Optical HDR Acquisition of Crack Density Evolution in Cyclic Loaded GFRP Cross-Ply Laminates Affected by Stitching

J.J. Bender, J.A. Glud, E. Lindgaard

PII: S1359-835X(18)30218-5
DOI: https://doi.org/10.1016/j.compositesa.2018.05.032
Reference: JCOMA 5057

To appear in: Composites: Part A

Received Date: 11 January 2018
Accepted Date: 28 May 2018

Please cite this article as: Bender, J.J., Glud, J.A., Lindgaard, E., Optical HDR Acquisition of Crack Density Evolution in Cyclic Loaded GFRP Cross-Ply Laminates Affected by Stitching, Composites: Part A (2018), doi: https://doi.org/10.1016/j.compositesa.2018.05.032

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
1. Introduction

Wind turbine blades (WTBs) are becoming bigger every year and often when the blade size is increased a new type certification is required. This certification can be obtained by complying with the design practice published by a certification body, e.g., DNVGL.

According to the DNVGL-ST-0376 standard [1], it is required that WTBs are designed against off-axis matrix cracks or Inter Fibre Failure (IFF) cracks using, e.g., Puck's criterion [2]. These IFF cracks may be a design driver and hereby require reinforcement of the blade to comply with the standard. The Puck criterion relies on the transverse strength of the unidirectional (UD) layers used in the blade, which are obtained through testing of pure UD layers [3]. However, a WTB consists of laminates with layers in many directions, therefore, the constraining effect of the adjacent layers increases the apparent transverse strength of the UD layers as described in [4,5]. It is also shown in [6] for the fatigue case that the number of cycles to crack initiation is increased due to the constraining effect of layers in the load direction.

With higher transverse strength design values, less reinforcement is required, meaning a lower weight of the blade. Therefore, it is of great interest to obtain UD transverse strengths when the UD layers are embedded in a laminate. However, when testing laminates, the edge effect and defects induced by the cutting of the specimens may pollute the results and reduce the apparent strength. An indication that the edges affect the results is that most cracks during testing initiate at the edges [7–11]. The defects from cutting are usually considered alleviated by polishing the edges of the specimens [12–16]. However, very few studies have focused on the effect of the cutting technique prior to the polishing, and especially regarding fatigue. In [17,18] it is shown for static tensile tests that the strain at first crack onset is increased when diamond saw cut specimens are polished.

Today, more advanced cutting techniques such as water jet cutting is used when preparing specimens [11,19,20]. Specimens for static or fatigue testing cut with water jet are generally not polished afterwards. To the knowledge of the authors, it has not been investigated previously if the polishing after water jet cutting affects the static or fatigue properties.

Water jet cut specimens without subsequent polishing exhibit a very large scatter of two orders of magnitude in fatigue results regarding the number of cycles for off-axis crack initiation in multi directional laminates [11]. This means that when pure UD layers are tested, only the absolute weakest points are found and used to characterise the material. This is a conservative estimate of the actual properties of the material, thus leading to a conservative design. To design for anything other than the first off-axis crack requires information on the statistical distribution of the material properties.

With a new technique developed by Glud et al. in [21], it is possible to obtain this statistical distribution with few test specimens. The Automatic Crack Counting (ACC) algorithm presented in [21] can detect all visible initiating cracks in a measuring area and track the propagation of these. Furthermore, this data can be used to accurately measure the crack density evolution in the measuring area and correlate this to a loss of stiffness for the specific lay-up. The crack density is obtained automatically meaning that the results are reproducible and not prone to human error as these measurements usually are. This makes crack density a much more viable metric for quantifying the damage state of composites.

Models have been developed where the crack density is used to predict the damage state of an arbitrary lay-up e.g. in ref [22–29]. When these models are further matured, it is possible to accurately predict the stiffness degradation of an arbitrary lay-up based on the crack density in the laminate. This allows for an accurate estimation of the structural integrity after IFF cracks have occurred in e.g. a WTB. It is the opinion of the authors of this work that these types of models with further maturing can be used to certify new WTBs with minor modifications to the guidelines in the DNVGL-ST-0376 standard. The modifications are already underway, because in the DNVGL-ST-0376 it is possible to obtain the type certification if it can be shown that IFF cracks sustained during testing do not affect the structural integrity of the WTB.

If crack density is to be used in a certifying context then it is necessary to understand which parameters influence the evolution of the crack density. The fibre mats used to manufacture WTBs are usually non-crimp-fabrics (NCF) where bundles of fibres in layers are stitched together and bundles of backing fibres in layers are used as well to ensure that the primary fibres keep their orientation. Backing layers are thin bundles of fibres on the backside of a fabric oriented at $\approx 90^\circ$ to the rolling direction. Backing layers are particularly used when the fabrics are draped on steep curved surfaces [30]. It has been shown that the backing layers of the NCF fabrics have a large influence on when and where damage initiates and final failure occurs during fatigue testing of quasi UD laminates where only the backing layers are not parallel to the load direction [30–32]. In [30,31] there are also indications that off-axis matrix cracks initiate in the vicinity of stitching meaning that the stitching thread may act as an initiator of these cracks. The off-
axis matrix cracks can in turn lead to local concentrations of fibre breaks especially in GFRP. Cross-ply laminates without backing layers were tested in [33] with the focus of relating the void content to a reduction in tensile and compressive strength. Most off-axis matrix cracks initiated from voids and a few initiated in areas with stitching. Typically in the cited works [30–33], the fibre breakages are localized in the vicinity of off-axis matrix cracks no matter if the cracks initiated from voids, backing layers, stitching, or off-axis layers. This indicates that any fibrous material not parallel to the load direction can act as initiators of Inter Fibre Failure (IFF), which causes localization of fibre breakage of load bearing fibres leading to final failure.

From this it is apparent that the backing and to some extent the stitching affects crack initiations, however, the crack density has not been considered in any of the cited works. Furthermore, the effect of the cutting technique on the crack density evolution through a fatigue test has not been considered. This leads to the following research questions, which are dealt with in this paper.

- Is the effect of the edge defects on the fatigue damage evolution different for specimens cut with water jet and diamond saw, respectively?
- Does polishing affect the fatigue damage evolution differently for specimens cut with water jet and diamond saw, respectively?
- Are the damages that occur in laminated composite structures e.g. wind turbine blades affected by the stitching in the NCF?

2. Specimen manufacturing and test setup

The specimen constituents and manufacturing process are described, followed by a description of the test setup and the post-processing routine based on the ACC algorithm with emphasis on the newly developed parts.

2.1 Specimen manufacturing

The laminate used in this work is manufactured from Uniaxial 661 g/m² H-glass fibres with a matrix consisting of GT 105 Polyester through a Vacuum Assisted Resin Transfer Moulding process. The dry fibre mats are shown in Fig. 1 and in (a) the backing fibre bundles are shown, which are in a ±80° pattern with approximately 8 wt%. The backing bundles are attached to the fibre bundles with a polyester stitching thread in a pattern as shown in Fig. 1(a,b).

The lay-up used in this work is [0,90]₃ where the backing layers are turned toward the outside of the laminate meaning that the 90 degree layer effectively has double thickness compared to the individual constraining layers, as shown in Fig. 2. The individual layers are 0.55mm thick, and the total thickness is 2.2mm. During infusion, the laminate is placed on a glass table to get a smooth surface to be able to detect the changes in light transmitted through the specimen during testing. End tabs made from GFRP are attached to the laminate after the infusion, and the specimens are cut using two different cutting techniques, where the final dimensions are shown in Fig. 3. 6 specimens are cut with a Diamond Saw (DS) and 6 are cut with Water Jet (WJ). Four of each of these specimen types are polished afterwards yielding two groups more, namely, Diamond Saw polished (DSP) and Water Jet polished (WJP). The polishing is done manually on a ‘Struers Tegramin-30’ with increasingly finer grain size down to 1μm.

The fatigue tests are performed in an Instron ElectroPuls E1000 with load control in Tension-Tension with an R-ratio of 0.1 with maximum load at 90% of the static transverse strength of the pure quasi UD with backing. Two light sources are used to illuminate the front and to transluminate the specimen from the back, respectively, as shown in Fig. 4. A 5MP Blackfly camera is used during testing to capture the initiation and propagation of cracks in the measurement area. The camera can detect the cracks during testing when the cracks appear because they disrupt the light transmitted through the material which makes the crack area darker than before. The test is run for intervals of 15, 50, and 500 cycles for 4,500, 60,000, and ≈600,000, respectively. After each interval the test is stopped at an unloaded state to capture three images in a row with varying shutter speeds to account for variations in light intensity in the specimen.

2.3 Automatic Crack Counting Algorithm

After testing, the images are post-processed as described in [21] with a few modifications as indicated in the list below, where the parts in bold are specific for the algorithm used in this work:

- Capture single image / Capture three images
- Motion compensation
- Determination and application of weighting matrix
- Divide image by undamaged
- Filtering
- Crack counting

The steps described above are also shown in Fig. 5 with samples of the used images. In the original algorithm, one image is captured at...
every interval and used in the motion compensation, and in this work, three images are captured and motion compensation is performed before they are combined into one. This step is a necessity as shown in Fig. 5(a-b) because the clearly visible cracks in (b) are almost impossible to detect in (a). The three images are combined by weighting them based on the greyscale value, which is comparable to the technique used when making High Dynamic Range (HDR) images, which is why the combined images are henceforth referred to as HDR-images. The algorithm is described in the following, with emphasis on the newly developed parts.

Capture Three Images

The fatigue test is paused and unloaded and three images are captured with different shutter speeds. Samples of these images are shown in Fig. 6.

![Fig. 6 Sample of images with three different shutter speeds, and the combined HDR image.](image)

One image is underexposed in such a manner that there are no overexposed pixels. One image is overexposed so that the greyscale value in the stitching is increased to a level where it is possible to detect cracks. The last image is captured with a shutter speed in between the two others to ensure a smooth transition in the HDR-image in the areas of high greyscale gradients. The motion compensation is calculated as in the original algorithm by using the corner identifiers as shown in Fig. 7.

![Fig. 7 Motion compensation aligns the corner identifiers from the damaged image (solid lines) with the undamaged image (dashed lines).](image)

However, the motion compensation is only calculated for one of the three images at each interval and the resulting movements and rotations are then used for the other two images at each interval.

Determination and Application of Weighting Matrix

Through the weighting matrix the three images with varying shutter speeds are combined with each other. The matrix is only calculated once, which is before the first interval of cycles in the test. The weighting is done by considering the greyscale value of each pixel in the image with normal exposure. If the greyscale value in a pixel is below half of the maximum then the corresponding pixel value in the HDR image is a weighted sum of the normal- and overexposed images. Similarly, if the greyscale value is above half then the weighted sum is between the normal- and underexposed images. The weighting is based on a sine-function as shown in Fig. 8.

When cracks appear, the greyscale value decreases, but the determination of the weighting is only done for the first three images and applied to all the other images, so the cracks are not washed out because the images are weighted similarly, and cracks can be seen as in Fig. 5(b). This however, underlines the importance of doing motion compensation before creating the HDR images, because if the images are shifted a few pixels in any direction the resulting pixel values in the HDR image could be a combination of two wrong images. This is especially a concern in the areas with high greyscale gradients, because artificial crack-like shapes can be the outcome of improper motion compensation which then pollutes the result.
3.3 Micrographs

After testing, the edges of the specimens were examined with a Scanning Electron Microscope (SEM) to determine possible differences between cracks in the stitching areas and in the rest of the specimen. As shown in Fig. 9 a crack in the stitching goes all the way from the ±80° backing in the top to the ±80° backing in the bottom, the same goes for cracks in the rest of the specimen as shown in Fig. 10. In the micrographs all the cracks going from top to bottom of the off-axis layers are in areas with knitting stitching. This means that it is likely that the cracks initiate at the interface between the stitching thread and the polyester and from there propagate to the backing layers. This indicates that the backing layers arrest off-axis crack development instead of promoting it, which was shown to be the case in [30–32]. In these cited works the backing layers were the layers with the largest angle w.r.t. the load direction whereas in this work the off-axis layers and the stitching are at an angle of 90° and the backing is at ±80°. This suggests that the angle of the off-axis fibrous material is more important than the mechanical- and interfacial-properties of it.

3.2 Edge cracks affected by cutting technique

As described, the specimens have been cut using different techniques and some of them have been polished afterwards in order on the average number of cycles to isolated crack initiations meaning that there is more than four times the thickness of the cracking layer between the cracks [10]. The last part compares the crack density evolution in the stitching areas and in the rest of the specimen for polished and non-polished specimens.
to investigate the effect of the polishing after cutting. The possible influence of the polishing and cutting technique should be determined before the effect of the stitching can be considered. Through the cutting technique, it is only possible to affect the crack initiations at the edges, therefore, the number of cycles until isolated crack initiation at the edges is considered. Furthermore, the number of cracks initiating at the edges compared to the total number of cracks in the specimens is considered as well. This is done because, as it is shown in Fig. 11, the number of cycles until isolated crack initiation is not an appropriate measure of the effect of the edges due to high scatter in the data.

Fig. 11 shows box plots of the number of cycles for an isolated crack to initiate in the entire measurement area (shown in blue) and only at the edges (shown in green). The data is sorted into four groups based on the cutting and polishing, and the distribution of the data in the groups is indicated by separate box plots. There are 20-40 data points for the blue boxes and 10-20 for the green boxes. For all the groups the main part of the isolated cracks initiate early in the test, before 6000 cycles. It also seems that the cracks initiate earlier at the edges and with less scatter than in the rest of the measurement area. However, the scatter within the groups is very high, therefore, it is not statistically significant to conclude that cracks initiate earlier or later based on edge finish. The high scatter within these groups of similar specimens indicates that inherent differences between the specimens i.e. defects such as dry fibres, fibre waviness, micro voids, etc. highly affect when the cracks initiate [34]. This also means that the cutting technique and polishing only has a minor effect on when cracks initiate, if any.

However, the scatter is a lot smaller if the number of cycles until crack initiation is neglected and only the number of cracks at the edges is considered. This is shown in Fig. 12 where a difference is apparent in the number of cracks initiating at the edges compared to the total number of cracks depending on the cutting technique, henceforth this ratio is called edge ratio. There are two sets of results in Fig. 12 where the blue boxes show the results when all the cracks are counted, and the green boxes show the results when only isolated cracks are counted. The trend between the groups is the same whether all cracks or just the isolated cracks are considered. However, the variance is higher for the isolated cracks because the calculations are based on fewer cracks.

The two polished groups have a significantly lower edge ratio compared to the non-polished groups. The WJp-group has an even lower edge ratio compared to the DSp-group. Both groups have been polished for the same duration and with the same grain sizes meaning that the same amount of material has been removed. Therefore, the difference in edge ratio indicates that the diamond saw cutting technique affects the specimen deeper and these effects are not removed completely with the applied polishing, as illustrated in Fig. 13.

Non-polished specimens, there is no significant difference in edge ratio between water jet cutting and diamond saw cutting. The lack of
difference between the two non-polished groups in Fig. 12 indicates
that the depth of the defects has no influence on the probability of
initiation of edge cracks. This is supported by the findings in [18]
where it was found that cross-ply laminates were insensitive to the
depth of notches. Furthermore, in [20] both WJ and DS was used to
cut specimens without polishing and no difference between the two
cutting techniques for static and fatigue tests was reported. If there
is a defect, there is an increased probability of a crack.

The results in this section show that the cutting technique and the
polishing has an effect on the initiation of edge cracks. However, the
effect is limited to the edge ratio and not when the cracks initiate
in the specimens. This is most likely because the polishing removes
most of the edge defects, but those that remain influence the results
in the same manner as before, i.e. the cracks will initiate after the
same number of cycles, only there are fewer of them. Based on the
data in Fig. 12 three groups are considered further on for analyzing
the crack density in the stitching areas and in the rest of each of the
specimens.

- The non-polished specimens (WJ and DS)
- The polished diamond saw cut specimens (DSp)
- The polished water jet cut specimens (WJp)

The WJ and DS specimens are considered as one group because they
have similar edge ratios, and the crack density evolution is similar,
as shown in the next section. The DSp and WJp are considered as
two different groups because they have different edge ratios, which
will most likely influence the crack density evolution.

3.3 Crack density affected by stitching

In the following, the crack density evolution is considered for
the three groups. The crack density is accounted for in the axial
stitching areas, i.e. the green areas in Fig. 5(d), and in the rest of
the specimen. These two evolutions are compared within the groups
to detect changes in the evolution due to the stitching. The crack
density evolution is determined for each individual specimen, and
the average crack density for each group at each cycle interval is
then calculated and plotted in the following section with associated
standard deviations.

In Fig. 14 the crack density evolution for the non-polished spec-
imens is shown and it can be observed that there is no significant
difference between the crack density in and out of the axial stitching
areas throughout the entire fatigue test. Furthermore, the sigmoidal
shape of the crack density evolution is similar to that found in
literature [34–37].

However, for the polished diamond saw cut specimens in Fig. 15
the trend looks different even with a high deviation in the results. At
approximately 4000 cycles the crack density in the axial stitching area increases
more rapidly as expected based on the sigmoidal shape. 4000 cycles
is close to the median value of the number of cycles to crack
initiation, meaning that more than half of the isolated cracks have
initiated at this time during the fatigue test. The crack density
evolution outside the axial stitching area does not have a sigmoidal
shape, which is discussed later.

For the polished water jet cut specimens, the trend is even more
noticeable in Fig. 16. There is a significant difference in crack
density in and out of the axial stitching area after ≈20000 cycles.
The trend for WJp specimens and DSp specimens is similar, at
approximately 4000 cycles the crack density in the axial stitching area increases
more rapidly. Moreover, for the WJp specimens the increase in crack
density is a lot higher than for the DSp specimens. The crack density
evolution outside the axial stitching area is not a sigmoidal shape,
which was also the case for the DSp specimens.

It is shown that the non-polished specimens have insignificantly
different crack densities in and out of the axial stitching areas for the
entire fatigue test. However, the polished specimens have different
crack density evolution trends in and out of axial stitching area,
resulting in significantly higher crack densities in the axial stitching
areas for WJp specimens after ≈20000 cycles. The deviation is
too large for the DSp specimens to state that there is a significant
difference between the crack density in and out of the axial stitching
area, but it seems to be the case.

4. Discussion

The general sigmoidal trend of the crack density evolution is
common in the literature [34–37]. This trend has been divided into
three phases as shown in [9] and summarized below:

1) The crack density evolution is slow because only a few cracks
have initiated at locations of low strength and/or high stress
i.e. voids, stitchings, and defects caused by the cutting of the
edges.
2) The slope of the crack density evolution increases as the
median of the number of cycles to isolated crack initiation
is approached, therefore, more cracks are initiating and prop-
agating.
3) The crack density evolution slows down again as the cracks
have reached the edges and cannot propagate anymore, and no
new cracks are initiated. A crack density saturation has been
reached.

From the results regarding non-polished specimens in the previous
section it is observed that the crack density evolution follows the

Fig. 14 The crack density evolution for WJ and DS specimens in the axial stitching area and out of the axial stitching area.

Fig. 15 The crack density evolution for DSp specimens in the axial stitching area and out of the axial stitching area.

Fig. 16 The crack density evolution for WJp specimens in the axial stitching area and out of the axial stitching area.
trend from the literature and the crack density is almost the same in and out of the stitching. This means that for non-polished specimens, the stitching does not influence where the cracks initiate and propagate. This is illustrated in Fig. 17, where the crack density evolution follows the three phases as described above. In the first phase the first cracks initiate at locations with local stress concentrations such as voids and cutting defects at the edges. These early cracks reduce the stress level on either side of them as described in [38]. In the second phase cracks initiate at locations where there are no defects but the stress is high i.e. far away from cracked areas. This leads to an increase in crack initiations and an increase in the slope of the crack density evolution. In the third phase almost all cracks are interacting and most have propagated across the entire specimen, which leads to a decrease in the number of crack initiations and decrease in crack propagation, and hereby a decrease in the slope of the crack density evolution. Since the crack density in and out of the stitching is similar, the cracks are evenly distributed over the entire measurement area regardless of the stitching.

The results from the polished specimens show a different behaviour. There is a significantly higher crack density in the stitching, and the crack density out of the stitching does not follow the sigmoidal shape, which is unexpected based on the literature. This indicates that there is an increase in total crack length in the stitching areas as a result of more and/or longer cracks. Furthermore, there seems to be a decrease in the crack density out of the stitching. In the following a hypothesis is presented that explains this behaviour, and it is also illustrated in Fig. 17.

The only difference between the polished and the non-polished specimens is the edges, and therefore, the reason for the difference in crack density evolution has to be found at the edges. As stated before, the crack density evolution is divided in three phases, and in the first phase, the cracks initiate from areas with local stress concentrations. For the non-polished specimens many cracks initiate from the edges at random locations and fewer initiate from edges for the polished specimens (Fig. 12). This is because the defects from the cutting act as local stress concentrators, and as described earlier, most of these stress concentrators are removed during the polishing.

Since most local stress concentrators at the edges are removed in the polishing, the cracks initiate at other areas where the strength is low and/or the stress is high, this could be at the stitching. The stitching areas are located with approximately 4 times the thickness of the thickness of the crack layer between them meaning that the entire area between the stitching is unloaded as described in [34] when a crack is present in either of the stitching areas. This means that there is a higher probability of crack initiation in the next stitching than between two stitchings when one of them is cracked. Therefore, this effect is self-enhancing, which is why there is such a big difference in the crack density for polished specimens and especially WJp where there are the fewest edge cracks.

Laminates in composite structures and WTB are not affected by free edge effects or edge defects, meaning that the WJp results which were the least affected by the edges are most representative of the damage evolution in a WTB. It stands to reason that stitching areas in a WTB have a higher probability of cracking and possibly earlier than non-stitching areas since the stitching in the WJp specimens exhibited significantly higher crack densities than the rest of the specimens.

5. Conclusion
The damage evolution in cross-ply laminates has been studied through the crack density evolution while considering the effect of edge defects and stitchings. The following conclusions are drawn based on the stated research questions:

- The WJ and DS specimens exhibited the same number of initiating cracks at the edges compared to the total number of initiating cracks in the specimens. Furthermore, the crack density evolution was similar for DS and WJ specimens leading to the conclusion that the cutting technique by itself does not change the probability of edge cracks.
- The number of cracks initiating at the edges was significantly reduced when the specimens were polished after cutting. This was the case both for WJp and DSp, however, the effect was significantly higher for the WJp specimens. The difference
is believed to be caused by deeper edge defects in the DS specimens, which are not removed completely by the applied polishing.

- It has been shown that the crack density was significantly higher in the stitching areas for the WJp specimens, which are most comparable to actual composite structures, i.e. WTBs, because these were the least affected by the edges. This also means that stitchings in a composite structure will most likely act as off-axis crack initiators.

From this work and the literature it is clear that stitching and backing fibres both can act as crack initiators, but in this work the backing did not seem to affect the results at all. It is hypothesized that the angle of the off-axis fibrous material is one of the most important factors for the location of off-axis crack initiation, which should be studied in the future.

Acknowledgement

This work was supported by the Innovation Fund Denmark project OPTIMALMADE-BLADE, grant no. 75-2014-3. This support is gratefully acknowledged.

References

