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Abstract — Good quality images are necessary for 
electroluminescence (EL) image analysis and failure 
quantification in solar panels. In this work, a method for 
determining image quality in terms of more accurate failure 
detection in PV panels through EL imaging is proposed. The goal 
of the paper is to highlight the different methods for image 
quality improvement and to determine if the enhanced image 
provides more useful diagnostic information for accurate micro 
cracks and fracture detection. From the work carried out in this 
paper, it is to be noted that averaging technique helps in 
improving the SNR value. Additionally, subtracting the 
background from the obtained averaged EL image proves to be 
an enhancing method for cell fracture identification and more 
number of edges are also detected which can be useful for micro 
crack quantification. 

 

I. INTRODUCTION 

Electroluminescence (EL) imaging of photovoltaic (PV) 
panels is a non-destructive imaging measurement technique 
that has proven to be a useful tool for diagnosing panel faults 
which are otherwise difficult to detect [1]. The advantage of 
EL imaging techniques is its quality control, better resolution 
and better accuracy of detecting different types of faults in a 
PV panel compared to the other existing imaging techniques. 

Most often, EL imaging is used as a qualitative/visual 
diagnostic tool, however, it presents significant potential to 
quantify the magnitude or severity of degradation and defects, 
through model based or image analysis methods [2]. 
Moreover, EL imaging can be used to quantify the percentage 
of partially and totally disconnected solar cell failures by 
analyzing electroluminescence images taken under high and 
low forward bias current [3]. Hence, for performing an 
effective failure quantification based on image analysis 
method, an accurate image is needed that can provide some 
useful information for PV diagnostics. 

Image quality analysis, enhancement and correction are 
essential steps before quantitative image analysis [4], [5]. 
They allow EL images measured in different conditions, to be 
normalized. If omitted, remaining artefacts can be mistaken 

for device defects (e.g. shunts) and spatial inhomogeneity can 
be confused with device performance degradation. 

One of the goals of this paper is to increase the signal-to-
noise ratio of the image, and to determine the most efficient 
image enhancement method for detecting failures more 
accurately. Once the image quality analysis, enhancement and 
correction are performed on the EL image, a method to 
identify and quantify PV failures (solar cell cracks, shunting 
or damaged cell interconnects) can be applied [2].  

This paper focuses on giving an insight at different 
measures, other than SNR for EL image enhancement for 
failure quantification and PV diagnostics. The paper structure 
follows with a methodology section, which describes the 
different image enhancement methods used for image quality 
evaluation and performing failure quantification methods to 
these enhanced EL images. The methodology section is 
followed by a brief description about the experimental setup 
and all the different test cases, which were used for validating 
the mentioned goals followed by the results section and 
conclusions. 

II. METHODOLOGY 

A. Image Quality Evaluation by Signal-to-Noise Ratio 
The SNR represents the quality of the captured signal (here 

EL) over a noise signal. It categorizes the ratio of usable to 
unusable signal and its inverse is directly related to the 
relative uncertainty of pixel brightness. Depending on the 
definition of signal, noise and application, different 
approaches to calculate the SNR can be used. Hence, to 
assess the measurement uncertainty derived from EL images, 
the SNR is introduced and evaluated. SNR of the EL image 
was calculated as (1) [6]: 
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This source of noise present in the acquired image can be 
due to the statistical fluctuations in the number of photons 
emitted [4]. Noise can also occur due to spatial non-
uniformity in the camera sensor sensitivity, due to thermal 
cosmic energy radiation, noise due to defective pixels [5] [7]. 



 

According to the IEC TS 60904-13 standards (IPNW/TS 82-
901), the minimum acceptable SNR50 value for indoor lab 
measurements should be 45, for outdoor measurements; it 
should be 5, and for industrial and process control; it should 
be 15 [6]. 
B. Image Quality Enhancement Methods 

EL images were processed by averaging the captured 
repeat images and by removing background noise with an 
intent to reduce noise and other unwanted pixels and 
increasing the accuracy for failure quantification.  

Since, a minimum of two images needs to be considered for 
the SNR calculation, different methods were simulated for 
measurement values:  

1. ELa,b=EL1,2 
2. ELa,b=EL(a,b) (averaging  repeats-(a+b=16) 
3. ELa,b=EL1-BG1, EL2-BG2 
4. ELa,b=ELa-BGa, ELb-BGb 

Method 1 uses two active images (when Isc bias magnitude 
of current is feeded through the panels) for computing SNR 
calculation. Method 2 uses 16 EL images and is averaged for 
reducing the unwanted pixels in the image. The third and the 
fourth method computes SNR calculation by using active 
images and subtracting the Background (BG) image (when no 
current is feeded through the panel). 

It is to be noted that method 3 and 4 were not considered, 
for SNR calculation method calculation due to its 
inapplicability on the derived formula, nevertheless, the 
image quality analysis and SNR computation will be carried 
based on aforementioned methods and then the resultant 
image from it will further be used for failure quantification. 
C. Failure Quantification Benchmarks 

After, the SNR and image quality enhancement technique 
were implemented, the EL images were analyzed. Two basic 
micro crack and cell fracture detection and quantification 
methods were applied, and applied to the original images with 
the enhanced ones. These methods were applied to verify if 
the image quality enhancement methods work and a higher 
SNR proves to be a better diagnostic tool for failure 
quantification: i) cell crack size quantification by image 
thresholding; and ii) micro crack detection by image edge 
detection.  

Cell crack size quantification by image thresholding  
Quantification of cracked cell areas was calculated by 

separating the bimodal EL image histogram into two sub-
distributions corresponding to lower EL intensity cell areas 
(most likely cracked), and higher EL intensity cell areas 
(mostly non-damaged cell areas) [8]. The separation threshold 
TH/(L-1) was calculated using Otsu’s method where, the EL 
image was converted into a binary image by replacing all 
values above a globally determined threshold with 1 and 
setting all other values to 0 [9]. 

 
 

Microcrack detection by image edge detection. 
A Sobel edge detection method is also used to detect the 

edges in the obtained EL images by computing an 
approximation of the gradient of the image intensity function 
due to its easy implementation. It effectively highlights noise 
found in images as edges and can be used as an effective tool 
for micro crack detection [10] [11].              

III. EXPERIMENTAL SETUP AND TESTS PERFORMED 

Investigations were performed on 36-cell crystalline silicon 
PV modules, which were artificially degraded to induce cell 
cracks in a controlled manner. Three panels (Panel A, Panel B 
and Panel C) were used for experiments with increasing level 
of faults. The PV modules were imaged and acquired with 
two SWIR In-GaAs cameras, before and after degradation in 
our indoor imaging lab facility at Isc bias at different exposure 
times. Various test cases were investigated according to table 
1. Two cameras were used for capturing EL measurements. 
The technical specifications for both the cameras are 
described in table 2. 

Firstly, a background image was taken under the same 
conditions as the EL images but without forward biasing the 
cell. Certain repeats were also taken for assessing the SNR 
values of the obtained EL images. SNR-corresponding to 
quality of the captured image was then applied based on 
equation (1).  

Table 1: Investigated experimental test cases 
Test 
cases 

Parameters 

Nr. Panels Current 
level 
(A) 

Exposure 
time (ms) 

Number 
of 

repeats 
(NOR) 

Camera 

1 B Isc bias 5-35 - 1 & 2 
2 B Isc bias 10,20, 30 2-16 1 & 2 
3 A,B,C Isc bias 15 2- 16 2 
4 B,C Isc bias 13, 15 2-16 1 & 2 
5 B,C Isc bias 15 - 2 
 
Table 2. Technical specifications of the cameras 

Camera 1  
Parameter Values Values 

Sensor type In GaAs In GaAs 
photodiode 

Pixel size 15 µm×15 µm 15 µm×15 µm 
Optical resolution 640x512 pixels 640x480 pixels 
Maximum frame 

rate at full 
resolution 

301 Hz Programmable up 
to 120 Hz, 25ns 

resolution 
Exposure time 1 µs to 200 ms 1 µs to 1/frame rate 
Spectral range 900 nm to 1700 nm 400 nm to 1700 nm 

Bit depth 14 bits 16 bits 



 

IV. RESULTS AND DISCUSSION 

Case studies investigated: i) SNR as a function of exposure 
time (IIT); ii) SNR as a function of averaged images; iii) SNR 
as function of camera sensitivity iv) Evaluating image quality 
for cell fracture detection; v) Evaluating image quality micro-
crack detection. 

 
SNR as a function of exposure time  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 1 SNR values at different exposure times for Panel B 

imaged with camera 1 & 2. 
 
The aforementioned Fig. 1 displays the SNR value as a 

function of the exposure time. As it can be seen from the 
figure, that the SNR value increases with increasing exposure 
time and the trend remains the same for both the cameras. On 
the other hand, the image is saturated after a specific exposure 
value. It is to be noted from the analysis that increasing 
number of SNR value for a given test scenario doesn’t 
necessarily help extracting more useful information for failure 
quantification as after a certain exposure value, the image 
becomes saturated and overexposed. 

 
 
 
 
 
 
 
 
 
 
Fig. 2 Right side image represents the histogram of Panel B 

imaged with camera 1 and left side image with camera 2. 
 
Hence, there has to be a trade-off between the chosen 

exposure time and SNR value, which is suitable for providing 

sufficient diagnostic information for further failure 
quantification. Since two different cameras are used, it can be 
seen from the histogram in Fig.2 that the camera gain is 
configured to be identical to each other while performing 
experiments. The image pixel intensities for both the graphs 
in Fig. 2 is different because of its different bit depth. 
 

SNR as a function of averaged images 
It can be seen in Fig. 3 that the magnitude of sensor noise 

level decreases with increasing number of repeats. Since 
noise, level is inversely proportional to the SNR value. 
Hence, SNR is the metric, which quantifies the noise in the 
image. 

Consequently, by averaging the EL images, unwanted noise 
can be reduced, but not eliminated. The standard deviation of 
the sensor noise reduces with increasing number of repeats 
that can be seen in Fig. 5, inferring in an enhanced image 
quality. On the contrary, the same decrease in the noise 
cannot be replicated and be seen on the EL images as shown 
in Fig. 4, because the relative amplitude of the noise 
compared to that of the signal is very low. The same analysis 
was done on other panels and were imaged with both the 
cameras and the trend was noted to be the same for all of 
them. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 SNR as a function of number of repeats imaged for 

Panel A, B and C at 15ms exposure time, Isc bias with 
camera 1.  

One of the reasons for this little difference is due to the 
fact, the sensor noise assumed to be Gaussian distributed, 
reduces as the images are averaged but their Pixel to SNR 
value saturates after a given point. The noise level reduction 
and an increase in SNR value is evident from Fig. 3 and Fig. 
5. The same analysis cannot be witnessed on the EL images 
displayed in Fig. 4. 

Hence, there has to be another measuring metric, which 
can quantify the effectiveness of this noise reduction and give 



 

an estimate about if the averaging would be useful for PV 
diagnostics, if yes, then how many repeats are sufficient. 

This can play a major role when talking about aerial PV 
inspections through drones. More number of repeats is 
inversely proportional to the flight time. Hence, cell crack 
size quantification by image thresholding and micro crack 
determination by image edge detection would be one of the 
most bolstering metric to estimate the minimum number of 
repeats required for extracting useful information for PV 
diagnostics. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 EL images of Panel A imaged with camera 1 at 15ms 
IIT. Left side displays the original image and right side 
Averaged image with 16 number of repeats. 

 
 
 
 
 
 
 
 
Fig 5. Graphs displays Noise level as a function of standard 

deviation for Panel B at 15ms imaged with camera 1. Left 
side graph (Original image) and right side graph (Averaged 
images with 16 NOR). 

Fig. 6 Varying SNR values as function of cameras 
calculated for panel B imaged at different exposure times for 
16 number of repeats with camera 1 and 2. 

SNR evaluation as a function of camera sensitivity 
Fig. 6 highlights the SNR value as a function of averaged 

images taken at different exposure time. 
Camera 2 provided higher SNR values due to its higher 

sensitivity in the SWIR spectrum and lower sensor noise 
compared to camera 1. Hence, the camera also plays a vital 
role when evaluating the SNR with respect to image quality 
improvement. 
Cell Fracture Evaluation 

Fig. 7 shows the histogram normalized module-level EL 
image pixel intensity calculated using Otsu’s method as a 
function of pixel counts for separating the active and the 
inactive area.  

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 7 Histogram displaying Normalized module-level EL 
image pixel intensity as a function of pixel counts for (i) 
Original (ii) Averaged and (iii) Averaged-Background images 
for panel B. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Graph displaying effect of the edge detection 

technique on the (i) Original (left side image) (ii) Averaged-
Background (right side image) for panel B imaged with 
camera 1. 

It is clear from Fig. 8 and Fig. 9 that the binary image mask 
of the Averaging-Background image displayed based on 4 in 
subsection B is able to detect more number of cell fractures 
compared to the original image. 
Micro-crack Quantification Evaluation 
The sum of the edges detected with increasing number of 

repeats in the averaged images improves marginally 
compared to the original images with Sobel method. EL 



 

images of panels B and C, which has sustained cell cracks 
due to thermo-mechanical stress imaged by camera 1, can be 
seen in Fig 10 and Fig. 12. Same procedure was repeated with 
camera 2 as well for checking if the trend of micro crack 
detection remains the same for both the cameras.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Graph displaying effect of the edge detection 
technique on the (i) Original (left side image) (ii) Averaged-
Background (right side image) for panel C imaged with 
camera 1. 

 
 
 
 
 
 
 
Fig. 10 EL images of panel B, which has sustained cell 

cracks due to thermo-mechanical stress imaged by camera 1. 
left) original image; middle) averaged image; right) averaged- 
background image. 
 
 
 
 
 
 
 
 

 
 
Fig. 11 Graph displaying effect of number of repeats on the 

edge detection technique used in the EL measurement for (i) 
Original (ii) Averaged (iii) Original-BG and (iii) Avg-BG 
images. Left side graph is imaged by camera 1 and right side 
graph by camera 2 for Panel B. 

 
It can be seen from the graphs in Fig. 11 and Fig. 13 that 

more edges can be detected in averaged-background images 
compared to the averaged and original image. Averaging the 
EL images and subtracting the background from the original 
EL image compels the unwanted noise to be reduced.  

Even though, the constant noise reduction is not evidently 
visible on the EL images but it helps detecting more number 

of cracks, which is useful for further PV diagnostics. The 
difference in sum of the edges detected can be seen in the 
regions showing red-cyan color points in Fig. 14.   

Finally, the failure detection algorithms used in this paper 
need to be modified and flexible which can take into 
consideration the effect of ambient noise on the EL 
measurements during outdoor experiments. 

 
 
 
 
 
 
 
 
Fig. 12 EL images of panels C, which has sustained cell 

cracks due to thermo-mechanical stress imaged by camera 1: 
left) original image; middle) averaged image; right) averaged- 
background image. 

 
 
 
 
 
 
 
 
 
 
Fig. 13 Graph displaying effect of number of repeats on the 

edge detection technique used in the EL measurement for (i) 
Original (ii) Averaged (iii) Original-BG and (iii) Avg-BG 
images. Left figure is imaged by camera 1 and right side 
figure by camera 2 for Panel C. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Fig. 14 Overlapping of Original and Averaged-Background 
images for Panel B imaged with camera 1. The difference in 
the sum of edges detected can be seen by the red-cyan color 
in the image. 

V. CONCLUSIONS 

SNR is a metric, which is useful for evaluating the signal 
quality in an image, but it depends on multiple experimental 
factors and cannot be the only metric used for PV diagnostics. 

With increasing exposure time, the SNR value is observed 
to be increasing but at the same time, the EL image also gets 
saturated with increasing exposure time. Hence, a trade-off 
between the increasing exposure time and image quality for 
PV diagnostics needs to be decided in such a way that it gives 
the best optimal solution for fault identification and 
quantification of PV diagnostics. 

Based on the work carried out so far, averaging helps in 
improving the SNR value but subtracting the background 
from the obtained averaged EL image proves to be a better 
tool for improving the image quality in terms of micro crack 
detection efficiency. 
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