PF models. The orthogonality of the
basis functions, together with the linearity in the parameters,
introduces some desirable properties which bring a number
of advantages in terms of efficiency and numerical stability
in the modeling of RIRs. In this section, OBF models are
also described as a generalization of other parametric models.
Furthermore, their properties are described along with their
application in the approximation of a target RIR.

A. Construction of OBF models

OBF models are derived with a Gram-Schmidt orthonorma-
lization procedure applied to one- and two-pole filters [13]–
[15]. Starting from a normalized first-order IIR filter with pole
p1 and transfer function

 1(z, p1) =
A1

1� p1z�1

, (13)

where A1 =
p
1� |p1|2 is a normalization factor, a second-

order filter with poles [p1, p2] and transfer function orthogonal
to (13) can be obtained as

 2(z, [p1, p2]
T ) =

A2(z
�1 � p⇤1)

(1� p1z�1)(1� p2z�1)
, (14)

with A2 =
p
1� |p2|2 and with * indicating complex conju-

gation. The orthogonality of  1 and  2 is provided by the zero
in z = 1/p⇤

1

and can be investigated via the inner product on the
Hardy space on the unit circle H2(T) (with T , {z : |z| = 1})
as (see [15])

h 1, 2i =
1

2⇡j

I

T
 1(z) 

⇤
2(z)

dz

z
= 0. (15)
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�(n)
z�d z�1�p⇤

1

1�p
1

z�1

z�1�p⇤
M�2

1�pM�2

z�1

z�1�p⇤
M�1

1�pM�1

z�1

1
1�p

1

z�1

1
1�p

2

z�1

1
1�pM�1

z�1

1
1�pMz�1

p
1 � |p

1

|2
p

1 � |p
2

|2
p

1 � |pM�1

|2
p

1 � |pM |2

'
1

(n) '
2

(n) 'M�1

(n) 'M (n)

✓1 ✓2 ✓M�1 ✓M
h(n,p,✓)

Fig. 3. The Takenaka-Malmquist OBF model structure for M real poles.

The transfer function in (14) can be seen as the product of a
normalized first-order IIR filter defined by p2 and a first-order
all-pass filter defined by p1. By repeating the procedure for a
set of poles pi = {p1, . . . , pi}, the ith transfer function will
consist of a normalized first-order IIR filter defined by pi and
a sequence of first-order all-pass filters defined by the pole set
pi�1 = {p1, . . . , pi�1},

 i(z,pi) =

 p
1� |pi|2

1� piz�1

!
i�1Y

l=1

✓
z�1 � p⇤l
1� plz�1

◆
, (16)

which is also known as the Takenaka-Malmquist function [13].
The corresponding model structure is shown in Fig. 3, where
the model output h(n,p,✓) is a linear combination of the
responses of the basis functions, weighted by the linear
parameters ✓i.

An OBF model based on the functions in (16) can be seen as
a generalization of other well-known models. If all the poles
are identical and real, the Laguerre model [37] is obtained,
which is in turn a normalized version of a so-called warped
FIR filter model [26], with the value of the warping parameter
the repeated real pole. If the pole is placed in the origin, then
the Laguerre filter simplifies to an AZ model.

When the pole set pi contains complex poles, the basis
functions in (16) are generally complex-valued and are thus not
useful for the identification of real systems. As for PF models,
two real-valued basis functions can be obtained by combining
pairs of complex-conjugate poles, and by orthogonalizing each
pair of basis functions with respect to each other (plus a
normalization factor). Different realizations of an OBF model
can be obtained for particular choices of these normalization
factors, as explained in [15]. A combination of a Takanaka-
Malmquist model and the so-called Kautz model can be
used, as suggested in [20], modeling real and complex poles,
respectively. This model structure, henceforth called mixed-
Kautz model, is shown in Fig. 4 for ṁ real poles and m̈ pairs
of complex-conjugate poles. The basis functions of a mixed-
Kautz model are defined for a real pole pi as

 i(z,pi) =

✓
Ai

1� piz�1

◆ i�1Y

l=1

✓
z�1 � p⇤l
1� plz�1

◆
, (17)

or for a complex-conjugate pole pair {pi�1, pi} = {pi, p⇤i } as

 0
i(z,pi) =

c0i(z
�1 + 1)

(1� piz�1)(1� p⇤i z
�1)

i�2Y

l=1

(z�1 � p⇤l )

(1� plz�1)
,

 00
i (z,pi) =

c00i (z
�1 � 1)

(1� piz�1)(1� p⇤i z
�1)

i�2Y

l=1

(z�1 � p⇤l )

(1� plz�1)
.

(18)

with Ai =
p
1� |pi|2, and normalization factors c0i =

|1 � pi|Ai/
p
2 and c00i = |1 + pi|Ai/

p
2. Notice that the

pair of basis functions in (18) are built as a product of a
sequence of i� 2 first-order all-pass filters given by the poles
in pi�2, a second-order all-pole filter defined by {pi, p⇤i } and
a normalization term, so that the model structure for complex-
conjugate poles is given by a parallel of orthonormalized
second-order IIR filters. However, real poles may not be of
much interest in the approximation of measured RTFs; even
though positive real poles would be useful for modeling the
cavity mode of a room response, a measured RTF has a
band-pass characteristic, with a cut-off at low frequencies
determined by the response of the high-pass filter of the
loudspeaker, and a cut-off at high frequencies given by the
low-pass behavior of the loudspeaker or the anti-aliasing
filter. For this reason, only complex-conjugate poles can be
considered, thus resulting in the use of a Kautz model.

B. Properties of OBF models

The orthogonality of the basis functions provides some
desirable properties. First, the OBFs form a complete set in
H2(T), under the assumption that

P1
i=0(1� |pi|) = 1 [15].

Thus, by decomposing a target RIR in terms of an orthogonal
expansion, the approximation error can be made arbitrarily
small by choosing a large enough number of poles.

Second, orthogonality provides flexibility, which results
from the fact that poles can be arbitrarily positioned inside
the unit circle (for the sake of stability), and that frequency
resolution can be allocated unevenly in different regions of the
spectrum without numerical conditioning problems, regardless
of the model order. This is not the case, for example, for PZ
models, where problems of ill-conditioning and instability can
arise for high model orders.

Third, OBF models are linear in the parameters ✓i, which
means that linear regression can be applied in order to estimate
their optimal values. Moreover, due to the orthogonality of
the basis functions, it is not necessary to carry out a matrix
inversion, which is often a source of numerical problems.
Another consequence of orthogonality is the fact that the
parameters ✓i for each IIR filter are independent from the
ones for others filters in the structure, so that a model of
lower order can be obtained from a model of higher order only
by truncation, and similarly additional poles can be included
without recomputing the values of the ✓i’s corresponding to the
poles already used. An additional advantage of OBF models
over PF models is that the same pole can be included more
than once (e.g. to model modes with a double decay) without
the need to modify the structure. These properties are exploited
in the scalable algorithm described in Section IV.
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)

(1�pṁ+m̈�1
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ṁ+1

(n) '00
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h(n,p,✓)

Fig. 4. The mixed-Kautz model structure for ṁ real poles and m̈ pairs of complex-conjugate poles. For convenience, the basis functions corresponding to
real poles defined in (17) are followed by the basis functions corresponding to complex-conjugate pole pairs defined in (18).

C. Approximation of a RIR with an OBF model

The approximation of a target RIR h(n) using an OBF
model consists in estimating the parameters in the pole set
p = {pi} and in the set of parameters ✓ = {✓i}, with
i = 1, . . . ,M (cfr. Fig. 4 where M = ṁ+2m̈), that minimize
the distance between a target RIR h(n) and the model response
h(n,p,✓) for n = 1, . . . , N . For a fixed set of poles p, the
problem of estimating ✓ is linear and can be solved in closed
form. The response h(n,p,✓) of an OBF model for an impulse
input signal �(n) is the linear combination of the responses
'i(n,pi) of the M basis functions  i(z,pi) (see e.g. Fig. 3
or Fig. 4),

h(n,p,✓) =

MX

i=1

✓i i(z,pi)�(n)

=

MX

i=1

✓i'i(n,pi) = '(n,p)T✓,

(19)

where '(n,p) is a vector containing the responses 'i(n,pi) at
time n. By stacking all the vectors '(n,p) for n = 1, . . . , N
in a matrix �(p) of size N ⇥ M , the optimal values for ✓
for a given input-output set {�,h} = {�(n), h(n)}Nn=1 can be
estimated in LS sense as

✓̂ = �(p)Th. (20)

Note that the LS estimation does not require any matrix
inversion, given that the orthonormality of the basis functions
implies �(p)T�(p) = IM . It can be seen from (20) that the
optimal estimate for ✓ corresponds to the correlation of the
basis functions in �(p) with the target RIR vector h, so that
✓̂ gives the degree of similarity between each basis function
and the target RIR.

The problem of estimating the optimal pole set p̂ can be
then regarded as finding the poles that generate basis functions
that are maximally correlated with the target RIR, so that
the approximation error between the model response and the
target RIR is minimized. However, no closed-form solution
to the pole estimation problem is available. The state-of-the-
art approach for the multiple-poles case is the BU method

[19]–[23], an iterative nonlinear method based on FIR-to-
IIR filter conversion [24]. Frequency prewarping of the target
response has been proposed for audio applications in order
to match a particular frequency-scale mapping, such as the
Bark scale [38]. The BU method exploits the orthogonality
of OBF models and provides accurate estimates for the pole
parameters. However, the model order has to be predetermined,
and stability problems can arise from numerical issues at high
model orders.

IV. THE OBF-MP ALGORITHM

The problem of sparse linear approximation of a signal con-
sists in finding a compact representation by a combination of
functions taken from an overcomplete basis. These functions
are usually called predictors or atoms, which altogether form a
basis, sometimes called dictionary. The most popular methods
for sparse approximation can be divided in two main categories
[39]. In the first one, convex optimization techniques are used
to minimize a functional, such as the `1 norm in the Least
Absolute Shrinkage and Selection Operator (LASSO) [40].
The second category includes iterative greedy algorithms, such
as Orthogonal Matching Pursuit (OMP) [41]–[43].

Our approach aims to find a sparse approximation of a target
RIR as a linear combination of a finite number of OBFs. A
RIR cannot be considered a sparse time-frequency signal itself,
with a certain degree of sparsity only in the modal region. By
first modeling dominant low-frequency modes and the spectral
envelope at higher frequencies, the proposed algorithm is able
to provide a sparse approximation of a RIR using a finite-order
OBF model. In this section, an OMP-based greedy algorithm,
which is termed here OBF-MP [29], is used to iteratively select
poles from a large set of candidate poles distributed over the
unit disc, thus bypassing the inherent nonlinear problem. At
each iteration of the OMP algorithm, the predictor that has
the highest correlation with the current residual response is
selected. The problem in the OBF-MP algorithm, given that
OBFs are defined by previous poles in the structure, consists in
defining a dictionary of candidate predictors, where the dicti-
onary has to be updated at each iteration using the predictor
selected at the previous iteration. The advantage of OBF-MP
over the conventional OMP algorithm is that the orthogonal
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↵s
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k�1 ps]

Update approximation
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ĥ0 = 0

ĥk
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k

pA
k

while nA < M do

Fig. 5. The OBF-MP algorithm block diagram. Inbound dashed lines represent
initial conditions and inputs, while outbound dashed lines represent outputs.

projection of the current residual response onto the set of
predictors selected at the previous iterations is not necessary.
The predictors, in fact, are already orthogonal to each other by
construction. This ensures that the algorithm does not contain
any matrix inversion, thus avoiding ill-conditioning problems.
Moreover, since the candidate predictors are orthogonal to
the predictors selected at previous iterations, computing the
correlation with the current residual response is equivalent to
computing the correlation with the target RIR.

Another consequence of orthogonality is the scalability of
the algorithm, from which it follows that the number of
parameters of the final model structure does not have to be
defined in advance. A pole and the related linear coefficient
are estimated at each iteration, independently of poles selected
at previous iterations. It follows that additional poles can be
estimated just by running extra iterations of the algorithm, wit-
hout any problem of instability or numerical ill-conditioning.
This scalability property of the algorithm is also a consequence
of the fact that, similarly to what was discussed at the end of
Section II for PF models, also OBF models can be regarded as
a way of approximating a RTF. It has been already mentioned
that, for the same set of non-repeated poles, the basis functions
of a PF model and the ones of an OBF model span the same
approximation space, so that it is possible to convert the values
of the linear parameters from one model form to the other by
simply a linear transformation [5].

Following the above interpretation, the idea of the OBF-MP
algorithm is to iteratively compute a sparse approximation ĥ
of a target RIR h of length N samples as a linear combination
of length-N OBFs, analogously to the definition of a RIR as a
summation of exponentially decaying functions, independent
one from each other. The OBFs are selected from a dictionary
�k of candidate predictors 'i (i = 1, . . . , D) and included
in the basis �A

k . At each iteration k, D candidate predictors
'i, orthogonal to the predictors in the current basis �A

k�1

constructed with the current set of active poles pA
k , are built

from G poles placed arbitrarily in a grid pg inside the upper
half of the unit disc. The matrix �k has dimensions N ⇥D,
with D = ṁ + 2m̈ where ṁ and m̈ denote respectively the

Algorithm 1 OBF-MP algorithm
1: pg = {p1, . . . , pG} . Define poles in the pole grid

2: �A
0 = ;, nA = 0 . Initialize set of active predictors (basis)

3: p

A
0 = ; . Initialize the set of active poles

4: ĥ0 = 0 . Initialize target approximation vector
5: k = 1 . k: iteration counter
6: while nA < M do . M : desired number of OBFs
7: Build �k(pg) . Build matrix of candidate predictors 'i

8: s = argmaxi |↵i| . Find 'i max. correlated with h

9: p

A
k = [pA

k�1 ps] . Add selected pole to active pole set
10: if ps real then . Update basis and predicted component
11: �A

k = [�A
k�1 's], nA = nA + 1

12: x̂k = 's↵s

13: else if ps complex then
14: �A

k = [�A
k�1 '

0
s '

00
s ], nA = nA + 2

15: x̂k = ['0
s '

00
s ][↵

0
s ↵

00
s ]

T

16: end if
17: ĥk = ĥk�1 + x̂k . Update target approximation vector
18: k = k + 1
19: end while

number of real poles and complex poles in the grid pg , so that
G = ṁ+ m̈.

The OBF-MP algorithm is described in detail below, and a
graphical representation is depicted in Fig. 5. First, a grid of
G candidate poles pg is defined, similarly to [28]–[30], with
poles distributed according to a desired frequency resolution
or prior knowledge about the system. In [28]–[30], the angle
and the radius of the poles were distributed either uniformly or
logarithmically on the unit disc, with the latter option intended
to increase the resolution at low frequencies. Here, a different
pole grid is used, depicted in Fig. 6, henceforth referred
to as Bark-exp grid; the radius ⇢i of the poles decreases
exponentially at the increase of the angle �i, as suggested
in [23], according to ⇢i = %

�i
⇡ , with % the value of the radius

defined at the Nyquist frequency. Regarding the values for
%, it is suggested here to set the number of radii for each
angle and distribute them logarithmically in order to increase
density toward the unit circle. Differently from [23], in which
the angles follow a logarithmic scale, the Bark frequency
scale [38] was chosen. The Bark scale further increases the
resolution at low frequency, providing an effect similar to the
prewarping of the RIR used in the wBU method. In this way,
a higher density of poles close to the unit circle is achieved at
low frequencies, allowing a more accurate approximation of
energetic and narrow-bandwidth resonances, while at higher
frequencies poles sparser in frequency and more distant from
the unit circle provide a coarser approximation.

At the first iteration, the current basis �A
0 and the set of

active poles pA
0 are empty (with the number of predictors in

the basis nA = 0). Also the target approximation vector ĥ0, is
initially set to zero. At each iteration k, the matrix of candidate
predictors �k(pg) is updated according to the mixed-Kautz
structure in Fig. 4. The matrix �k has always dimension N ⇥
D (since an OBF model admits repeated poles, a pole that is
selected by the algorithm is not removed from the pole grid pg)
and its columns are the OBFs built from the poles in pg with
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Fig. 6. The Bark-exp pole grid for the OBF-MP algorithm (here with
5 radii and 400 angles and upper angle limited to 0.8⇡).
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Fig. 7. Graphical interpretation of the correlation between the target RIR
vector h and the predictors of a pair of complex-conjugate poles {pi, p⇤i }.

transfer functions as in (17) and in (18), thus orthonormal to
the predictors in the current basis �A

k�1 built from the poles
in the current active pole set pA

k�1. The predictor(s) in �k

that has the largest absolute correlation ↵i with the target RIR
vector h is selected and added to the basis �A

k , while the
corresponding pole is included in the set of active poles pA

k .
The correlation for real and complex poles is computed in two
different ways. For real poles, the correlation is the projection
of h onto the predictor 'i (↵i = 'T

i h). For a pair of complex-
conjugate poles {pi, p⇤i } the correlation is the projection of h
on the plane defined by predictors '0

i and '00
i (see Fig. 7),

which are mutually orthogonal, and is given by

↵i =

q
↵0
i
2 + ↵00

i
2 =

q
('0

i
Th)2 + ('00

i
Th)2. (21)

The kth predicted component x̂k is obtained from the last
added predictor(s) using the maximum correlation ↵s as re-
gression coefficient (with s = argmaxi |↵i|), by x̂k = 's↵s,
if the selected pole is real, or by x̂k = ['0

s '
00
s ][↵

0
s ↵

00
s ]

T ,
otherwise. The current target RIR approximation vector ĥk is
obtained by adding the predicted component x̂k to the previous
target RIR approximation vector ĥk�1. As a consequence
of its scalability property, the algorithm can terminate when
the desired number M of predictors in the basis is reached,
or alternatively when the approximation error falls below a
desired value.

A. Algorithmic complexity analysis

Here the asymptotic computational complexity of the OBF-
MP algorithm is analyzed, assuming for simplicity that only
complex poles are included in the pole grid. With reference
to Algorithm 1, there are two operations that determine the
asymptotic behavior of the algorithm. Building the matrix
�k of candidate predictors (step 7) at each iteration is the

most demanding operation, which involves the generation of
D predictors of length N , which sums up to a complexity
of O(3ND) multiplications (cfr. the expressions in (18) and
Figure 4). The second operation to consider is the computation
of the correlation coefficients (step 8), which is a multipli-
cation of the matrix �k with the vector h of length N ,
which results in O(ND) multiplications. The computational
complexity associated to vector updates and other operations is
negligible. The overall complexity of the OBF-MP algorithm
after k = M/2 iterations, is O(2MND) multiplications, i.e.
linearly proportional to the three variables considered. In other
words, the computational complexity increases linearly with
the length of the impulse response, the number of candidate
poles, and the number of iterations. This is comparable with
the complexity of the BU method, whose most demanding
operation is represented by the solution to a set of overde-
termined linear equations, which implies a QR factorization
of a large N ⇥M rectangular matrix (complexity O(NM2)),
followed by a back-substitution of a M ⇥M triangular matrix
(complexity O(M2)) [44]. This is performed for I iterations,
with the overall computational complexity of the BU method
summing up to O(INM2), which is quadratic with respect to
the number of estimated poles M .

V. MODEL AND FILTER COMPLEXITY

In this section, the complexity of the parametric models
presented in the previous sections will be analyzed from two
different perspectives. First, the model complexity (or repre-
sentation complexity) Cm is considered, which is the number
of parameters that is necessary to represent the system under
study. Second, the filter complexity (or simulation complexity)
Cf is considered as the number of operations that are required
to obtain the filter output signal for a given input signal when
the parameter values are available. While a measure often used
in the literature is the model order, it is believed that the
two concepts just proposed are less prone to misinterpretation
and thus preferable for the comparison of different parametric
models in terms of complexity. For simplicity, OBF models
and PF models having complex-conjugate pole pairs only are
considered.

1) Model complexity: The calculation of the model com-
plexity Cm is straightforward for AZ and PZ models. By
referring to (5) and (6), the number of parameters for AZ
models corresponds to the number of numerator coefficients
(Cm = Q + 1), while for PZ models it is the sum of
denominator and numerator coefficients (Cm = P+Q+1). For
PF models, if P/2 is the number of complex-conjugate poles
pairs, the number of parameters required is Cm = 2P , since
each second-order section can be represented with one pole pi
(which is a complex number defined by two parameters, while
p⇤i is given by complex conjugation) and two linear parameters
(denoted by di,0 and di,1 in (12) and in Fig. 2). The same is
obtained for OBF models, in which the all-pass filters and the
normalization factors can be computed from the knowledge
of the poles (see e.g. Fig. 4). The model complexity Cm is
summarized in the left column of Table I.
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TABLE I
MODEL AND FILTER COMPLEXITY

model Cm Cf

AZ Q+ 1 Q+ 1

PZ P +Q+ 1 P +Q+ 1

PF 2P 2P

OBF 2P 3P

2) Filter complexity: The filter complexity Cf is calculated
here as the number of multiplications required to compute
the filter output for a given input signal. For AZ and PZ
models, one multiplication is required for each coefficient, so
that Cf = Cm. This is true also for PF models, in which four
multiplications are required for each second-order section, two
for the second-order IIR filter and two for the linear parameters
(see Fig. 2). In case of repeated poles, the structure has to
be modified, but the number of multiplications remains the
same [35]. For OBF models, the normalization coefficients
c0i and c00i can be combined together with the related linear
parameters ✓0i and ✓00i , so that the only difference between
OBF models and PF models in terms of filter complexity is
determined by the orthogonalization. By including the second-
order all-pass filters in the structure, two more multiplications
per section have to be included (assuming that the input of
the all-pass filter is the output of the previous second-order
IIR filter), summing up to six per section, so that the filter
complexity for P/2 pairs {pi, p⇤i } is Cf = 3P . The filter
complexity Cf is summarized in the right column of Table I.
Notice that an OBF model is more complex than a PF model.
However, these two models span the same approximation
space for the same set of poles, thus leading exactly to the
same filter response when the optimal linear coefficients are
computed using the `2 norm in LS design. It would be then
possible to convert an OBF model into a PF model with lower
filter complexity, as was also suggested in [4].

VI. SIMULATION RESULTS

The modeling performance of the OBF-MP algorithm des-
cribed in Section IV was tested on R = 41 RIRs measured for
several source-receiver positions in three different rooms with
different reverberation times. The RIRs were taken from three
publicly available databases, namely MARDY [45], SMARD
[46], and MIRD [47]. A fourth database of 24 low-frequency
RIRs, called SUBRIR [48], was used separately to evaluate the
modeling performance of the algorithm in the modal frequency
region, as will be discussed later in this section. Their speci-
fications, such as the room volume V , the surface area S, the
reverberation time T , the Schroeder frequency fSch computed
as in (4), and the mixing time tm, are listed in Table II.
According to [49], the most accurate estimate of the mixing
time tm, i.e. the time instant at which the diffuse reverberation
tail begins, is given by a formula related to the concept of
mean free path length, given by tm = 20V/S + 12 (in ms).
Notice that the MIRD database includes RIRs measured in
a room where the reverberation time is controlled by means
of movable acoustic panels, resulting in 3 different values of

TABLE II
DATABASE SPECIFICATIONS

database V (m3) S (m2) tm (ms) T (s) fSch (Hz) RIRs
SMARD 170.4 207.3 28.4 0.15 59 8
MARDY 208.8 255.6 28.0 0.45 93 9

0.16 86 8
MIRD 86.4 129.6 25.3 0.36 129 8

0.61 168 8
SUBRIR 62.3 102.1 24.2 0.5-1.5 >180 24

T in Table II. All target RIRs are sampled at fs = 48 kHz
and truncated to N = 6000 samples. This corresponds to the
shortest ‘useful duration’, defined as the time instant where the
SNR of the measured RIR is 10 dB [50]. In order to compute
the SNR value, the decay curve and the noise floor level were
estimated with the method by Lundeby et al. [51]. Since the
modeling of the delay of the RIR is not part of the scope of
this paper, the direct path component was considered as the
starting point of the RIR. However, a simple delay could be
easily included in the model structure of the OBF model by
setting the parameter d in Fig. 4.

In the simulations presented in this section, an approximated
response ĥ

(r)
, with r = 1, . . . , R, was computed for each

target RIR h(r) using the OBF-MP algorithm. OBF models
obtained with OBF-MP were compared to AZ and PZ models
and to OBF models obtained with the warped BU (wBU) met-
hod suggested in [22], henceforth called OBF-wBU models.
The measure used to compare the performance of different
models with the same model complexity Cm is the normalized
mean-square error (NMSE), averaged over all R RIRs, which
in the time domain is given by

h
NMSE

(dB) = 10 log10
1

R

RX

r=1

khr � ĥrk22
khrk22

, (22)

while the average frequency response NMSE is defined as

H
NMSE

(dB) = 10 log10
1

R

RX

r=1

kHr � Ĥrk22
kHrk22

, (23)

with Hr and Ĥr the Discrete Fourier Transform (DFT) of
hr and ĥr, respectively. The NMSE was computed on the
complete time response (hfull

NMSE

), and on the early (hearly

NMSE

) and
late (hlate

NMSE

) responses separately. The time instant separating
the two parts was set to 25 ms, corresponding to the shortest
mixing time tm for the three rooms considered (see Table II).
Also the NMSE in the frequency response was analyzed for the
frequency range between 0Hz and 20 kHz (H full

NMSE

), as well as
at low/mid frequencies between 0 and 4 kHz (H low/mid

NMSE

), and
at high frequencies between 4 kHz and 20 kHz (Hhigh

NMSE

), in
order to show the differences in performance of the models in
different frequency ranges. Although the Schroeder frequency
in (4) would have been a more natural choice for separating
the frequency range, its value in the databases considered was
found to be below or just above the lower cut-off frequency of
the loudspeaker used for the measurements. The upper limit of
20 kHz was chosen to avoid considering the frequency range
dominated by the influence of the anti-aliasing filter.
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Fig. 8. The average time-domain NMSE in (22) for different pole
allocations and densities of a Bark-exp grid. The darker line indicates
the grid chosen for the simulations.

The Bark-exp grid used in these simulations counts G =
6000 poles with 5 different radii distributed logarithmically
with values % at Nyquist from 0.5 to 0.99, and 1200 different
angles placed from 48Hz to 19.2 kHz according to the Bark
frequency scale [38] with Bark-warping factor w = 0.766.
The limits on the angle were chosen to avoid approximating
the response below the cut-off frequency of the loudspeakers
and above the cut-off frequency of the anti-aliasing filter. As
a result, the grid contains only complex poles. The reason
of such an uneven allocation of the number of radii and
angles is due to the frequency resolution that is required to
approximate low-frequency resonances and to the observation
that increasing the resolution in the angle is more important
than in the radius. Using 1200 angles provides a constant
resolution of 2.5Hz below 500Hz; this seems to be already
a sufficient resolution, as confirmed by the results depicted in
Fig. 8, showing the average full-response time-domain NMSE
over a selection of 10 RIRs, computed for different allocations
of radii and angles of poles in the Bark-exp grid. It should be
noted in the figure that doubling the number of poles in the
grid from 6000 to 12000 does not provide a significant increase
in the accuracy.

The wBU method, also using Bark-warping factor w =
0.766, was slightly modified in order to avoid numerical
instabilities. Although it has been proved in [24] that the BU
method provides a stable IIR filter by conversion of an FIR
filter, we observed cases where the solution with the minimum
conversion error contains poles outside the unit circle. In the
same paper, instabilities were noticed in those cases where
the FIR filter was maximum-phase. However, in those cases,
the conversion error was supposed to be high, so that it was
always possible to find a stable solution with low conversion
error. In [22], numerical limitations were observed in the wBU
method and in the computation of the roots of the poles for a
number of parameters Cm above 300. Since higher values of
Cm were considered in our simulations, the wBU method was
modified by choosing the first stable solution with minimum
conversion error. The number of iterations was set to 100.
For PZ models, the STMCB method [25] with P = Q + 1
parameters has been used, with the initial estimate obtained
with Prony’s method [52]. In order to reduce the number of
unstable solutions, only three iterations were executed.

Fig. 9 presents simulation results comparing the perfor-
mance of the different models for varying model complexity
Cm. The MATLAB code for generating the results presented

in this section is available online1. The NMSE produced by
OBF models obtained with OBF-MP was computed at each
iteration, while for other models the NMSE was computed
only for given values of Cm. In the bottom row of the
figure, the occurrences of unstable solutions given by the wBU
method and the STMCB method are reported. For the wBU
method, the first stable solution was used, as described above,
while for PZ models, unstable solutions were removed from
the calculation of the average NMSE. It is clear that both
methods suffer from instability due to ill-conditioning above
certain values of Cm.

In the left column of Fig. 9, results for the NMSE in the time
domain defined in (22) are given for the complete response,
for the early reflections and for the late reverberation. The
plot on top shows that OBF models provide in general a
better approximation of the target RIR over N samples, with
OBF-MP outperforming AZ models even in the approximation
of the early response (middle plot), except when AZ models
achieve perfect modeling (at Cm = 1200, hearly

NMSE(dB) = �1
for AZ models). Focusing on OBF models, OBF-MP shows an
overall improvement over OBF-wBU, with the former having
a better performance in the early part of the response and the
latter performing better in the late part (bottom plot).

The plots in the right column of Fig. 9 show results in the
frequency domain. Results in the frequency range between 0
and 4 kHz show a clear improvement in the approximation of
the low/mid frequencies given by OBF models, with OBF-MP
and OBF-wBU having a similar performance for small Cm, but
with an increased accuracy for increasing Cm provided by the
wBU method. This does not imply a degraded performance
in the higher part of the spectrum, where OBF models give
an error comparable to the error of AZ and PZ models,
with OBF-MP providing an improvement over OBF-wBU and
the other models, as can be seen in the plot at the bottom
(this improvement is less visible than above, given the larger
frequency range considered).

In general, differences in the performance of OBF-MP and
OBF-wBU are a result of the inherent discretization of the
OBF-MP algorithm; its limited resolution prevents the OBF-
MP algorithm from perfectly matching the frequency and
bandwidth of some magnitude peaks. As a consequence, these
peaks are approximated using poles with a slightly shorter
radius, which corresponds to a larger bandwidth and a shorter
decay of the time response; which is the reason why OBF-
wBU shows better performances at low frequencies and in
the late response. On the other hand, OBF-MP has a higher
resolution at higher frequencies and, as a result, a better
performance in that frequency region and in the approximation
of the early response.

These results can be visualized on the approximated fre-
quency magnitude responses of the example in Fig. 10,
showing the more accurate approximation of low-frequency
resonances provided by OBF models with a Bark-scale reso-
lution compared to AZ and PZ models, with the OBF model
obtained with OBF-wBU performing better than the OBF-
MP, for the reason explained above. However, a large error is

1https://lirias.kuleuven.be/handle/123456789/581178
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Fig. 9. The average NMSE vs. the model complexity Cm. (left) The average time-domain NMSE in (22) for the entire response (top) and
for the early (middle) and late response (bottom). (right) The average frequency-domain NMSE in (23) for the entire frequency range (top)
and for the frequency regions [0, 4] kHz (middle) and [4, 20] kHz (bottom). AZ models (⇤), PZ models (�), OBF models obtained with
OBF-wBU (MMM) and with OBF-MP (�). At the bottom, occurrences of unstable solutions for OBF models obtained with OBF-wBU (left
bars) and PZ models (right bars) are reported (same plot on both columns).

introduced by OBF-wBU at high frequencies, while OBF-MP
is able to better approximate the envelope of the magnitude
response. Looking at the selected pole sets for the different
models, some differences can be observed: for PZ models,
the poles are evenly distributed in the entire Nyquist interval,
while for OBF models, the poles are mostly concentrated in
the low frequencies (and closer to the unit circle), with a
larger concentration in the very low frequencies for OBF-
wBU models. It should be noted that, while the wBU method
allows to control the frequency resolution only by means of
the warping parameter, the pole grid of the OBF-MP algorithm
offers more flexibility in the selection of the candidate poles
and the possibility of incorporating prior knowledge about the
characteristics of the room.

As discussed in Section V, another important aspect to
consider when comparing different parametric models is their
filter complexity Cf. While the filter complexity Cf for AZ
and PZ models equals the model complexity Cm, OBF models
require extra computations (cf. Table I). As an illustrative
example, Fig. 11 shows the error of the different models
as a function of the filter complexity Cf, and should be
compared to the top-left plot of Fig. 9. The corresponding
model complexity Cm for OBF models is reported on the axis
underneath. It can be seen that using OBF models gives a

smaller average NMSE compared to AZ and PZ models also
in terms of filter complexity. Given the equivalence in terms
of filter response between OBF models and PF models, the
number of multiplications for OBF models can be reduced by
using a PF implementation (in which case Cf equals Cm).

In order to perform the same kind of analysis in the
modal region, similar simulations were run on the SUBRIR
database [48], [53]. The SUBRIR database is a collection
of RIRs measured at low frequency using a subwoofer as
a source. Here, a subset of R = 24 RIRs measured with a
Genelec 7050B subwoofer (with frequency range 25-120 Hz)
and a B&K 4133 (1/2”) microphone was used. The RIRs were
downsampled to fs = 800Hz and truncated to 1.5 s (corre-
sponding to the maximum reverberation time, as reported in
Table II and in [48]).

The OBF-MP grid used is this case has 600 angles uni-
formly placed from 0 to ⇡ (the Bark scale below 500Hz has
uniform resolution) and 10 radii logarithmically distributed
from 0.75 to 0.999, while the BU method is applied without
prewarping. The top plot of Fig. 12 shows the error of the
different models as a function of the filter complexity Cf,
similarly to Fig. 11. As in the previous examples, although
OBF-MP models and OBF-BU models perform similarly, the
BU method leads to numerical conditioning problems and to
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Fig. 10. Approximated magnitude responses for (from top to bottom)
an AZ model, a PZ model, OBF models with the wBU method and
with the proposed method using a 5 ⇥ 1200 Bark-exp pole grid,
together with the corresponding selected pole set (Cm = 300). The
target response (from MARDY) is shown in gray.
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Fig. 11. The average time-domain NMSE in (22) for the entire
response for different values of filter complexity Cf. AZ (⇤), PZ
(�), OBF-wBU (MMM) and OBF-MP (�) models. The filter complexity
corresponds to Cm for AZ and PZ models, while the corresponding
values of Cm for OBF models are shown in the additional axis.

unstable solutions for values of the model complexity as low
as Cm = 240. PZ models were not considered here, as the
STMCB algorithm provided unstable solutions almost in every
situation. In this case, the improvement obtained with OBF
models with respect to AZ models is more accentuated than in
the previous examples. The reason for this is that in the modal
region the number of room resonances is low and the models
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Fig. 12. SUBRIR database. (top) The average time-domain NMSE in
(22) for the entire response w.r.t. the filter complexity Cf. (bottom)
The average frequency-domain NMSE in (23) between 20Hz and
130Hz w.r.t. the filter complexity Cf. AZ (⇤), OBF-BU (MMM) and
OBF-MP (�) models.
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Fig. 13. SUBRIR database. The set of 40 complex-conjugate pole-
pairs (Cm = 160) obtained with OBF-MP (left) and the BU method
(right) in the approximation of one RIR (fs = 800Hz).

based on OBFs provide a more meaningful approximation of
a RTF than AZ models, as discussed in Section III.

The comparison of the performance of OBF-MP and OBF-
BU in the frequency region of the loudspeaker, instead, pre-
sents significant differences (bottom plot). Our interpretation
is that the ill-conditioning problems of the BU method are
worsened by the fact that the spectrum above 130Hz contains
only noise. The result is that also poles above that frequency
are estimated. The poles selected by the well-conditioned
OBF-MP algorithm, even though the poles in the grid are
placed from 0 to ⇡, are instead well concentrated within the
range of the loudspeaker response, as shown in Fig. 13.

VII. CONCLUSION AND FUTURE WORK

The use of OBF models for obtaining a compact and
accurate approximation of a target RIR has been motivated
by the desirable properties derived from orthogonality, such
as an improved numerical conditioning in the estimation of
the numerator parameters of the transfer function for a fixed
denominator. However, also OBF models are nonlinear in
the parameters, so that the estimation of the poles is still
a nonlinear problem. The state-of-the-art technique, the BU
method, based on an FIR to IIR conversion which exploits the
orthogonality property of OBF models, has some restrictions.
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In this paper, the novel algorithm, termed OBF-MP, has
been studied and compared to the BU method in terms of
modeling performance. Simulation results for RIRs measured
in different rooms showed that OBF models are able to
achieve a reduction in the approximation error compared to
conventional parametric models for the same model and filter
complexity, provided that the estimation of the pole parameters
is accurate. Although the two algorithms considered for the
estimation of the poles in an OBF model seem to have similar
modeling capabilities, they present many differences. While
the BU method suffers from numerical conditioning problems
and instability, the OBF-MP algorithm always delivers stable
and well-conditioned OBF model estimates. Indeed, the OBF-
MP algorithm bypasses the nonlinear problem of estimating
the poles of an OBF model by defining a set of candidate
stable poles and by selecting a complex-conjugate pole pair
at each iteration based on the correlation between the target
RIR and the basis functions built from the candidate poles.
Orthogonality of the basis functions assures that this operation
is numerically well-conditioned.

Moreover, while the BU-method requires the number of po-
les to be determined before estimation, the OBF-MP algorithm
is scalable, in the sense that a new pair of complex-conjugate
poles can be estimated independently of the poles estimated at
previous iterations. Scalability turned out to be related to the
analogy between OBF models and the definition of the RIR
as an infinite summation of exponentially decaying sinuosoids
independent from each other. The OBF-MP algorithm follows
this interpretation by creating an approximation of the target
RIR by adding a pair of OBFs and reducing the approximation
error at each iteration. Differences in the performance between
OBF-MP and OBF-BU in different time and frequency regions
are a consequence of the approach to the pole estimation pro-
blem. While the BU method does not make any assumption on
the position of the poles and controls the frequency resolution
only by prewarping of the target RIR, the grid of candidate
poles of the OBF-MP algorithm is an important design choice
that adds a layer of flexibility. Any desired frequency resolu-
tion could be obtained, motivated by prior knowledge about
the acoustics of the room or by application requirements.
In this paper, the Bark-exp grid was introduced to provide
an accurate approximation at low frequencies, following the
physical interpretation described above. However, the Bark-
exp grid provides low resolution at high frequency, so that
for larger model complexities, i.e. after the dominant modes
and the spectral envelope have been approximated, pole grids
with higher resolution at high frequencies can become more
efficient. A possibility to overcome this issue could be to refine
the estimation of the poles at each iteration using numerical
optimization methods. This possibility and the inclusion of
prior knowledge about the system in the estimation problem
is left for future work.

The computational complexity of the OBF-MP algorithm
is determined by the length of the target RIR sequence, the
number of poles in the grid and the number of model parame-
ters, and it is comparable with the algorithmic complexity of
the BU method. Different approaches have been presented for
reducing the complexity of the BU method and overcome its

limitations, such as subband modeling [21], polyphase design
and successive segmentation in the time domain [27]. It is
believed that such extensions could be applied to the OBF-MP
algorithm as well. Another interesting aspect is the possibility
of exploiting the concept of common acoustical poles, as
considered e.g. in [11] and [54]. The OBF-MP algorithm
was modified in [53] in order to estimate a common set of
poles from measurements taken for different source-receiver
positions inside a room. It has been shown that a significant
reduction in the number of parameters necessary to model the
RTF for different source-receiver positions can be achieved.
A block-based version of the OBF-MP algorithm has been
proposed in [55] and applied in [56] to the estimation of the
poles of an adaptive IIR filter based on OBFs from input-
output data of a SIMO room acoustic system. Results show
that poles can be accurately estimated from white input-output
data as well, offering a reduced approximation error compared
to FIR filters, with the same convergence rate and complexity
of the adaptation algorithm for the linear coefficients, but
an improved robustness to the variability of the RTF for
different source-receiver positions. Further research will focus
on understanding the relation between the estimated common
poles and the acoustic characteristics of the room, and on
estimating the poles from nonstationary input-output data.
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