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Reducing the carbon footprint of house heating
through model predictive control

– A simulation study in Danish conditions

Abstract

Around the world, electricity systems are transitioning towards renewable en-
ergy to meet humanity’s climate change mitigation targets. However, in a pre-
transition system, the carbon intensity of power exhibits strong variations over
time, which calls for load shifting to times when its impact is lower. In this
work, the case of heating in single-family houses is studied, using Model Pre-
dictive Control (MPC) to optimise multi-zone operation. Low inertia heating
is used, and simulations are made upon three different insulation level using
historical grid and climate data from Denmark. The results show that energy
and CO2 optimisation are relevant objectives for predictive control for lowering
the carbon footprint of heating, while SPOT price optimisation is compara-
tively undesirable. However, benefits of energy optimisation were questioned,
as a well-tuned PID control might have had similar performance. Nevertheless,
gains from CO2 optimisation in recent houses highlight the importance of con-
sidering the average carbon intensity of energy used, in addition to the amount
of energy itself, when aiming to reduce the carbon footprint.

Keywords: carbon footprint ; heating ; single-family house ; model predictive
control

1. Introduction

1.1. Carbon emissions from the power sector
In Europe, a pathway for the energy transition to a low carbon1 energy

system has been traced by the European Union [1, 2]. As a member state, Den-
mark is following this roadmap, and therefore aiming at improving the energy
efficiency of its energy sector, and reducing the related greenhouse gas emissions.

The Danish power system is well interconnected to Sweden, Norway and
Germany. This allowed it to be among the frontrunners in integration of renew-
able energy in the power system, especially for wind power. In 2016, 63% of its
electricity generation was from renewable sources (43% wind, 18% biofuels and

1In this work, ’carbon’ is used as a synonym for ’greenhouse gas emissions’.

Preprint submitted to Sustainable Cities and Society June 2, 2018
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waste, and 2% solar), while 29% was from coal [3]. Therefore, dynamic vari-
ations of the carbon intensity of power are often observed due to fluctuations
of the respective shares of coal and renewables. This is illustrated in Fig. 1
for the period 2013–2016, showing up to a factor 3 between lowest and highest
carbon intensity (as well as an overall slow downward trend as fossil fuels are
progressively phased out).
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Figure 1: Carbon intensity of the power in Denmark for the period 2013–2016, at transmission
level (data from Styr din Varmepumpe [4], provided by Energinet: the Danish transmission
system operator (TSO) )

In the transition phase towards fully renewable electricity systems, it is
expected that such dynamic variations of carbon intensity will become more
widespread around the world. Therefore, it is important to study the impact
of dynamic variations in carbon intensity, and applications of load shifting to
times with lower carbon intensity.

1.2. Residential buildings as actors in the energy transition
Introduction of energy flexibility in dwellings should allow introducing more

variable renewable generation in electricity systems [5], and provides capacity for
load shifting. In particular, heating, ventilation and air-conditioning (HVAC)
loads constitute a major part of the demand (more than a third for countries of
the Major Economies Forum on Energy and Climate Change [6]).

In Denmark, a major part of this electricity is consumed in residential build-
ings (32.1% in 2015 [7]). However, only a small fraction of this residential load is
for heating purposes (around 4% in 2015 [7], but expected to grow as oil boilers
are phased out). In the specific case of Denmark, the largest part of residential

2
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heating is coming from district heating (43% in 2015 [7]). However, other coun-
tries are (or may become, as a result of their energy transition) significantly
more reliant upon electrical heating in the residential sector.

It is important to control these HVAC loads in the most efficient and mean-
ingful way, while making use of the flexibility in their energy usage to provide
benefits to the overall energy system. This can be addressed by using model
predictive control (MPC).

In this paper, we investigate the value of MPC applied to single-family house
heating with a low inertia heating system. Different strategies for MPC are
considered (aiming at minimising either energy use, indirect CO2 emissions
(footprint), cost, or discomfort) and compared to a classic thermostatic heating.
Moreover, the analysis is carried out on different house ages to evaluate the
impact of their insulation level on the conclusions.

1.3. Related work on model predictive control of HVAC in households
Predictive control of HVAC systems in buildings has been extensively re-

searched in the recent decades, with some early works prior to the nineties [8].
An overview of the field is found in several reviews [9, 10, 11] while a practical
introduction to MPC may be found in Maciejowski’s reference book [12].

However, practical hurdles are still preventing widespread adoption of MPC.
The main bottleneck, as highlighted by Prívara et al. [13], is the identification
of a reduced order model for the purpose of control. Identification of such a
model has been extensively studied using different modeling approaches. So-
called ’grey-box ’ models combining physical insight and local measurements in
operation [14, 15, 16, 17, 18, 19, 20] are typically preferred for its robustness and
the limited amount of data required, with a toolbox for model development and
validation introduced by De Coninck et al. [21]. However, other so-called ’black-
box’ approaches such as artificial neural networks [22, 23] and subspace methods
[24] are also found in the literature. More insight in the field of identification of
control-oriented models of buildings for HVAC control is found in the reviews
from references [13, 25, 26], and a theoretical introduction to model identification
is provided in Ljung’s reference book [27].

MPC of heating is mostly operated using mathematical optimisation in im-
plicit forms, requiring the use of optimisation solvers online (although some
attempts to adopt an explicit approach to the optimisation have been made
– e.g. in references [28, 29]). Therefore, the complexity of the optimisation
must remain low, so that they can be solved in real-time on hardware with
limited computational power. In particular, detailed models can hardly be used
in optimisation, as the complexity of the optimisation would be dramatically
increased2.

2This is because the number of equality constraints in the optimisation programs is pro-
portional to the number of states in the model multiplied by the optimisation horizon length.
It is also worth mentioning that state estimation is also problematic for detailed models with
a limited set of measurements.

3
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Recent developments in the field arose from the interaction with the ’smart
grid ’ research field, beyond the traditional building-centred indoor comfort focus
of prior works in building climate management. It resulted in increased attention
being given to the potential for provision of services to the power system by using
MPC for HVAC load control [18, 30, 31, 32]. For the particular case of heat
pumps, a review is found by Fischer and Madani[33].

As highlighted in the review from Clauß et al. [34], a variety of objective
functions can be used in MPC, depending on the aim of the control designer.
Typical examples are minimisation of energy use and maximisation of comfort
(measured by the deviation from a set-point, either in absolute or quadratic
deviation), but also objectives considering the dynamics of the broader energy
system such as energy price [35] or CO2 emissions [36]. A prior study in the
case of single-family house heating with an idealised MPC highlighted significant
differences in behaviour and performance depending on the chosen objective [37].

Some works are also starting to look into combination of the different ob-
jectives. For example, Knudsen and Petersen [36] investigated heating of a
dormitory room using MPC with an objective function considering a weighted
sum of day-ahead real-time price and carbon intensity. Variation of the weights
allowed quantification of trade-offs between CO2 and price.

In a review of the literature on heating control adopting a building-centred
perspective, Nägele et al. [38] found that both comfort and energy use are
relevant performance metrics. Energy use was addressed using net heating re-
quirements, including sun, appliances and excluding pipe losses. Comfort was
addressed by counting the number of hours where the indoor comfort was un-
satisfactory (defined as PPD > 10%, using the PPD definition from ISO 7730
[39]). However, it is also important to adopt a wider point of view and integrate
energy system considerations in the performance assessment [34]. In particular,
the total CO2 emissions originating from the energy production is essential to
the environmental impact assessment. Moreover, it was noted by Clauß et al.
[34] that MPC studies in the literature mainly focus on the precise metrics they
are aiming at optimising, often introducing risks of undesirable blind trade-offs
(in particular on the carbon footprint studied here).

When it comes to the study of the impact of building age on the benefits
and performance of implementation of MPC, Masy et al.[35] carried out simu-
lations assessing the influence of different insulation levels (in Belgian climate).
Pedersen et al. [40] also investigated the impact of demand response potential
from apartment buildings with different retrofit levels in a Danish context using
economic MPC, including a study of tradeoffs between energy costs and emis-
sions. However, such studies are few and it seems that there is considerable
room for research on the topic. Thus, the impact of the house insulation level
on the conclusions was also considered in this study.

1.4. Contribution of the work
The contributions of this article are fourfold, in the context of low inertia

heating of a single-family house, using a simple deterministic simulation model.

4
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- First, a two level controller based upon model predictive controller at
building level, and dispatch of the resulting power within the different
zones is presented. This allows ensuring comfort in a multi-zone building
with a single zone MPC optimisation, which has the advantage of requiring
significantly lower modelling effort.

- Second, a quantification of the benefits of implementation of MPC (com-
pared to thermostatic control) for low inertia heating is presented, includ-
ing reductions in CO2 emissions from electricity used. It is shown that
the value of MPC varies throughout the year and with house age.

- Third, a critical comparison of the possible objective functions is made,
highlighting trade-offs between energy use and CO2 footprint and ques-
tioning the relevance of price and comfort optimisation for MPC.

- Lastly, a novel metric for flexible load operation is proposed: the average
carbon intensity of the power consumed.

2. Methodology

In this part, the methodology of the work is presented.

2.1. Single-family house models
In this subsection, the simulation model of the single-family house is pre-

sented. Focus is made on a single-family house, as these are typical residential
buildings outside the areas covered by district heating in Denmark.

2.1.1. Building simulation model
This study uses 3 single-family house models developed in the third-party

project OPSYS [41]. These houses have identical geometry (4 rooms and a total
area of 150 m2), but different levels of insulation and ventilation (corresponding
to a building from 1970, 2010, and 2015).

The models are based upon linear differential equations, with the same struc-
ture in the 3 cases, but different values of their numerical parameters. More
details about the model structure, parameters, and inputs are found in the
report of the Opsys project [42].

These models account for effects from ambient temperature and vertical
components of the solar radiation for each direction (north, south, east and
west). Internal doors movement and heat gains from appliances and people (see
Fig. 3) are integrated in the model through weekly schedules, using values from
the report [42]. Occupancy profile was derived from internal heat gains, as the
building was considered occupied whenever one of the following conditions on
the internal heat gains values was true: above 150 W in room 1, above 50 W in
room 2, above 40 W in room 3, or above 25 W in room 4. Influence from the
wind, humidity and atmospheric pressure is not modelled.

As the model is meant for heating studies, analysis was restricted to the
heating period for each of the 3 buildings. It is important to note that these

5
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Figure 2: Layout of the 3 buildings (adapted from [42] and [23])
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Figure 3: Weekly schedule of internal heat gains (data from [42]) and occupancy
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periods differed among building ages, due to differences in their insulation, as
discussed below.

The heating source and its control were added, as they were not included
in the original model from OPSYS. In each room, the heating is modelled as
an electrical radiator heating (dimensioned according to the criteria described
later in this article), with a power to heat conversion efficiency of 1, and an
assumption that all its heat output is released into the air of the room.

The simulation model is implemented in MATLAB. Differential equations
in the model are solved using the forward Euler method, with a short time-
step of Ts = 1 min to minimise numerical errors3. Control updates for the
heating source are then updated in a slower manner (every 5 minutes for the
thermostats and dispatcher, and 30 minutes for the MPC to reflect computa-
tional constraints), and zero order hold is applied to the set-points in order to
allow for simulation with steps of 1 minute.

2.1.2. Input and disturbance data
Weather and power system data for the period December 2014 to January

2016 was obtained from the project Styr din varmepumpe [4].
The weather data originate from the Danish Meteorological Institute, and

includes hourly values of ambient temperature, and solar radiation (both direct
horizontal and diffuse components) which were used as model inputs and are
presented in Fig. 4 below. Vertical components of the direct solar radiation
were derived using the method presented in the textbook by Twidell and Weir
[43, chap. 4 (pp89–95)]. Diffuse radiation was integrated in the model by adding
half the value to each of these vertical components (reflection from ground is ne-
glected here). Ground temperature was not available in the dataset. Therefore,
a constant value of 10 ◦C was used, in accordance with the model description
[42]. Although wind speed and humidity data were available, these were not
considered in the model.

The power system data plotted in Fig. 5 originate from the Danish transmis-
sion system operator Energinet. These include hourly values of the SPOT price
of the power, carbon intensity of the power (i.e. the equivalent amount of CO2

emitted per unit of energy consumed). Occasional missing data were replaced
by the average of the signal, in order to be able to operate the simulations.

The carbon intensity is computed using the methodology provided in En-
erginet’s report [44], and applies at transmission level. For conversion to the
distribution level where the house is connected, a 5% loss in the distribution
network was then assumed in all footprint calculations below (consistently with
the average value proposed in the methodology [44]).

3Higher order methods such as Runge-Kutta methods or exact discretisation would provide
more accurate results.

7
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Figure 4: Weather data (data from Styr din Varmepumpe [4])
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Table 1: Heating seasons and dimensioning by house age

Age Heating period Capacity
1970 January–December (365 days) 7.3 kW
BR10 January–April 18th and October–December (200 days) 3.1 kW
BR15 January–March and October–December (182 days) 2.4 kW

2.1.3. Dimensioning of the heating system and heating season
For all 3 houses, the heating capacity was dimensioned using the Danish

standard DS 469 [45]. This standard requires that the heating must be able
to maintain an indoor temperature of 20 ◦C with an ambient temperature of
-12 ◦C (a conservative approach was adopted here, as we removed internal heat
gains and solar gains when computing this capacity).

The resulting total heating capacities varied within 2.4–7.3 kW for the 3
houses, due to their differing insulation, as shown in Tbl. 1. This total capacity
was then divided among the rooms according to their fraction of the total floor
area. While this splitting differs from the one obtained by computing the room
heating capacity required to meet the design requirements, their differences are
in the range of average internal heat gains (rooms 3 and 4 with lower inter-
nal heat gains tend to be over-dimensioned, and room 1 with large solar and
internal heat gains tends to be under-dimensioned), so that it is a reasonable
approximation.

Heating periods were computed for each of the 3 buildings separately, as
their insulation levels resulted in different heat needs. This was made using
thermostatic control on data from the whole year, and then manually identifying
when the heat load was insignificant. Resulting periods are given in Tbl. 1.

2.1.4. Comfort considerations
Comfort bounds were defined on the indoor air temperature, accordingly

with the standard EN 15251 [46, Appendix A3]. Here, all 4 rooms are assumed
to be hosting sedentary activities. This corresponds to a comfort range of 18–
25◦C for the 1970 house (considered as an existing building), and 20–25◦C for
the 2010/2015 houses (considered as renovated/new buildings).

In order to allow for realistic simulations and comfort in the inter-season,
window opening is implemented in each of the rooms. These windows are con-
trolled using the simple condition that a window is opened whenever the building
is occupied, and the air temperature is above 27 ◦C for the 1970 house and 26
◦C for the 2010/2015 houses (accordingly with the temperature upper limit for
cooling in sedentary activity rooms in residential buildings consistently with
the above use of EN 15251 [46]). It is however important to remember that,
as highlighted by Andersen et al. [47], window opening patterns depend on a
variety of parameters, such as indoor CO2 concentration and relative humidity

9
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(even potentially wind speed, although its significance seems doubtful according
to some studies [47, 48]).

Whenever the window is opened, an air flow to ambient air is added for the
simulation step, following the empirical relationship used in reference [23]:

Vwindow = αAwindowVf (1)

where α is the opening fraction (set to 0.5), Awindow is the window area,
Vf is the F-area flow (set to 0.1 m3/m2/s, consistently with the Opsys model
definition [23]).

It is worth noting that such comfort bounds differ between standards, and
adjustment would probably be left to users in practice. For example, the Danish
standard DS 469 [45] recommends a much tighter bound of 20–22 ◦C in living
spaces of residential buildings in heating conditions (21–23 ◦C in bathrooms).
Here, it is also important to remember that user preferences often differ from
standards. For example, a survey in a Danish context that most respondents
estimated their living room temperature to be within 20–22 ◦C and bedrooms
to be below 20 ◦C [49]. In another study made in a British context, a notable
tendency for under-heating in rooms (compared to standard requirements) was
also observed [50].

2.2. Baseline controller
In this study, the baseline controller of the heater in each room is a simple

thermostatic controller. It operates using the indoor air temperature of the
room as a feedback. It is forced to stop if a window is open in the room or if
the period is out of the heating season (as defined in Tbl. 1).

Two sets of thermostatic settings are considered: a ’high consumption’ type
with start-stop room temperatures of 22–23 ◦C (designated as ’TH-HOT’ be-
low), and a ’low consumption’ type (comparable to the lower bound of the MPC)
operating in the range 21–22 ◦C (designated as ’TH-REF’ below, and used as a
baseline).

2.3. Model predictive controllers
A MPC controller was implemented, using a linear programming approach

in order to represent future practicable potential.
Different strategies were compared for the control formulation:

- Energy-optimising (’MPC-EN’ below): the objective function is the
total energy used over the optimisation horizon;

- CO2 -optimising (’MPC-CO2’): the objective function is the total indi-
rect CO2 emissions over the optimisation horizon;

- Price-optimising (’MPC-SPOT’): the objective function is the total
SPOT price over the optimisation horizon (the actual power price is used,
rather than day-ahead predictions of it);

10
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Figure 6: Structure of the 2 stage advanced controller combining MPC and dispatching (du-
rations in every block indicate update/sample time)

- Comfort-optimising (’MPC-COMF’): the objective function is the total
integrated deviation of the average indoor air temperature from a reference
of 22 ◦C.

It is important to note that actual values of price and carbon intensity are
used in this study, while in practice predictions would be used in the controller
(prediction of future prices and carbon intensity at each time-step was not avail-
able in our historical data). Dependency of the control performance to the qual-
ity of the prediction is therefore out of the scope of this study (although it is an
important factor which should be assessed in future studies), which provides an
estimate of the upper bound on performances.

A deliberate choice to focus on linear programming optimisation for the
whole control chain is made, as such optimisation problems are well-known, and
a variety of solvers is available to solve them (including open source tools [51]).

The control operated with these advanced controllers consists in a combina-
tion of a single thermal zone optimisation (using traditional MPC), and a power
dispatcher to the individual rooms. This is summarised in Fig. 6 below, whose
components are introduced in the paragraphs below.

2.3.1. Reduced order model
The building thermal dynamics were modelled by a simple continuous time

linear state space model. This model approximates the building to a single
thermal zone, and takes the following form:

dX(t) =
[
AX(t) +BUU(t) +BVV (t)

]
dt+Kdω(t) (2)

Y (t) = CX(t) +DUU(t) +DVV (t) + e(t) (3)

11



Page 13 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

where X is the state vector (composed of the average room temperature
in the building, and some potential hidden states), U the controlled inputs
vector (containing the total power to the heaters), V the disturbance vector
(ambient temperature, internal heat gains, and vertical component of the global
solar radiation), Y the observation vector (containing the average of indoor
temperatures from simulated sensors reacting to changes in the air temperature
with a 2 min time constant), e is a noise vector (assumed to be white noise),
ω a Wiener process4, and (A,BU, BV,K,C,DU, DV) are the linear state-space
model matrices. The identification of the latter matrices is discussed in the next
sub-section.

The degree of opening of the doors has a significant impact on heat transfer
coefficients between rooms (e.g. neglecting heat capacity of the wall, the heat
transfer coefficient of room 1 to 2 was 43 W/K with closed door, and 164 W/K
with 50% open door). An optimal controller optimising the 4 different radiator
power inputs would therefore need to have knowledge of the state of these doors
(including their future values) to be capable of reliable predictions, which is not
realistic. Moreover, such a multi-zone model comprises a large number of states
and parameters, which makes it complicated to identify in practice.

For these reasons and to reflect achievable field deployment, it was chosen to
identify a simple single zone dynamical model, and assume that the opening of
the doors was unknown to the controller. Then, a dispatcher layer is added in
order to split the result of the optimisation among the 4 zones. These reduced
control-oriented models and dispatching of heating are presented in the next
subsections.

2.3.2. Identification of the control model
The implementation of the predictive controller requires an identification of

the model described in Eq. (2). Here, it was chosen to use a grey-box modelling
approach, rather than using the detailed knowledge of the building implemented
in the simulator. This is because the objective is to replicate similar conditions
to the model fidelity which is achievable in practice.

Several approaches were compared for each of the 3 buildings, using the
MATLAB System Identification toolbox [52]. This model identification was
made upon data that were generated by applying a pseudo-random binary se-
quence to the heaters of the building in the simulator, similarly to Bacher and
Madsen [15]. Simulation was made over 28 days using input data from Decem-
ber 2014, and disabling internal heat gains and window opening (to replicate an
empty building set-up), with a 1 minute step similarly to further simulations.
Subsequently, the dataset was resampled to 15 minutes samples (using averag-
ing) prior to usage in the toolbox in order to reflect good experimental practice
[53].

Five different continuous time grey-box models of increasing complexity were

4Here, a stochastic description is only used in modelling and state estimation (using the
Kalman filter). The MPC will use a certainty equivalent deterministic model.

12
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tested (GB1, GB2, GB3, GB4, GB5 – where the number increases with complex-
ity, see Fig. 7). As often made in grey-box modelling of buildings, continuous
time is used here in order to ensure physical interpretation of the parameters,
allow easy resampling of the model to different discrete sample times.

Figure 7: Grey-box models investigated for the controller in RC network form (parameters
are shown in blue, output is the average indoor air temperature Ti, inputs are the total
amount of power to heater H, global solar radiation Ps, internal heat gains IHG, and ambient
temperature Ta)

For the 3 houses, the toolbox was able to identify parameters for all 5 mod-
els (GB1, ..., GB5), using the ’greyest’ method in continuous time. However,
only the first order model (GB1) had standard deviations that were low for all
parameters. For other models, some of the parameters of the envelope were
observed to come with large uncertainty. Despite these uncertainties, it was
decided to assess their performance for control, compared to a well-identified
first order model. Results show that these could indeed provide performance
improvement in some cases.

The identified continuous time state space model (A,BU, BV from Eq. (2)
) was then discretised to allow its use in the Kalman filter (5 min time step, to
allow for a more precise and robust state-estimation to be used by the MPC)
and the discrete time model predictive controller (30 min time step, resulting
in the matrices A(d), B

(d)
U , B

(d)
V below).

The fits of the models used later in the MPC were computed, using their
discretised version with a sample time of 30 minutes and the R-squared as a fit
metric on the dataset (the same dataset was used for training and validation,
as the models are later compared in MPC experiments providing some sort of

13



Page 15 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

validation). For the 1970 house, the GB5 model was used in MPC and had a
fit of 93.7% for prediction 30 min ahead, and 75.2% for 24 h ahead. For the
BR10 house (model GB4), this fit was 95.5% for 30 min ahead, and 92.3% for
24 h ahead. Lastly, for the BR15 house (model GB4), fits were 95.3% for 30
min ahead, and 55.1% for 24 h ahead prediction.

2.3.3. Single zone optimisation
At each time-step k when the model predictive controller is run, a linear

programming problem is solved (using the linear programming solver from the
solver Gurobi [54]) over a N steps ahead horizon:

min
U [k]...U [k+N−1]

N−1∑
j=0

(
CU[k + j]U [k + j]+

CX[k + j + 1] ‖X[k + j + 1]−Xref [k + j + 1]‖1 + ρ[k] ‖ξ[j]‖1
)

(4)

s.t. X[k] = X̂k (5)
∀j ∈{0, ..., N − 1},

X[k + j + 1] = A(d)X[k + j] +B
(d)
U U [k + j] +B

(d)
V V [k + j] (6)

0 6 U [k + j] 6 Prated (7)
Xmin[k + j + 1]− ξ[j] 6 X[k + j + 1] 6 Xmax[k + j + 1] + ξ[j] (8)
0 6 ξ[j] (9)

Eq. (4) sets the objective of the optimisation, with CU a scalar input cost,
CX a scalar discomfort cost penalising the deviation from a reference Xref , ξ the
deviations outside the comfort range and ρ a ’large’ cost for these deviations
(these were used to ensure feasibility of the optimisation at all times).

In Eq. (5), the initial state of the system is fixed to an estimated value X̂k.
This estimated value is computed from observations of the room temperatures
using the Kalman filter (with observation noise adjusted compared to its iden-
tified value). This filtering is required to compensate for the unobserved states
modelling the thermal mass of the building structure in models GB2, GB3, GB4,
GB5 (as well as coping with missing measurements in real-world applications).

In Eq. (6), the expected future dynamics of the system are modelled using
an equality constraint based upon the matrices corresponding to the discretised
version of the model (A(d), B

(d)
U , B

(d)
V – the noise description is dropped in the

deterministic approach used here5).
Eq. (7) constrains the total power input to remain below the rated power of

the heating Prated, and above a minimum (cooling is not allowed).

5This is consistent with the use of a Wiener process in Eq. (2), which has average 0.
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Eq. (8) constrains the state to remain within lower Xmin (21 ◦C) and upper
Xmax (24.2 ◦C) bounds. These constraints are softened by allowing deviations,
which must remain positive (ensured by Eq. (9)) and discouraged (by the cost
ξ in Eq. (4)).

Then, the first step of this ’optimal’ sequence is applied and the optimisation
is run again at the next step (hence the term ’receding horizon’ sometimes
used as an alternative to ’model predictive control’). It is worth noting that
the value of the inputs can vary within an interval, and is not limited to a
discrete number of values. This allows to use linear programming (rather than
its computationally-heavy mixed-integer extension) and can be justified by the
fact that the heating can be only activated for a fraction of the considered
period. In this work, a control step of Tc = 30 min is used.

Different possibilities for the input cost CU and the state cost CX were
assessed in the study, corresponding to the above-mentioned strategies:

- Energy optimisation (MPC-EN): constant cost for CU[k] = 1, and CX[k] =
0 for all k.

- CO2 optimisation (MPC-CO2): the value of the carbon intensity of the
power is used for CU, and CX[k] = 0 for all k.

- SPOT price optimisation (MPC-SPOT): the SPOT price of the power is
used for CU, and CX[k] = 0 for all k.

- Comfort optimisation (MPC-COMF): CU[k] = 0, and a constant cost is
used for CX[k] = 1 for all k.

At each step, the value of the ’softening weight’ ρ was chosen according to
the following equation:

ρ[k] =
10

N
max

(
Prated

∥∥∥∥∥∥
 CU[k]

...
CU[k +N − 1]

∥∥∥∥∥∥
1

,

∥∥∥∥∥∥
 CX[k + 1]

...
CX[k +N ]

∥∥∥∥∥∥
1

)
(10)

In simple terms, this means that, for a given step, the cost of deviating 1
◦C from the constraints will be at least 10 times the average cost of consuming
full power for one step, or deviating 1 ◦C from the temperature set-point. Here,
’average’ is to be understood as the ’average of the absolute value within the
optimisation horizon of the MPC at time k’.

2.4. Dispatching of the heat between zones
The result of the optimisation yields a total amount of power for the building

heating (PMPC), which is assumed to be converted to heat with an efficiency
of 1. Then this total amount needs to be dispatched between the individual
rooms, which is made using a heuristic approach.

As stated previously, the motivation for this combination of MPC and dis-
patch at room level is to overcome the dynamical modelling issue originating
from the unknown door openings (strongly affecting the thermal coupling be-
tween zones), which is a barrier to a simple implementation of MPC directly at
room level.

15



Page 17 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

Ensuring minimal comfort level in each room
The MPC operates using the average temperature of the building. However,

it happened that some of the rooms were too cold while the average temperature
would be high enough for the MPC to keep the heating low or stopped.

Here, it is important to understand that this is not due to the poor predic-
tions of the single zone model itself, but to the very limits of a single zone model
approach. In such a multi-zone building with high internal gains in some rooms
and limited coupling between rooms, indoor temperature can simply exhibit
differences of several ◦C.

An upgrade of the dispatchers was therefore needed to guarantee a minimal
heat input (Pmin), by increasing the MPC output (PMPC = U [k] in Eq. (4) )
where needed. In the following, delivery of such extra heat is named ’boosting’.
This was implemented using algorithm 1, where full power is affected for the
coming timestep to each heater in a room j where temperature falls below the
minimum (Tmin,j).

Result: Minimal power to the heating (PDispatch)
Pmin ← 0 ;
for j from 1 to 4 do

if Tj < Tmin,j then
Pmin ← Pmin + Prated,j ;

end
end
PDispatch ← max(Pmin, PMPC) ;
return PDispatch ;

Algorithm 1: Dispatch upgrade to ensure minimal comfort in all 4 rooms.

where in the case of these simulations, the same value of Tmin,j was used
for all rooms (18.2 ◦C for the 1970 house, and 20.2 ◦C for the 2010 and 2015
houses, where the 0.2 ◦C is a margin to compensate thermal dynamics).

This ’boosting’ potentially provides suboptimal increase of the energy use.
However, it was observed that the share of the energy use originating from this
suboptimal boosting is small (see Fig. 11).

Optimisation program
This balancing is operated using a heuristic approach relying upon linear

programming optimisation and the solver from Gurobi [54]. Each time step,
the controller splits the total heat between the individual rooms in a way that
minimises the deviation between the room temperature and its set-point at
the end of the control step (neglecting internal heat gains and heat exchanges
between the zone and neighbouring zones or the ambient).

min
(T̂j ,Pj ,εinf,j ,εsup,j)j∈{1,...,4}

4∑
j=1

(αεinf,j + εsup,j) (11)
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s.t.
4∑
j=1

Pj = PDispatch (12)

∀j ∈ {1, ..., 4} : 0 6 Pj 6 Prated,j (13)

T̂j = Tj + Pj
Tc
Cj

(14)

εinf,j > 0 (15)

T̂j + εinf,j > Tset,j (16)
εsup,j > 0 (17)

T̂j − εsup,j 6 Tset,j (18)

where for a given zone j, Tj corresponds to the measured zone temperature
(obtained from the modelled temperature sensors), Pj to the actual power de-
livered to the heater (Prated,j corresponds to its rated power), Cj to the lumped
heat capacity (estimated from the reduced order model), Tset,j to the desired
temperature set-point. Tc is used here to denote the duration of a control step
(here, Tc = 5 min).

The objective function (Eq. (11) ) penalises the deviation below (εinf) and
above (εsup) the temperature set-point of the room. A factor α is used to put a
higher penalisation to under-heating (a value of 10 is used here).

The constraint in Eq. (12) imposes that the sum of all power to the heaters
equals the output of the MPC (corrected by Algorithm 1). Eq. (13) ensures
that the power affected to the heater in each room is within what it can deliver.
Then, the constraint Eq. (14) predicts the future air temperature at the end of
the time step. Here, the thermal dynamics models neglect internal heat gains
and heat transfer through envelope and doors (this is reasonable over a 5 min
time-step). Lastly, constraints in Eqs. (15,16,17,18) define the deviations of
the future air temperature of the room below below (εinf) and above (εsup) its
set-point.

2.5. Quantification of performance
Here, the key performance indicators (KPIs) of the study are presented.

2.5.1. Energy consumption and CO2 emissions
The performance of the controller was evaluated on an energy level using 2

indicators: total energy use, and CO2 emissions. Each of these will be computed
both on a monthly basis, and over the whole heating season – using Eq. (19)
and (20) below.

Energy use (T ) = Ts
∑
k∈T

U [k] [kWh] (19)

CO2 emissions (T ) = Ts
∑
k∈T

CCO2
[k]U [k] [kgCO2,eq] (20)
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where T is the period considered, Ts the duration of a simulation step, and
CCO2 the carbon intensity of the power (in kg CO2 eq/kWh). Later in this
work, it will be shown that it is important to consider hourly values of carbon
intensity (when available) rather than a fixed factor (such as yearly average).

Lastly, an average carbon intensity of the power consumed was computed,
using Eq. (21).

Average CO2 intensity (T ) =
CO2 emissions(T )

Energy use(T )
[kgCO2,eq/kWh] (21)

2.5.2. Indoor comfort
As explained above, indoor air temperature ranges are considered for comfort

(with values from the standard EN 15251 [46, Annex A3]). For the 1970 house,
the range is 18–25 ◦C, while for the 2010/2015 houses it is 20–25 ◦C. Here, it is
deliberately chosen to focus on occupied hours for quantifying the discomfort.
This is because the occupancy of the building is assumed to be known with
certainty, while the building is never left empty for more than a few hours.

From these ranges and the occupancy profile (as given in Fig. 3), the degree
hours criterion found in EN 15251 [46, Annex F]) is used. This integrated
occupied hot (and cold) discomfort is defined as the integral of the deviation of
the indoor air temperature of the room above the upper limit (below the lower
limit) of the comfort range. Here, it is important to note that the MPC is using
tighter comfort bounds in the optimisation (21–24.2 ◦C).

For these metrics, we propose a building-wide value evaluation, by using the
number of hours when at least one of the rooms has an air temperature outside
the comfort range:

Hot discomfort =

∫
T
σ(t) max

j

[
max(0, Tj(t)− T̄j)

]
dt [Kh] (22)

Cold discomfort =

∫
T
σ(t) max

j

[
max(0, T j − Tj(t))

]
dt [Kh] (23)

Where σ is a function taking value 1 when the building is occupied, and 0
otherwise.

3. Results

In this section, the results of the study are presented.

3.1. Energy use in the buildings
To start with, the energy fluxes in the 3 buildings modelled were compared

for the whole heating season. Compared to the 1970 house, the heat needs for the
heating season were observed to be 5 times lower for the 2010 house, and almost
10 times lower for the 2015 house. The relative losses through air infiltration,
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Figure 8: Detailed summary of heat gains and losses in the simulation model for the 1970,
2010, and 2015 houses over their heating season (using the ’Energy optimising’ predictive
controller). Both absolute heat gains/losses and relative contribution of each of the losses are
presented to facilitate comparison.

envelope, windows, floor, and window opening were roughly equivalent for all
the 3 houses (Fig. 8).

Moreover, during the heating seasons, heat gains from sun, appliances, and
people dominated the heat gains for the houses from 2010 and 2015, while the
heating for more than half of gains for the 1970 house (Fig. 8). This emphasizes
the importance of explicitly accounting for the predictable component of internal
heat gains in the control model.

Considering possibilities for demand side management (including load shift-
ing), it is clear that different building ages will have different demand response
capabilities (as seen in Tbl. 1 and later Fig. 11). First, the amount of energy
that can be shifted in recent buildings is lower than in older buildings with
higher heating needs. Second, the period of the year where this energy flexibil-
ity of heating is available is reduced for more recent buildings. For example, the
single-family house built according to the 2015 regulations would only be able
to provide demand response from heating between October and March with the
weather pattern used here.

3.2. Usefulness of the power dispatcher
The power dispatcher allowed keeping a minimum temperature in each of the

rooms, which significantly improved the comfort when using MPC in the 2010
and 2015 houses. With its higher heating needs and lower comfort requirements,
the 1970 house was less dependent on this feature (this would be needed if
the comfort requirement was increased to match the other 2 houses). This is
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Figure 9: Comparison of minimum and average room temperatures without (left) and with
(right) boosting in the 3 houses (using MPC-EN)

illustrated in Fig. 9, for the case of energy optimisation (MPC-EN) with and
without this feature.

As seen in Fig. 11, the total heat used for boosting is a small fraction of the
total heating needs. Therefore, it is more of a ’safety net’ for the MPC which is
especially useful for energy, CO2 and price optimisation (MPC-EN, MPC-CO2,
MPC-SPOT). It is also worth noting that comfort optimisation (MPC-COMF)
is also making use of it, although less than the other MPCs.

A trade-off on the performance of the heating has been observed in the de-
sign phase when proceeding to the adjustment of minimum average temperature
bound in the MPC (Xmin). On the one hand, setting the lower bound of MPC
too close to the minimum temperature for boosting triggering in the dispatcher
(Tmin) leads to extra heat being often requested, resulting in suboptimal devi-
ations from the optimised schedule. On the other hand, setting the minimum
bound in the MPC too high leads to keeping a higher average temperature
(therefore consuming more energy), but reduces the need for this potentially
suboptimal boosting.

It was observed that the computation of the dispatch algorithm was very
fast (much below 1 s on the laptop used for the study equipped with an Intel i7
processor), which is compatible with the real-time computing requirement.

In the rest of the experiments, the boosting was always active.

3.3. Impact of the model and prediction horizon on the controller performance
The dependency of the performance of the MPCs to the different control

model structures presented in Fig. 7 was studied for the control strategies MPC-
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EN and MPC-CO2 (as it was operating energy shifting) with a 24 h horizon
length (N in Eq. (4) ) for optimisation.
For the 1970 house, the model GB5 provided the best performance for the 1970
house, reducing energy use (-1.6% for MPC-EN) and CO2 emissions (-1.9% for
MPC-EN), respectively, compared to using GB1 – while having negligible (<1%)
adverse impact on discomfort. On the other hand, performance degradation was
observed for models GB2, GB3 (higher energy use and CO2 emissions), and GB4
(discomfort was more than doubled), compared to GB1.
For the 2010 and 2015 houses, the model GB4 was found to be the one providing
the best performance. Compared to GB1, for the MPC-EN controller, energy
use was reduced by 4% and 5% for the 2010 and 2015 houses, respectively –
while discomfort was reduced by 8% and 8.6% respectively. Similarly, for the
MPC-CO2 controller, CO2 emissions were reduced by 6% while discomfort was
reduced by 30% for the 2010 house, and 22.5% for the 2015 house. Other models
(GB2, GB3, and GB4) also provided performance improvements compared to
GB1, although more limited.

A similar study was made on the horizon length with models GB5, GB4, and
GB4 for the 1970, 2010, and 2015 houses, respectively. Horizon lengths of 0.5
(one step ahead optimisation in MPC), 1, 6, 12, 24, and 48 h were considered.
For the 1970 house, increase of horizon improved performance for MPC-EN
(0.8–1.1% lower energy use for 24 and 48 h ahead), but degraded performance
for MPC-CO2 (0.45% higher CO2 emissions and 37–41% increase in discomfort
for 24 and 48 h horizon lengths).
For the 2010 and 2015 houses, the horizon length had little influence on the
performance of MPC-EN, therefore questioning the relevance of MPC compared
to PI control for energy optimisation. However, given the prior dependency of
performance to the model, it seems that a good model is important for the state
estimation which may condition the performance. For these recent buildings the
MPC-CO2 controller had best performance with a 24 h ahead horizon length (1–
1.5% reduction in CO2 emissions, with 6-10% increase in discomfort compared
to a 30 min horizon length). Performance increased with horizon length up to 24
h ahead, while above 24 h it decreased again (both in terms of higher discomfort
and CO2 emissions).

Following these observations, a value of 24 h was chosen for the horizon
length in the MPCs, and the models GB5, GB4, and GB4 were selected for the
1970, 2010, and 2015 houses, respectively. Here again, the solving of each step of
the MPC problem with this 24 h horizon took less than a second on the laptop.
Real-time computing is therefore not an issue for MPC in this form either.

3.4. Comparison of controllers
The behaviour of the thermal environment of the buildings over their heating

season was then analysed for the 6 controllers (TH-REF, TH-HOT, MPC-EN,
MPC-CO2, MPC-SPOT, and MPC-COMF).

First, the thermal comfort was compared, based upon the results presented
in Fig. 10. Overall, most overheating particularly occurred in the warm months
(March to October for the 2010 and 2015 houses, and summer for the 1970

21



Page 23 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

Whole building - Integrated discomfort  (1970) 

0

100

200

300
(1970)

0

500

1000

(BR10)

0

20

40

( 
(O

c
c
u
p
ie

d
) 

K
h
  
/ 
m

o
n
th

 )

(BR10)

0

50

100

150

( 
(O

c
c
u
p
ie

d
) 

K
h
  
/ 
y
e
a
r 

)

(BR15)

Ja
n

Feb M
ar

Apr
M

ay Ju
n

Ju
l

Aug Sep O
ct

N
ov

D
ec

0

20

40

TH-HOT

TH-REF

MPC-EN

MPC-CO2

MPC-SPOT

MPC-COMF

(BR15)

0

50

100

Figure 10: Comparison of the building-wide discomfort with the different controllers the year
(heating was limited to the heating season in all 3 cases, the positive component of the bars
denotes hot discomfort, while the negative component denotes cold discomfort)

house for which the limits of the model are reached). It was observed that
a higher thermostatic operative range (TH-HOT) range led to more hot dis-
comfort compared to normal thermostatic operation (TH-REF). Energy opti-
misation (MPC-EN) reduced hot discomfort, while flexible heating using price
(MPC-SPOT) or CO2 optimisation (MPC-CO2) led to equivalent or worse hot
discomfort (especially for the 1970 house). Comfort optimisation did not reduce
discomfort more than energy optimisation (which suggests that energy optimisa-
tion with a suitable lower temperature bound Xmin is sufficient). In every case,
cold discomfort was negligible, showing again the effectiveness of the boosting.

Then, the impact of the controller on the overall energy use was assessed,
based upon the results of Fig. 11. For all 3 houses, relative energy savings
from implementation of MPC were more marked in the spring and autumn, and
lower in the winter. On a yearly basis, energy optimisation was found to reduce
energy consumption by 7.7–11.3%, compared to the thermostatic baseline. Price
and CO2 optimisation resulted in a 2.6–8.7% reduction in energy use compared
to the baseline, and were always leading to higher energy consumption than
the energy-optimising controller (MPC-EN), with CO2 optimisation having an
overall lower consumption than price optimisation. Comfort optimisation had
a similar energy consumption to the reference thermostatic controller.

It is however important to notice that even for energy-optimal controllers,
the relative savings were always less than would be observed by simply reducing
the lower bound of the thermostat by 1 ◦C (i.e. TH-HOT to TH-REF), as this
higher bound led to 12.5–25.5% higher energy use (more pronounced in the 2010
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Figure 11: Comparison of the energy consumption of each control strategy over the year
(heating was limited to the heating season in all 3 cases). For each MPC controller, the
amount of boosting required is shown in light blue. In order to facilitate comparison of energy
consumptions, the relative savings compared to the baseline controller (TH-REF) are plotted
in red.

and 2015 houses).
Then focus was made on the CO2 footprint, based upon the results displayed

in Fig. 12. For the 1970 house, CO2 optimisation was found to emit slightly
(1%) more CO2 than energy optimal strategy, which may be due to the quality of
the model and highlights the practical difference between aiming for optimality
and achieving it. For the houses from 2010 and 2015, CO2 optimisation however
led to the lowest CO2 emissions (reduction compared to the baseline thermostat
was 9.4% for the 2010 house, and 11.3% for the 2015 house). This reduction was
however only slightly higher than for the case of energy optimisation (reduction
of 8.2% and 10.3% for the 2010 and 2015 houses, respectively). In all cases, price
optimisation was not found to reduce CO2 emissions better than energy or CO2

optimisation, and comfort optimisation did not show a significant change in
footprint, compared to the baseline controller.

Here again, it is worth noting that improvements from MPC are lower than
gains achieved by lowering the lower bound of the thermostatic control by 1 ◦C.

Detailed figures of the performance indicators for each control on each house
are found in Tbl. 3 in Appendix.

3.5. Detailed assessment of the carbon footprint
A deeper study was made on the CO2 footprint, beyond the emission re-

ductions from Fig. 12, to assess the potential of control to alter the correlation
between load and carbon intensity in this Danish power system context.
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Figure 12: Comparison of the power-related CO2 emissions of each control strategy over the
year (heating was limited to the heating season in all 3 cases)

Cross-correlations between load and carbon intensity are presented in Fig.
13, which displays both the monthly and the annual cross-correlations. In most
cases, a positive correlation between load and carbon intensity was observed, and
overall stronger for energy optimisation than thermostatic operation. CO2 opti-
misation was observed to provide a significant decrease in this cross-correlation
(and even sometimes an inversion of the correlation), especially for the 2010
and 2015 houses. For these recent houses, a similar effect was observed for price
optimisation.

These cross-correlations therefore suggest that using a fixed carbon inten-
sity factor in footprint assessment (e.g. for life-cycle assessment) leads to mis-
estimations of the impact. As seen in Fig. 14, the average carbon intensity de-
creased with house age (as the CO2 intensity was higher in the colder months),
and was also affected by the control. It was observed that energy optimisation
would typically increase the average carbon intensity compared to thermostatic
control, while SPOT price optimisation would decrease it. As expected, the
highest decrease of carbon intensity was achieved by CO2 optimisation, which
led to relative reductions of carbon intensity of 2.4–4.9% for the 1970 house,
1.7–4.7% for the 2010 house, and 1.1–4.0% for the 2015 house, compared to
other MPC controllers and the reference thermostatic control. This explains
why CO2 optimisation consumed more energy but resulted in a lower carbon
footprint for recent houses.

When assessing the total footprint, using the yearly average of the dataset
resulted in 13–31% under-estimation. It was also noted that the more recent
the house, the higher the under-estimation. Using the yearly average carbon
intensity from the Danish Energy Agency resulted in a 18–46% over-estimation
of the total footprint, with over-estimation increasing with the age of the house.
This overestimation would be even higher if using a figure of 401 gCO2 eq/kWh
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over the year for the 3 houses and a selection of controllers

Figure 14: Average carbon intensity for different control strategies for the 3 houses (constant
factors from TSO and Energy Agency [55] are provided for comparison).
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which is proposed in another of the Agency’s communications [56] (quantitative
details are found in Tbl. 2 in Appendix).

4. Discussion

4.1. On the carbon intensity metric
The carbon intensity used in this study has a number of shortcomings. First,

the quantification does not account for life-cycle emissions and limits its scope
to the operational emissions instead. Second, it uses a gross approximation for
the emissions of the power exchanged with neighbouring countries, as imports
are currently counted with the yearly averaged carbon intensity of the given
country (knowing that in 2016, 21% of the power was imported from neigh-
bouring countries, this is not negligible) [44]. In future works, accounting of
interconnections could be improved further by using recent developments of the
’ElectricityMap’ [57], or similar solutions. A more realistic distribution loss
model could be valuable, potentially integrating the effect of congestion on the
local grid.

The research also identified large (>50%) deviations between the figures of
the TSO and the national Energy Agency for the the annual carbon intensity,
which clearly denotes a lack of homogeneity in the quantification methods.

Moreover, looking at the impact at the societal level, marginal carbon inten-
sity (see works of Graabak et al. [58] and Hawkes [59] for more details) would
provide a more realistic estimate of the impact of the change in control, com-
pared to the average carbon intensity. In such a case, the CO2 emissions avoided
through control would probably be higher, although the lack of historical data
does not allow drawing a conclusion here.

Life-cycle assessments rely upon this metric to evaluate the footprint of oper-
ation of buildings. However, these typically seem to adopt a static yearly carbon
intensity factor. Here (in the case of 2015), the positive correlation observed
between heating load and hourly carbon intensity suggests that a simple aver-
age of carbon intensity over the year is ill-suited. In fact, where possible, it is
more relevant (and precise) to use hourly carbon intensity profiles for footprint
assessment. Hourly values seem particularly important when using controllers
deploying energy flexibility (such as MPC), to avoid underestimating their value.

4.2. On benefits from MPC
Implementation of model predictive control was found to provide benefits

compared to thermostatic control for a single-family house with low inertia
heating. Strategies optimising the heating to minimise discomfort and SPOT
price were not found to be bring valuable improvement (with regards to comfort,
energy use, and CO2 emissions) compared to energy and CO2 optimisation. In
fact, SPOT price optimisation provided some reduction in the average carbon
intensity of power, but resulted in additional energy use leading to an overall
higher footprint. However, in the eventuality of adoption of dynamic taxation to
penalise CO2 emissions further (see reference [60] for more details), a different
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conclusion may be reached for price optimisation. Nevertheless, it is important
to keep in mind that SPOT price optimisation provides important benefits in
terms of energy costs and peak shaving (see e.g. reference [36]), which were
both out of the scope of this study.

Nevertheless, the reduction of energy use and footprint resulting from im-
plementation of MPC was lower than the reduction observed when reducing
the lower bound of the thermostatic control by 1 ◦C. It is thus recommended
to first focus on the indoor temperature set-points provided to the controller,
before replacing the controller by a ’smarter’ one.

On the one hand, dependency of the energy-optimising MPC to its hori-
zon length highlights the limited relevance of MPC compared to Proportional
Integral Derivative (PID) control for fast heaters. On the other hand, CO2 op-
timisation was a very relevant use case for more recent houses, where it reduced
emissions more than energy optimisation (despite higher energy needs). This
was due due to the reduction of the correlation between the heating load and
carbon intensity of the power resulting from the load shifting (which a PID
controller is not capable of supporting).

Here, it is important to bear in mind that this study focused on a low inertia
heating system. It is very likely that control of heating systems with higher
inertia (such as water-based floor heating with a heat-pump) would be impacted
differently by implementation of MPC. As preliminary results showed, benefits
from CO2 -optimising MPC might then become much more significant (e.g.
reference [37], where CO2 optimisation led to 10% lower emissions, compared
to energy optimisation in idealised winter conditions). However, it may also be
important to assess the risk of increased demand at peak load times resulting
from this control (this was observed in one case by Knudsen and Petersen [36]).

Lastly, use of real weather forecast and a more chaotic occupant behaviour
may also lead to lower benefits. However, lower internal heat gains (compared
to the rather high ones used here) could lead to more room for flexibility in
energy usage, therefore accentuating differences between control strategies.

5. Conclusion

This work compared the performance of thermostatic and model predictive
controllers for heating in simulations for 3 single-family houses of different con-
struction years with several rooms. These predictive controllers were operated
using a single thermal zone optimisation combined with an innovative power
dispatcher ensuring minimal comfort in each room.

Predictive control provided improved performance, but only the formulations
consisting in minimising energy use (for all 3 houses) and CO2 emissions (for
recent houses) and were found to be relevant when focusing solely on carbon
footprint reduction and energy efficiency. These benefits vary throughout the
year, with higher relative energy savings in warmer parts of the heating season.
However, these gains from implementation of such advanced controllers were
comparatively smaller than those from lowering of temperature bounds of the
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thermostatic control to appropriate values (this should remain the priority in
practice).

On such a fast heating system, MPC was not observed to bring signifi-
cant improvement compared to a well-tuned PID controller for minimisation of
energy use. However, for applications requiring energy shifting (such as CO2

optimisation) in recent houses, MPC remained a means to improve performance
compared to PID control.

A positive correlation was observed between carbon intensity and heating
load for all controllers. This correlation was however significantly reduced by
CO2 optimisation (use of imperfect predictions of carbon intensity in this MPC
may well lead to a different conclusion). Moreover, it was proposed to use a new
simple metric for performance assessment of controllers making use of energy
flexibility: the average carbon intensity of the power consumed over a period.

Further work should focus on extending the research to heating systems
with higher inertia (e.g. water based heating, and floor heating), influence of
more unpredictable occupancy and internal heat gains, adaptive update of the
control model over time, use of imperfect forecast of disturbances and prices
in MPC, as well as assessment of the value of using setbacks on set-points
when the building is unoccupied. Furthermore, use of a more precise carbon
intensity metric (including marginal emission factors) would be valuable, as such
information will become more easily available and precise over time.
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Appendix

Table 2: Average carbon intensity for different control strategies for the 3 houses (TSO, first
and second values for Energy Agency are for 2015, 2015, and 2014, respectively).

Controller
Carbon intensity
[gCO2 eq/kWh]

1970 BR10 BR15
TH-REF 248.2 277.8 287.3
MPC-EN 251.2 279.1 290.4
MPC-CO2 241.2 266.4 279.2
MPC-SPOT 247.0 270.9 282.4
Yearly average of TSO dataset 202.5
Danish Energy Agency [55] 343
Danish Energy Agency [56] 401
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tTable 3: Summary of the performance indexes of the different controllers on the 3 houses

over their heating season.
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Highlights 
- The carbon intensity exhibits significant variations over time, which can be used in control 

- Three single family houses of varying age are simulated, using historical input data from 

Denmark  

- MPC can optimise according to energy use, power price, dynamic carbon intensity, or 

comfort, to improve the performance of heating 

- Footprint-wise, energy- and carbon-optimising MPC were more desirable than price or 

comfort optimising MPC  

- The average carbon intensity of the power consumed is a relevant performance metric for 

MPC 

 


