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Parameter Estimation for Stochastic Channel
Models using Temporal Moments

Ayush Bharti, Ramoni Adeogun, Troels Pedersen
Wireless Communication Networks Section, Aalborg University, Aalborg, Denmark
E-mail: [ayb, ra, troels]@es.aau.dk

Abstract—This paper proposes a method to infer on the
parameters of a stochastic channel model from observations of
temporal moments without multipath extraction. The distribution
of the temporal moments is approximated to be Gaussian,
and sampling is carried out from the approximate posterior.
The temporal moments are found to be informative about the
model parameters, as the parameters can be recovered from the
samples.

I. INTRODUCTION

Parameters of stochastic multipath models, since the early
works in [1] and [2], have predominantly been estimated by
first extracting multipath parameters (delays, gains, etc.) and
then estimating model parameters in a second step. Multipath
extraction requires sophisticated algorithms which can be
cumbersome to use and prone to errors [3]. In statistical
terms, the multipath parameters are used as summary statistics
for estimating model parameters. Other summaries, e.g. the
well-known temporal moments of the received signal, can
potentially be used, thereby avoiding multipath extraction
altogether. Here, we propose a sampling method to estimate
parameters of a stochastic multipath model based on temporal
moments.

II. SIGNAL MODEL

Ignoring additive noise, the received signal in a multipath
channel can be written in complex baseband notation as

y(t) =Y st —mn), (1)
l

where s(t) is the transmitted signal, «; and 7; are the complex
gain and time-delay of the [ multipath component, respec-
tively. The k™ temporal moment of y(¢) is defined as

my :/tk|y(t)|2dt, k=0,1,2,... )

Under the large bandwidth approximation, |s(t)|?> — 4(¢), and
the temporal moment reads

me =Y |eul*7f, k=0,1,2,... 3)
l

Here we consider a variant of Turin’s model [1] where
delays and gains form a homogeneous Poisson point process
with arrival rate Ag. The mark density p(«|7) is circular
complex Gaussian with variance o2 (7). For this model the

power delay spectrum reads P(1) = Mgo2(7), see [4]. For
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Fig. 1. Scatter plots and histograms of synthetic data of mg, mi, and ms.
Parameter settings: g = 0.6, Go = 1078, \o = 10° s~1, N = 300,
V =36m3 S =66 m? c=3x 10® ms~!, and Tmax = 200 ns. Red
ellipses are 95% probability contours of a Gaussian with parameters given
by (5).

in-room scenarios, the power delay spectrum is well modelled
by the reverberation model as [5]
_ [Goexp(—F), >0
P(r) = { 0 ’ otherwise, @)

where G is the reverberant power at delay zero, and T =
—4V/cS1n(g) is the reverberation time, V is the volume, S
is the surface area, c is the speed of light, and g is the reflection
coefficient of the room. Fig. 1 shows an example realisation
drawn from the model.

The mean vector, u, and the covariance matrix, X, of the
first three temporal moments i.e. mg, mi, and me, can be
found by invoking Campbell’s theorem,

T2 T3

w=Go | T¢ |, and E:/\— Sl (5)
273 0 |72 3r* 3r°
2 1 2

III. ESTIMATION METHOD

Let m;, be the N-dimensional vector of the k" temporal
moment, where £k = 0,1,2. Samples from the posterior,
p(©]my), can be used to infer on the model parameters,
© = [g,Go,No]T. Since the posterior and the likeli-
hood, p(my|©), are numerically unavailable, sampling is not
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Fig. 2. Histogram of the approximate posterior samples obtained from the
data in Fig. 1. A zoomed version of the histogram of g is inserted in the same
plot. Red line: true value, dashed green line: MMSE estimate. Inset plot in
blue represents the prior distribution, of g.

possible. However, inspired by Fig. 1, we approximate the
likelihood as a Gaussian p(my|©) with mean and covariance
as in (5). Then we sample from the approximate posterior,
p(Omy) = p(mi|O)p(0)/p(my), by using standard sam-
pling techniques. Point estimates can then be obtained, e.g.
averaging the posterior samples yield the minimum mean
squared error (MMSE) estimate.

IV. SIMULATION AND RESULTS

We run the default sampler in [6] on synthetic data from
Fig. 1 using a Beta prior for g and flat priors for Gg and A to
obtain 2000 samples from the approximate posterior. As shown
in Fig. 2, samples from all three posteriors are concentrated
around their respective “true” values, resulting in very small
estimation errors for MMSE estimator.

Root mean square errors (RMSE) of the estimator is com-
puted using Monte Carlo experiment as follows. In each
Monte Carlo run, N realisations of temporal moments are
generated with the settings in Fig. 1, and the MMSE estimate
is computed. The RMSE, reported in Table I, decreases with
increase in the size of the data. As expected from the relative
widths of the posteriors in Fig. 2, the RMSE of ¢ is the
smallest, followed by G’U and 5\0. Note that even with a data
size of N = 10, the RMSE is reasonably small.

To test the applicability of the estimator, we apply it to
measured data from [3]. The estimated parameters are then
used to predict the power delay spectrum. The result is
compared with the averaged power delay profile from the
measured data in Fig. 3. Despite the employed assumptions
of high bandwidth and no noise, the fit seems reasonable,
indicating that the Gaussian approximation is sufficient.

V. CONCLUSIONS

We find that the parameters of the considered stochastic
multipath model can be estimated by using temporal mo-

TABLE I
RMSE OF THE PARAMETER ESTIMATES FOR DIFFERENT N WITH 500
MONTE-CARLO RUNS EACH.

N RMSE (RMSE/True Value)
§[1073] Go[10710]  Ag[MHZ]

10 9(1.5%) 10 (10%) 373 (37.3%)

50 4.6 (0.77%) 5.5(5.5%) 140 (14%)

100 3.6 (0.6%) 4.3 (43%) 97 (9.7%)

300 24 (04%) 3.1(3.1%) 56 (5.6%)
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Fig. 3. Measured averaged power delay profile (black) [3] for N = 625 and
the power delay spectrum predicted from the parameter estimates (red).

ments as summary statistics without the need for multipath
extraction. Thus, temporal moments of the received signal
are informative for estimating the parameters of the con-
sidered multipath model, i.e. arrival rate, reverberation gain
and absorption coefficient. The proposed method is reason-
ably accurate despite the approximations involved (it ignores
measurement noise, bandwidth limitations, and relies on a
Gaussian approximation of the likelihood). Further work is
needed to account for finite measurement bandwidth and noisy
data.
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