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Abstract
 

 

It is a well-known fact that changes in the environmental and operational conditions may 

seriously influence the performance of structural health monitoring (SHM) methods. The 

present paper demonstrates how certain environmental and operational variations affect 

the damage detection in the blade of an operating wind turbine. The considered vibration-

based SHM setup was measuring blade accelerations over a period of 3.5 months, while 

simultaneously recording the environmental and operational conditions. In the period, a 

damage of three different sizes was introduced by gradually cutting open the trailing edge 

of the blade. The damage index used in the study is composed of Mahalanobis-squared 

distances based on the covariance matrix of the accelerations. It is demonstrated how 

temperature and wind speed along with rotational speed and pitch can mask the damaged-

induced changes, hence leading to false-negative classifications. It is found that the 

highest correlation exists between the damage index and variabilities in the temperature 

and rotational speed. Limiting the operational variabilities by using correlated 

measurements and filtering out the environmental variabilities by principal component 

analysis provides a clear detection of the three introduced damages. 
 

 

1.  Introduction 
 

The first objective of vibration-based structural health monitoring (SHM) is to detect if 

damage is present in the structural system based on a measured dynamic response (1). 

Many of the developed methods operate on the premise that structural damage will alter 

the dynamic response compared to that of a measured reference state. The structure is 

considered damaged if the two states differ by more than a pre-determined threshold. 

However, challenges arise when changes in the measured response are due to 

environmental or operational variabilities, as these can mask the ones caused by structural 

damage, hereby leading to false-negative classifications (3), (4).  

    This paper examines the influence and possible mitigation of certain environmental 

and operational variables in the context of detecting damage in an operating wind turbine 

blade. The damage detection is conducted using a damage index composed of 

Mahalanobis-squared distances based on the covariance matrix of accelerations (2). This 

M
or

e 
in

fo
 a

bo
ut

 th
is

 a
rt

ic
le

: 
ht

tp
://

w
w

w
.n

dt
.n

et
/?

id
=

23
27

3



2 

 

damage index has previously proven successful in the same SHM setup (2), where blade 

accelerations were measured over a period of 3.5 months on a fully operational Vestas 

V27 wind turbine. The detection study in (2) employed the transient response induced by 

an electromechanical actuator mounted on the blade, while the current study applies 

solely the rotational motion of the blade. In the measurement period, the environmental 

and operational conditions were recorded, while a damage of three different sizes was 

introduced by gradually cutting open the trailing edge of the blade. The recorded 

environmental and operational conditions are compared individually to the damage index 

with the objective of outlining the influence of each variability on the damage detection. 

The variabilities that influence the damage detection are presented together with the 

damage index to make any tendencies apparent.  

    The paper is built as follows; the experimental setup is described in section 2, followed 

by the theory behind the damage detection scheme in section 3. The influence of the 

environmental and operational variabilities are presented in section 4 together with some 

damage detection results, and, finally, a discussion and some concluding remarks are 

given in section 5 and 6. 

 

2.  Experimental setup 

 
The Vestas V27 wind turbine treated in this study, seen depicted in figure 1a, has been a 

subject of multiple SHM studies and is, as such, described thoroughly in previous work 

(2), (5), (6). Consequently, only a summary of the experimental campaign is given here.  

    The campaign was conducted throughout the winter of 2014/2015 over a period of 3.5 

months, where a damage of three different sizes was introduced in the trailing edge of the 

blade. The initial damage stretched 15 cm and was extended first to 30 cm and then to 45 

cm. The largest damage of 45 cm is illustrated in figure 1b. 

 

 
          a)  

            
b)  

 

Figure 1. Vestas V27 wind turbine; a) ground view; b) the 45 cm damage.  
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    The vibration response of the blade was measured normal to its surface using 11 

accelerometers located at the positions depicted in figure 2, which also shows the location 

and extent of the three damages. Azimuth angle, pitch angle and rotational speed were 

also measured and recorded.  

 

 
Figure 2. The locations of the 11 accelerometers marked with red circles and number, while the 

position and extent of the damage are marked with the red, blue and orange lines. 

 
    The measurement system sampled with a frequency of 16,384 Hz over a period of 30 

seconds every 5 minutes. The blade was equipped with an electromechanical actuator, 

which is not used in this study, as only the rotational motion of the blade is utilized in the 

damage detection analyses. The impact from the actuator has fully decayed after 13.5 s 

and figure 3 shows a typical vibration signal for the last 16.5 s from accelerometer 1.  

 

 
Figure 3. Typical acceleration signal for 16.5 seconds from accelerometer 1. 

    Simultaneously with the vibration measurements, the weather data was recorded from 

a 45 m high meteorological mast located 60 m from the wind turbine. These recordings 

contained wind speed, temperature, precipitation and wind direction averaged over one 

minute. The operating condition, produced power and yaw angle were also extracted from 

the control system in the wind turbine.   
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 3.  Damage detection methodology 
 

The detection scheme used in this study is based on a semi-supervised approach, where 

the accelerations from a healthy reference state are known. These accelerations are 

employed to create a baseline, which any new experiments are tested against on the 

premise that significant deviation indicates damage. Following (2), a change in measured 

vibration signals is reflected in the covariance matrix taken from those signals, which 

thus provides a measure of the similarities between each sensor. The covariance matrix 

of accelerations for N sensors is a symmetric � × � matrix and the amount of unique 

elements in the matrix is equal to ܥ = �ሺ� + ͳሻ/ʹ. The unique elements are stored in a 

so-called feature vector ݕ� ∈ ℝ�×ଵ for each experiment � ∈ [ͳ, ݉], with m designating 

the total amount of experiments. The Mahalanobis-squared distance is computed for the ��ℎ experiment by 

(�ݕ)ଶܦ    = �ݕ) − �)��−ଵ(ݕ� − �),   ሺͳሻ 

 

where � ∈ ℝ�×ଵ and ∑ ∈ ℝ�×� , respectively, designate the mean and covariance of the 

training set, ݔ ∈ ℝ�×�, obtained from ݊ healthy state feature vectors. The Mahalanobis-

squared distance functions as the damage index, as it provides a quantified difference 

between the training set and a new experiment.   

    To classify when the structure is damaged, a threshold based on extreme value statistics 

is applied by fitting distribution functions to a training set of healthy data and setting the 

threshold based on a commonly applied confidence level of � = Ͳ.99 (2).  

    The Mahalanobis-squared distances will contain environmental and operational 

variabilities, which must be accounted for in the post-processing. Principal component 

analysis (PCA) is a well-known linear method for filtering out the environmental effects 

by projecting the feature vector into subspaces of minor and major components (5). If the 

major components have been identified to contain the variabilities, these are removed, 

hence only the minor components are kept when computing the Mahalanobis-squared 

distances. A common choice of removal is 99.9% of the variance belonging to the major 

components (4).  

 

4.  Damage detection results 

 
The measured environmental and operational data are used to expose the variabilities 

affecting the damage detection. The parameters that influence the damage detection are 

presented in section 4.1, and the damage detection results, where the parameters are 

accounted for using PCA, are presented in section 4.2.  

 

4.1 Environmental and operational effects  

 
To characterize the influence of the environmental and operational variabilities on the 

damage detection, only one parameter is allowed to vary at a time, while the remaining 

parameters are held constant. The parameters tested for having an impact on the damage 

detection index are: temperature, wind speed, pitch angle and rotational speed. 

Temperature and wind speed are well-known to cause issues in SHM schemes (3), (4), 

while the mentioned operational parameters intuitively change the conditions between the 
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measurements. The pitch angle will alter the measurement direction of the accelerometers 

with respect to a ground-fixed coordinate system, while the rotational speed will alter the 

static deflection of the blade due to changed wind pressure. It needs to be noted that both 

considered operational parameters are automatically set by the wind turbine control 

system, depending on the instant wind speed. 

    The correlation between the damage index and the environmental and operational 

variabilities are presented using only healthy state measurements to omit any non-linear 

effects the damage can introduce. Hence, healthy state samples are used for both training 

and testing. In each of the cases, 60 samples with the lowest varying environmental or 

operational values are used for training, leaving the remaining samples for testing. 

    Figure 4a, 4b and 4c illustrate the tendencies between the damage index and the 

temperature, wind speed and rotational speed. All three parameters show a clear 

correlation with the damage index, with the highest correlation appearing for the 

temperature and rotational speed. The pitch angle does not show a clear tendency when 

illustrated, but analyses show that it has a significant impact on the detection results if not 

accounted for. 

 

  
a)  

 
b) 
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c) 

 

Figure 4. Tendencies between the variabilities (red dots) and the damage index (grey bars);  

a) Temperature at 32 RPM; b) Wind speed at 32 RPM; c) Rotational speed.  

 
4.2 Detection results 

 
This section presents two damage detection analyses based on the two operational 

regimes (32 RPM and 43 RPM) of the wind turbine. Only samples with a rotor RPM in 

the range of [31.95, 32.05] and [42.10, 43.10], both within a pitch angle range of [-0.5, 

0.5], are used in the analyses. The environmental variabilities are allowed to vary, as these 

are accounted for by PCA. For the 32 RPM case, these specifications yield the following 

number of measurements: 856 (healthy), 59 (15 cm damage), 95 (30 cm damage) and 106 

(45 cm damage). The training set in equation 1 is computed based on 80% of the healthy 

state data, which was found in analyses to provide the fewest amount of false-positives. 

This corresponds to the finding in (4), where at least 60-80% of healthy state data in the 

training was found to be optimal. The remaining healthy state data is used for testing the 

threshold.   

    Three probability density functions are fitted to the training set to find a distribution 

function representing the data, such that a threshold can be computed based on a chosen 

confidence level. This approach is preferable when outliers might exist in the training set, 

as thresholds based on, for example, maximum values herein are sensitive to disturbances. 

Figure 5 depicts three distribution functions, Weibull, Gumbel and Frechet, fitted to a 

normalized histogram of the training set computed from 32 RPM measurements.  
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Figure 5. A histogram of training data from the 32 RPM regime and the tested probability 

distribution functions, Weibull, Gumbel and Frechet.  

    It is evident from figure 5 that a Frechet distribution provides the lowest error for the 

32 RPM measurements and the same was observed for the 43 RPM case. Hence, the 

threshold is computed for the 32 RPM and 43 RPM regimes based on the Frechet 

distribution with the earlier mentioned confidence level of � = Ͳ.99. 

    The thresholds are plotted in figure 6 and 7 with a blue horizontal line together with 

the respective Mahalanobis-squared distances computed based on the 32 RPM and 43 

RPM regimes. Some expected false-positives exist in the healthy state since the threshold 

is computed based on a confidence level of � = Ͳ.99.  

 

  
Figure 6. Mahalanobis-squared distances marked with grey bars computed from 32 RPM data 

series. The threshold is marked with a blue horizontal line, and the different states are marked with 

red vertical lines. 
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Figure 7. Mahalanobis-squared distances marked with grey bars computed from 43 RPM data 

series. The threshold is marked with a blue horizontal line, and the different states are marked with 

red vertical lines.  

    The damage in the second state, a 15 cm crack, is detected 100% of the time when 

using the 43 RPM data series, while 45% false-negatives exist for the 32 RPM series. It 

is noted that when PCA is not included, 61% false-negatives exist for the 32 RPM regime. 

The 15 cm damage is, thus, only consistently detectable for the 32 RPM regime if a low 

confidence level is set on the number of allowable outliers to distinguish between healthy 

and damaged states. However, a low confidence interval increases the threat of a false-

positive detection, thus setting of the confidence level is a trade-off between the allowable 

risk and the associated cost. 

    The 30 cm and 45 cm cracks are clearly detected using both operational regimes, as 

only one false-negative exist when using the 32 RPM regime to detect the 30 cm crack. 

When comparing figures 6 and 7, it is seen that the 43 RPM regime provides higher 

differences between the Mahalanobis-squared distances in the healthy and damaged states 

compared to the 32 RPM regime. Thus, detection of damages in wind turbine blades based 

on higher rotational speeds seems preferable.  

 

5.  Discussion 

 
A comparable damage detection analysis using the same covariance-based feature was 

performed in (2), where the earlier mentioned actuator was used for detection in the same 

setup during turbine operation at 32 RPM. In the study, all three crack stages were 

successfully detected without any false-negatives using a similar approach of limiting the 

range on the rotational speed and pitch, and applying PCA for dimensionality reduction. 

When comparing the detection resolution of the 32 RPM case in the two studies, the 

actuator-based approach seems superior (as expected), but it naturally requires that the 

structure is accessible for mounting the actuator.    
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6.  Conclusions 

 

The present paper demonstrates the correlation between a Mahalanobis distance-based 

damage index and environmental and operational parameters, namely, temperature, wind 

speed, rotational speed and pitch angle. The highest correlation is found to exist for the 

temperature and rotational speed.  

    It is demonstrated that a 15 cm long trailing edge damage can be detected (albeit with 

a substantial amount of false-negatives for the 32 RPM regime) using only the rotational 

motion of the blade by limiting the operational parameters and applying PCA analysis to 

reduce the environmental effects. Additionally, it is demonstrated that when the damage 

is increased to 30 cm and 45 cm the detection becomes unambiguous. Finally, it appears 

that higher rotational speeds provide a higher damage detection rate, as the difference 

between healthy and damaged state increases. 
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