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Abstract 

Quantitative susceptibility mapping (QSM) is based on magnetic resonance imaging (MRI) phase 

measurements and has gained broad interest because it yields relevant information on biological 

tissue properties, predominantly myelin, iron and calcium in vivo. Thereby, QSM can also reveal 

pathological changes of these key components in widespread diseases such as Parkinson's disease, 

Multiple Sclerosis, or hepatic iron overload. While the ill-posed field-to-source-inversion problem 

underlying QSM is conventionally assessed by the means of regularization techniques, we trained a 

fully convolutional deep neural network - DeepQSM - to directly invert the magnetic dipole kernel 

convolution. DeepQSM learned the physical forward problem using purely synthetic data and is 

capable of solving the ill-posed field-to-source inversion on in vivo MRI phase data. The magnetic 

susceptibility maps reconstructed by DeepQSM enable identification of deep brain substructures 

and provide information on their respective magnetic tissue properties. In summary, DeepQSM can 

invert the magnetic dipole kernel convolution and delivers robust solutions to this ill-posed problem. 
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Introduction 

Quantitative susceptibility mapping (QSM) is a novel and increasingly utilized post-processing 

technique that extracts magnetic susceptibility from the phase of magnetic resonance imaging (MRI) 

gradient echo signal (Deistung et al., 2017; Schweser et al., 2016). Magnetic susceptibility describes 

the degree of magnetization of a material placed in an external magnetic field and thereby delivers 

unique, non-invasive insights into tissue composition and microstructure (Deistung et al., 2013; 

Duyn, 2018). In particular, QSM provides information about myelin and white matter composition 

(Wharton and Bowtell, 2015; Wu et al., 2017), iron metabolism (Acosta-Cabronero et al., 2016; 

Langkammer et al., 2012; Schweser et al., 2011; van Bergen et al., 2016; Wang et al., 2017; Yao et al., 

2009), and copper accumulation (Fritzsch et al., 2014). The measurement of iron stores has been 

used to study normal aging (Acosta-Cabronero et al., 2016; Bilgic et al., 2012), Huntington’s Disease 

(van Bergen et al., 2016), Multiple Sclerosis (Eskreis-Winkler et al., 2015; Wisnieff et al., 2015; Zhang 

et al., 2016), Alzheimer's Disease (Acosta-Cabronero et al., 2013) and Parkinson’s Disease (Acosta-

Cabronero et al., 2017; Langkammer et al., 2016). Furthermore, QSM visualizes micro-bleeds (Liu et 

al., 2012a) and differentiates them from microcalcifications (Schweser et al., 2010) due to differing 

magnetic susceptibilities of calcium and iron. 

In order to obtain a quantitative susceptibility map, an image is acquired using an MRI sequence 

where the signal phase is sensitive to local magnetic field changes, such as a gradient-recalled echo 

(GRE) sequence (Haacke et al., 2004; Haase et al., 1986; Reichenbach et al., 1997). Raw signal phase 

is unwrapped and magnetic field contributions from outside the object of interest, the so-called 

background field, are removed. Finally, the inverse problem relating the measured field perturbation 

to the underlying magnetic susceptibility distribution is solved (Deistung et al., 2017; Schweser et al., 

2016). This critical inversion step is ill-posed and can be overcome either by additional 

measurements in different orientations or by numerical stabilization strategies. 

One method utilizing the acquisition of different object orientations with respect to the static 

magnetic field is known as 'Calculation of susceptibility through multiple orientation sampling' 

(COSMOS) (Liu et al., 2009; Wharton and Bowtell, 2010). COSMOS requires at least three different 

orientations to make the field-to-susceptibility problem over-determined and solves the inverse 

problem analytically. Although COSMOS generates susceptibility maps of high fidelity, and is 

therefore considered as gold standard, it assumes isotropic magnetic susceptibility and contains 

little information about anisotropic tissues (Li et al., 2012; Schweser et al., 2012). Therefore, 

methods such as susceptibility tensor imaging (STI) (Liu, 2010) or the Generalized Lorentzian Tensor 

Approach (GLTA) have been developed that extend the magnetic susceptibility scalar to a tensor. To 
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allow the comparison to single-orientation data, the off-diagonal tensor elements of the STI solution 

are assumed negligible, and the diagonal term (STI33) can be used as an alternative to COSMOS. 

Common to all multi-orientation methods is their clinical in-feasibility due to patient discomfort and 

scan time requirements (Deistung et al., 2017; Langkammer et al., 2018). To overcome these 

practical limitations, a variety of methods have been developed that compute magnetic 

susceptibility from single orientation data by employing numerical stabilization techniques. 

Numerical strategies can be subdivided into two groups (Schweser et al., 2016): inverse filtering and 

iterative methods. Inverse filtering formulates the problem in Fourier domain where dividing the 

pre-processed phase data by the unit dipole response yields the magnetic susceptibility. However, 

near-zero values in the unit dipole response result in an amplification of noise and errors - a 

manifestation of the ill-posed problem. The unit dipole response is therefore modified and small 

values are replaced by a fixed threshold. This method is known as truncated k-space division (TKD) 

(Shmueli et al., 2009; Wharton et al., 2010). Due to the now inaccurate model, TKD parameters need 

to be carefully chosen to yield a trade-off between regularization and artifacts and TKD results need 

to be corrected for underestimating magnetic susceptibility (Schweser et al., 2016). 

Alternatively, the inverse problem can be solved iteratively in the spatial domain (Schweser et al., 

2016). Such iterative numerical solvers require the description of the forward solution (the 

multiplication of the dipole kernel with the susceptibility distribution in Fourier space) and they 

minimize the difference between this predicted data and the actual data in a least-squares sense. 

One example to solve this equation system is the LSQR algorithm (Li et al., 2015; Paige and Saunders, 

1982). Most recent QSM inversion algorithms are extensions to this basic principle and only differ in 

the way how regularization techniques incorporate prior information about the susceptibility 

distribution. Common to all techniques is that the regularization has to be carefully optimized to 

yield a trade-off between data and priors (Liu et al., 2012b; Schweser et al., 2016). Morphology 

enabled dipole inversion (MEDI) is a spatially regularized inversion that utilizes edge information 

from magnitude images to regularize the problem (Liu et al., 2013, 2011). Other methods are total 

generalized variation (TGV) (Langkammer et al., 2015), or single-step QSM (SS-QSM) 

(Chatnuntawech et al., 2017). Common to all iterative methods is that the forward solution has to be 

evaluated at least once in every iteration step. This then leads to the fact that the forward solution 

cannot be computationally expensive in order to be evaluated iteratively to solve the inverse 

problem. 

Recently, deep neural networks have emerged as an alternative to iterative methods for solving 

inverse problems (Fan et al., 2017; Jin et al., 2017; McCann et al., 2017; Shen et al., 2017), and have 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

shown impressive results in applications such as denoising (Burger et al., 2012), deconvolution (Xu et 

al., 2014), image reconstruction (Golkov et al., 2016; Schlemper et al., 2017; Zhu et al., 2018) and 

super-resolution (Bahrami et al., 2017; Kim et al., 2016; McDonagh et al., 2017; Oktay et al., 2016). 

The use of neural networks for the solution of inverse problems is motivated by the fact that neural 

networks are capable of approximating any continuous function under the assumption that the 

network has enough free parameters (Hornik, 1991; McCann et al., 2017; Shen et al., 2017). 

Researchers have also investigated the link between iterative methods and deep networks and 

found that neural networks act as a fast approximated sparse coder (Gregor and LeCun, 2010; Jin et 

al., 2017). A sparse coder learns the most important features from the input data and can 

reconstruct the input using a combination of basis vectors (Gregor and LeCun, 2010). It has been 

shown (Jin et al., 2017) that the reconstructed images from the neural network preserved complex 

textures better than the state of the art iterative methods, because the neural network learns an 

efficient regularization from the data, whereas iterative methods require explicit regularization. An 

important practical advantage of neural networks over iterative methods is that the trained models 

can produce an output extremely fast as they only involve a single step of matrix multiplications to 

produce the feed forward output (McCann et al., 2017). In addition, it has already been suggested 

(Anderson et al., 2016) that the QSM inversion can be optimized by only including relevant field 

contributions in the inversion process, which could be achieved by tailoring a U-Net filter 

architecture to the physics requirements of the dipole field. 

Based on the recent advances in the solution of inverse problems using deep learning, we propose a 

deep convolutional network that delivers fast and accurate solutions to the ill-posed field-to-source 

problem. We test the generalizability in three separate experiments with increasing complexity: The 

first experiment tests the performance on a data set very similar to the training data. The second 

experiment goes one step further and tests how the inversion works for in vivo phase data where a 

COSMOS and STI33 reconstruction is available as a comparison. The third experiment investigates 

the network's real-world performance on a high-resolution brain data set acquired at 7T from 27 

healthy individuals. We show that DeepQSM is capable of utilizing single-orientation phase data 

without the need for explicit regularization terms and manual parameter tweaking and successfully 

delivers quantitative susceptibility maps.  

Methods 

Network Architecture 

The fully convolutional neural network (DeepQSM), capable of processing 3-dimensional inputs, is 

based on a modified version of an established architecture (U-Net) (Ronneberger et al., 2015). Due 
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to memory constraints on the Graphic Processing Units (GPUs) used for training we reduced the 

amount of feature-maps compared to the original U-Net; see Figure 1 for the architecture of 

DeepQSM. The fully convolutional nature of the chosen architecture allows an input image of any 

size with dimensions divisible by 16 and the dimensions of the output equal the dimensions of the 

input.  

 

Figure 1 - The DeepQSM architecture consists of a contracting and expanding part. The contracting part is made up of a 

series of convolutions with a ReLU activation function followed by a pooling layer. The expanding part consists of 

transposed convolutions to undo the spatial reduction caused by the pooling operations and convolutions with ReLUs 

similar to those of the contracting part. Convolutions used a stride of 1x1x1, transposed convolutions a stride of 2x2x2, 

pooling a stride of 2x2x2. DeepQSM will output a volume with identical dimensions to the input. 

The architecture can be divided into a contracting and an expanding part. The goal of the contracting 

part is to capture the context of the image, while the goal of the expanding part is to increase the 

resolution (Jin et al., 2017). The contracting part of DeepQSM consists of three-dimensional 

convolution layers with filters of size 3x3x3, a stride length of 1x1x1 and rectified linear units (ReLU). 

Furthermore, pooling layers are added, which both increase the receptive field and make the 

network translation invariant. The expanding part of the neural network consists of two types of 

convolutional layers: transposed convolutional layers and convolutional layers. The transposed 

convolutional layers consist of filters of size 2x2x2, a stride length of 2x2x2 and ReLUs. The 

convolutional layers in the expanding part are identical to the convolutional layers in the contracting 

part.  

The network has so-called skip connections between the contracting and expanding part of the 

network. The skip connections make up for the spatial information lost during downsampling by 

combining high resolution information with low resolution information. Furthermore, it reduces the 

gradient vanishing problem and increases the performance of the network (Jin et al., 2017). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Dipole Kernel 

The dipole kernel commonly used in QSM (Chatnuntawech et al., 2017; Deistung et al., 2017; Liu et 

al., 2015; Schweser et al., 2016) is built on two assumptions: The first assumption is that the effect of 

the local environment on susceptibility can be divided into near field and far field based on the 

Lorentz sphere (Yablonskiy and Sukstanskii, 2015). Under the assumptions that the magnetic 

susceptibility is a bulk property and that magnetic moments in the near field are randomly 

distributed, the contribution of the near field can be neglected (Yablonskiy and Sukstanskii, 2015). 

Equation (1) shows the dipole kernel �	in the Fourier domain, where �� , ��	and �� are k-space 

vectors in the respective directions. This dipole description does not include terms for modelling 

anisotropy: 

�	
�� = 	
1

3
−

��
�

��
� + ��

� + ��
�

 (1) 

 

Training Procedure 

DeepQSM was trained on 100 000 64x64x64 synthetic examples in 91600 steps with 40 examples 

per step resulting in a total training time of 35 hours on an NVIDIA Tesla V100 Accelerator Unit. The 

synthetic 3D images were simulated and contained basic geometric shapes (cubes, rectangles and 

spheres) and served as label data. The training data contained between 80 and 120 cubes and 

between 80 and 120 spheres per image. The shape sizes were randomly varied between 10% and 

40% of the image size, which was set to 160x160x160. Every shape was assigned a susceptibility 

value drawn from a uniform distribution with -0.2 minimum and 0.2 maximum. The shapes were 

randomly added to the image, which was then convolved with the dipole kernel. Finally, 100 

64x64x64 patches were randomly extracted from this image for training. 

To optimize the weights of DeepQSM during training the 'ADAM' optimizer (Kingma and Ba, 2014) 

was used, and had the following configurations: initial learning rate = 0.001, �� = 0.9,	�� = 0.99. 

Mean squared error between the reconstruction from DeepQSM and the label data served as the 

cost function for the optimizer. 

To avoid overfitting during training and thereby losing generalisability, the regularization technique 

'dropout' was used (Srivastava et al., 2014) to randomly turn off neurons during training with a 

dropout rate of 5%. 

DeepQSM was implemented using Python 3.6.6 (Rossum, 1995), Tensorflow and Tensorboard 

v1.11.0 (Abadi et al., 2016), Keras 2.2.4 (Francois, 2015), SciPy 1.1.0 (Jones et al., 2001), NumPy 
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1.15.0 (Oliphant, 2015), scikit-image 0.13.1 (Walt et al., 2014) and Nibabel 2.3.0 (Brett et al., 2018). 

Matplotlib 2.1.2 (Hunter, 2007) and Seaborn 0.8.1 (Waskom et al., 2017) were used for visualizations 

and figures in this manuscript. The source code of DeepQSM is available from the authors upon 

request. Training was performed on the National Computational Infrastructure cluster Raijin using 

NVIDIA Tesla K80 GPUs and on the University of Queensland cluster Wiener using NVIDIA Tesla V100 

Accelerator units. 

We performed three experiments to evaluate DeepQSM's ability to solve the ill-posed field-to-

source inversion. As a comparison to DeepQSM we used two iterative QSM processing pipelines and 

we reconstructed the same datasets using STI Suite’s iLSQR inversion 

(https://people.eecs.berkeley.edu/~chunlei.liu/software.html) with 150 iterations and optimized 

parameters and MEDI (Li et al., 2012; Liu et al., 2011) with the optimized parameters for a 7T human 

brain dataset (lambda 300; merit 1). 

Experiment 1: Synthetic data 

The first experiment aimed to test DeepQSM's performance on synthetic data similar to the training 

data. The goal was to test if DeepQSM would produce sensible outputs on new synthetic data that 

were simulated exactly the same way as data used for training, then convolved with the dipole 

kernel to generate a forward solution. Next, DeepQSM was used to invert the applied dipole kernel 

to reconstruct the simulated susceptibility distributions. The results were compared to the simulated 

ground truth through the use of difference maps and their histograms and kernel density 

estimations. The mean of the histogram indicates if there is a consistent bias and the standard 

deviation indicates the spread of reconstruction errors. We also included numerical error measures, 

i.e. the normalized root mean-squared error, the mean structural dissimilarity index and the high 

frequency error norm. 

Experiment 2: QSM Reconstruction Challenge data 

In the second experiment the goal was to solve the ill-posed problem on susceptibility maps from 

realistic single orientation phase data and compare the reconstruction to COSMOS and STI33. 

DeepQSM had never been introduced to images of brains during training and therefore this 

experiment would test if DeepQSM generalized the underlying principle of the QSM dipole inversion. 

A single orientation background-field-corrected tissue phase image published by Langkammer et al. 

(2018) from the 2016 QSM reconstruction challenge was used. The data set serves as a common 

reference for current and future algorithms and was acquired in vivo from a healthy 30 year old 

female, using a 3D gradient-echo at 3T with 1.06mm isotropic resolution, an echo time of 25ms and 

a repetition time of 35ms (Langkammer et al., 2018).  
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Experiment 3: High resolution 7T in vivo group data  

The third experiment aimed to test if DeepQSM can reconstruct QSM images of a real-world healthy 

volunteer group dataset. For this, we obtained written informed consent from participants prior to 

in vivo scanning as approved by the local human ethics committee. We investigated 27 participants 

(21-34 years of age, 26.3 years on average, 13 males) on a 7 T whole-body research scanner 

(Siemens Healthcare, Erlangen, Germany), with maximum gradient strength of 70 mT/m and a slew 

rate of 200 mT/m/s. A 7 T Tx/32 channel Rx head array (Nova Medical, Wilmington, MA, USA) was 

used for radio frequency transmission and signal reception. Third order shimming was employed to 

improve the B0-field homogeneity.  

We acquired 3D GRE whole brain datasets with multiple echo times: TR = 25 ms, 

TE = 4.4, 7.25, 10.2, 13.25, 16.4, 19.65, 23 ms, flip angle = 13°, FOV = 210x181.5x120 mm3, 

matrix = 280x242x160 (0.75 mm isotropic voxels), parallel imaging (GRAPPA, acceleration factor = 2, 

24 auto-calibration lines), monopolar readout gradient, symmetric echo, 1116 Hz/Pixel, first echo 

flow compensated, TA = 7.9 min.  

To enable optimal coil combination using COMPOSER (Robinson et al., 2017), we acquired reference 

data using the prototype PETRA ultra-short-TE sequence (Grodzki et al., 2012): TR = 1.99 ms, 

TE = 0.07 ms, flip angle = 2°, FOV = 288x288x288 mm3, matrix = 288x288x288 (1 mm isotropic 

voxels), 847 Hz/Pixel, and TA = 2 min.  

All pre-processing for the comparison of different inversion algorithms was performed using NiPype 

(Gorgolewski et al., 2011), FSL 5.0.9,  STI Suite 2.2 (Li et al., 2015, 2014, 2011). The data was cropped 

to 224x272x160 pixels to ensure a matrix size divisible by 16 and a brain mask was generated using 

Oxford FMRIB Software Library (FSL) Brain Extraction Tool (BET) (Smith, 2002) with a fractional 

intensity threshold of 0.4. Then we used STI Suite’s Laplacian-based phase unwrapping and 

background field correction iHARPERELLA to generate the input to the different inversion 

algorithms. 

For evaluating the group level results, we used an atlas based segmentation of sub-cortical 

structures, i.e. dentate nucleus, red nucleus, substantia nigra, putamen, globus pallidus and caudate 

nucleus. The volgenmodel pipeline (Fonov et al., 2011; Grabner et al., 2006; Janke and Ullmann, 

2015) was used to construct a minimum deformation model of the GRE magnitude data. First, all 7 

echoes were averaged per individual and then the initial target was generated based on one 

individual dataset blurred using a gaussian kernel size of 4 mm to remove individual features and 

allow a registration of all individuals to this starting template. Then all original input images were 

aligned via a 12 parameter affine transformation and a normalized cross correlation objective 
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function. The original input datasets were then resampled to the model space and transformed 

using a concatenation of the inverse transformation from model to participant space and the 

average transform. Finally, the next model stage was computed by averaging the resampled data. 

After the affine transformation, non-linear registration was used with incrementally decreasing step 

(32, 16, 12, 8, 6, 4, 2, 1 mm) and smoothing kernel (16, 8, 6, 4, 3, 2, 1, 0.5 mm) sizes to register the 

individual datasets to the evolving group template. The final transformations from participant to 

atlas space were then applied to the QSM data and averaged across participants to generate the 

different QSM group templates, as shown in Figure 5. We manually segmented dentate nucleus, red 

nucleus, substantia nigra, putamen, globus pallidus and caudate nucleus in the QSM group template 

using ITK-SNAP (Yushkevich et al., 2006). Susceptibility values of every participant were extracted 

from all QSM datasets and visualized in Figure 6 using a box-and-whisker plot. After confirming the 

assumptions for an analysis of variance (ANOVA), quantitative differences between methods were 

assessed using one-way ANOVAs with QSM method as a factor implemented via an ordinary least 

squares framework in the statsmodels python module (Seabold and Perktold, 2010). If the ANOVA 

per region showed a significant difference, post-hoc tests were performed corrected for multiple 

comparisons across and within anatomical regions using Tukey's Honest Significant Difference 

(Tukey, 1949) test with a familywise error rate of 0.05. 

Results 

The following experiments demonstrate the performance of the network trained only on synthetic 

data and applied to a variety of datasets with increasing complexity. All DeepQSM predictions were 

computed in approximately 10 seconds on a standard desktop computer with an i7-4790 CPU and 

16GB of memory. 

Experiment 1: Synthetic Data 

Figure 2 illustrates the prediction performance of DeepQSM on synthetic data and compares it to 

the simulated ground truth. This figure illustrates DeepQSM's capability of reverting the effects of 

the dipole on synthetic data. The difference maps show that remaining errors are mainly in the 

proximity of edges (especially STI iLSQR and DeepQSM), in square objects (DeepQSM) and a residual 

slowly varying background field (especially STI ilSQR and MEDI). The histograms and error measures 

show that DeepQSM’s error distribution is centred on 0 indicating that there is no systematic 

quantification bias and a similar reconstruction error than iLSQR for this dataset. MEDI shows very 

low error measures for the high frequency error norm and the normalized root mean-squared error. 
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Figure 2 – Comparing the reconstruction of simulated 3D data between STI iLSQR, MEDI and DeepQSM. The simulated data 

was convolved with the dipole kernel and this was then used to reconstruct susceptibility maps with 3 different algorithms. 

The susceptibility maps were compared with the simulated ground truth by difference maps and histograms of the 

difference. The difference maps show that all algorithms cannot perfectly recover the true susceptibility distributions and 

that there are errors in the proximity of edges (particularly in iLSQR and DeepQSM) and a residual slowly varying 

background field (particularly in iLSQR and MEDI). The histograms and error measures (HFEN=High-Frequency Error Norm, 

SDSIM=Structural Dissimilarity Index (1-SSIM), NRMSE=Normalized Root Mean-Squared Error) show similar performance 

levels between all compared methods. 
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Experiment 2: Single Orientation Phase 

Figure 3 and 4 show DeepQSM's ability to reconstruct single orientation phase data. The comparison 

of the results with iLSQR and MEDI inversions shows that DeepQSM delivers a visually comparable 

susceptibility map. Further, the comparison of all QSM solutions to STI33 (Figure 3) and COSMOS 

(Figure 4) ground truths shows that no method can achieve the multi-orientation solutions and that 

methods differ in the amount of streaking artifacts and regional quantification results. 

 

Figure 3 – Sagittal, axial and coronal slices from the 2016 QSM reconstruction challenge single orientation phase dataset 

(top, left) reconstructed using iLSQR, MEDI and DeepQSM. The bottom half shows the STI33 reconstruction (left) and the 

difference maps of the susceptibility maps with respect to the STI33 result. The error measures and histograms of the 

difference maps illustrate that all algorithms deliver comparable quantification results. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

Figure 4 – Sagittal, axial and coronal slices from the 2016 QSM reconstruction challenge single orientation phase dataset 

(top, left) reconstructed using iLSQR, MEDI and DeepQSM. The bottom half shows the COSMOS reconstruction (left) and the 

difference maps of the susceptibility maps with respect to the COSMOS result. The error measures and histograms of the 

difference maps illustrate that all algorithms deliver comparable quantification results. 
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Experiment 3: High resolution 7T in vivo group data 

The result of experiment 3 can be seen in Figure 5 and 6 demonstrating how DeepQSM is able to 

solve the inverse problem on high resolution phase data from a single orientation in a group of 27 

participants. This example illustrates that DeepQSM can deliver susceptibility maps from high 

resolution data without requiring retraining.  

 

Figure 5 – The iHARPERELLA background field corrected phase was used to reconstruct susceptibility maps using iLSQR, 

MEDI and DeepQSM. All 27 participants were combined in a group template to investigate group level effects of each 

method. 
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Figure 6 – The box-and-whisker plot shows the results of a region-of-interest analysis across all 27 participants. Differences 

between DeepQSM and STI are statistically significant in the red nucleus with DeepQSM showing a higher magnetic 

susceptibility. In the putamen and globus pallidus all methods differ significantly from each other, but DeepQSM shows 

lower magnetic susceptibilities in comparison to STI and MEDI. In the other regions, the quantitative results are not 

differing significantly between methods.  

Discussion 

In this proof-of-concept study, we demonstrated that the challenging inverse problem underlying 

QSM can be solved by using a fully convolutional neural network. We achieved this by computing the 

well-posed QSM forward solution of synthetic data consisting of simple geometrical shapes, and we 

trained the network on these inverse and forward solution pairs. The first experiment tested the 

performance on a data set very similar to the training data. The network was able to invert this 

problem, but it could have done this by overfitting the training data. Therefore, the second 

experiment investigated the network's performance on a real phase data set from a human brain, 

containing structures that the network has never seen during training. We used the STI33 and 

COSMOS reconstructions from the 2016 QSM reconstruction challenge (Langkammer et al., 2018) to 

evaluate the performance. This showed that the network has learned the general concept of the 

dipole inversion and not just the shapes presented during training. The third experiment 

demonstrated that the inversion works with high-resolution in vivo phase data in a group of 27 

healthy volunteers.  
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We compared the susceptibility reconstructions from DeepQSM with two widely utilized 

reconstruction methods, namely STI Suite’s iLSQR and MEDI. We showed that DeepQSM is capable 

of delivering robust results without any parameter adjustments, although it was only trained on 

simple geometrical shapes. The difference maps and histograms of the differences illustrate that 

DeepQSM has no systematic bias and that the quantitative errors are in the same range as for iLSQR 

and MEDI.  

DeepQSM is currently only trained on simple geometrical shapes. The purpose of this was to test if 

the network can learn the dipole deconvolution itself, rather than image features of the desired 

output (e.g. brain anatomy). This shows that our network has learned to approximate the underlying 

principle of dipole inversion and that training data with anatomical priors, as recently proposed in an 

approach by Yoon et al. (2018), might not be necessary. In future versions of DeepQSM, we need to 

characterize the output of the network for a variety of susceptibility configurations and training data 

sets to understand how an optimal training set would look like. Improvements for the simulated 

training data could include zero padding around the training data sets before the convolution 

operation to avoid artifacts close to the edges of the volume. The reason why the quantitative 

results of different QSM methods differ in some anatomical regions significantly (see Figure 6, e.g. 

putamen and globus pallidus) are most likely an interaction between algorithmic properties (e.g. 

stepwise constant) and geometrical properties of the anatomical structures investigated. Another 

limitation of DeepQSM is that numerical error measures indicate no better quantitative performance 

in comparison to iterative procedures. However, the error measures used to assess the 

quantification accuracy and in particular the available “gold standards” (STI33 and COSMOS) are 

currently controversial topics in the community. This debate is clearly reflected in the concluding 

sentence of the recent report on the QSM reconstruction challenge (Langkammer et al., 2018) with 

input from 13 research groups and several meetings stating “the challenge highlighted the need for 

better numerical image quality criteria,” which is out of scope of this paper.  

Currently, we have used background field corrected data to compute a QSM solution. However, it is 

also possible to incorporate realistic simulations of background fields originating at tissue 

boundaries into the training step as shown in the follow-up work of this manuscript (Bollmann et al., 

2019). Incorporating the background field correction and the inversion in a single step would then 

allow the background field removal together with the field-to-source inversion (Heber et al., 2019) in 

an end-to-end fashion, similar to state of the art iterative single-step QSM algorithms (Langkammer 

et al., 2015). 
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In our current implementation, we utilized a simple dipole model with the assumption that magnetic 

susceptibility is a scalar quantity. An advantage of our proposed approach is that it can potentially 

utilize any forward model, and as such could incorporate additional model terms accounting for 

anisotropy of magnetic susceptibility and structural tissue anisotropy. Currently, the inverse problem 

posed by these more sophisticated models, such as the Generalized Lorentzian Tensor Approach  

(Yablonskiy and Sukstanskii, 2015), cannot be solved. Thus, a deep learning approach incorporating 

additional measurements, such as diffusion information, could deliver more accurate results in 

anisotropic white matter regions, because the susceptibility contrast depends on white matter fiber 

orientation (Li et al., 2012). Utilizing a more sophisticated model for QSM was recently proposed in 

the QUASAR approach (Schweser and Zivadinov, 2018) and implemented in DEEPOLE that separates 

the magnetic field into two components originating from different contrast mechanisms and yields 

an improved susceptibility map accounting for microstructural anisotropy (Jochmann et al., 2019).  

Conclusions 

In summary, we have described the foundations for a new class of QSM inversion algorithms that 

allow the solution of the QSM inverse problem using a deep convolutional neural network. We show 

that it is possible to learn the QSM inversion problem from synthetic data describing the known and 

well-posed forward problem.  
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