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Abstract
The prognosis of patients with haematological malignancies in terms of sur-
vival probability and relapse risk is of interest to clinical practitioners, pa-
tients, health economists, and many more. By combining the extensive regis-
ter data available in the Nordic countries with novel statistical and machine
learning methods, new insights into the disease course of haematological ma-
lignancies are obtained.

Three of the papers that make up this PhD dissertation concern the use of
statistical methods to predict the survival probability at different time points.
Currently available prognostic indices are often based on statistically ineffi-
cient practices and can be outperformed by simple models. In Paper I, the
extent of this inefficiency in the case of diffuse large B-cell lymphoma (DL-
BCL) is investigated. In particular, a simple new model which outperforms
the standard prognostic scores is introduced and described. In Paper III, this
simple model of the survival of DLBCL patients is improved upon by using a
machine learning method. In Paper IV, the performance of established prog-
nostic scores for eight common haematological malignancies is investigated.
None of the established risk scores perform well and all are outperformed
by a simple model which relies only on information regarding age and func-
tional status.

For patients surviving treatment and achieving remission, information re-
garding the risk of relapse and death given that they survived the initial
period is of significant interest. In addition to being useful for patient coun-
selling, such knowledge facilitates the construction of rational follow-up pro-
grams. Describing such dynamic measures of survival was the main objec-
tive of Paper II and Paper V. In Paper II, the survival of acute promyelocytic
leukaemia (APL) is compared to that of a similar healthy population. It is
shown that the survival prospects of APL patients surviving the critical three
month period post-diagnosis are nearly indistinguishable from those of a
healthy population. In Paper V, it is shown that also the survival of young
Hodgkin lymphoma patients in remission for over two years becomes similar
to that of a similar background population. Furthermore, also the relapse risk
becomes negligible and the use of follow-up strategies focusing on relapses
past this two-year landmark is of limited value.

Often register data contains some errors. Potential causes of these errors in-
clude disease misclassification, measurement errors, data entry errors, etc.
These outliers often have a large influence on standard statistical techniques
and the resulting estimates are often of limited use when outliers are present.
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Abstract

The field of robust statistics aims to develop statistical methods on which out-
liers have only a limited influence. In paper VI a robust estimation procedure
for survival models is proposed.
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Resumé
Inden for hæmatologiske sygdomme er prognose et vigtigt begreb for både
klinikere, patienter, pårørende, sundhedsøkonomer og andre faggrupper, og
vurderes ofte ud fra døds- og recidivrisikoen. Ved at kombinere de omfat-
tende sundhedsregistre med nye statistiske og machine learning metoder kan
ny viden om hæmatologiske sygdomsforløb opnås.

Denne ph.d. afhandling indeholder seks videnskabelige artikler, hvoraf tre
omhandler brugen af statistiske metoder til mere præcist at prædiktere over-
levelsessandsynligheden for hæmatologiske patienter til forskellige tidspunk-
ter. Eksisterende prognostiske modeller inden for hæmatologien er ofte baseret
på suboptimale statistiske fremgangsmåder, og disse kan derfor nemt forbedres
ved brugen af andre simple modeller. I artikel I undersøges hvordan små æn-
dringer i håndteringen af kliniske variable kan føre til en langt mere præcis
forudsigelse af overlevelsen for patienter med diffust storcellet B-cellet lym-
fom. I artikel III forbedres denne simple prognostiske model ved hjælp af
machine learning teknikker. I artikel IV undersøges præcisionen af prog-
nostiske modeller, som bliver brugt indenfor otte almindelige lymfomtyper.
Denne artikel illustrerer disse modellers manglende præcision og viser at
disse overgås af en prognostisk model, der baseres alene på patienternes
alder og performance status målt ved diagnose.

For de hæmatologiske patienter som overlever behandlingen og opnår re-
mission, er viden om risikoen for recidiv og død særlig værdifuld. Da denne
viden er vigtig i forbindelse med patientrådgivning, som efter behandlingen
gives regelmæssigt, er disse risici også interessante ved bestemte tidspunk-
ter i opfølgningsforløbet. Denne information kan også bruges til at etablere
mere rationelle opfølgningsprogrammer. Formålet med artikel II og V var ne-
top at beskrive disse risici dynamisk. I Artikel II sammenlignes mortaliteten
blandt akut promyelocytisk leukæmi (APL) patienter med mortaliteten i den
danske baggrundsbefolkning. APL patienter, som overlever de første tre kri-
tiske måneder opnår samme overlevelse som en baggrundbefolkningen.
I artikel V dokumenteres, at unge patienter med Hodgkin lymfom kan for-
vente en overlevelse, der modsvarer en rask baggrundsbefolkning, hvis syg-
dommen har været i remission i mere end to år. Desuden er risikoen for
recidiv meget lille for denne patientgruppe, og derfor vil værdien af opfølgn-
ingsstrategier, som fokuserer på detektion af relaps efter denne toårs milepæl
være begrænset.

Ofte indeholder registerdata fejl. Potentielle fejlkilder omfatter blandt an-
det misklassifikation af sygdomme, målefejl og dataindtastningsfejl. Disse
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Resumé

outliers har ofte stor indflydelse på forskningsresultater, når konventionelle
statistiske metoder tages i brug, hvilket medfører en begrænset brugbarhed
af resultaterne. Robuste statistiske værktøjer sigter mod at generere resul-
tater, hvor outliers har en begrænset indflydelse. I Artikel VI præsenteres en
robust estimationsprocedure for overlevelsesmodeller.
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Background
The kappa of this thesis is intended to introduce some background informa-
tion regarding the data sources and techniques used in the papers. Since
papers I up to V include an extensive overview of the clinical and epidemi-
ological considerations, the focus of a large part of this kappa will be on the
statistical background.

In Section 1, a short introduction to the haematological malignancies that
were studied and the data-sources underlying the studies is provided. In
each study in this dissertation the outcome was right-censored, an overview
of the survival analysis methodology used to take the censoring into account
is presented in Section 2. Papers I, III, and IV concern the use of prognostic
models, a description of what prognostic models are, how to measure their
performance, and how to combine different prognostic models is given in
Section 3. A drawback of standard statistical measures of survival, e.g. the
hazard function, is that they are not readily understood by patients or med-
ical practitioners. In papers II and V alternative survival measures such as
the standardized mortality ratio and the loss of life expectancy are used to
make the results more easily interpretable. These measures are introduced in
Section 4. Furthermore, Papers II and V also describe the evolution of these
measures conditional on patients achieving longer periods of remission. The
statistical methods used to do so are described in Section 5. Finally, paper VI
considers estimation procedures for survival models in the presence of out-
liers, a short overview of the estimation problems occurring when outliers
are present is given in Section 6.

1 Haematological malignancies

1.1 Introduction

Haematological malignancies are cancers that originate in the blood, bone
marrow, or lymph system. Depending on the type of the affected cells,
these malignancies are subdivided into three subgroups: leukaemias (blast
cell cancers), lymphomas (lymphocyte cancers), and myelomas (plasma cell
cancers). Within these three subcategories, the prognosis, treatment options,
etc. vary largely and these overarching categories have been further divided
into subtypes as e.g. exemplified in the WHO Classification of Tumours of
Haematopoietic and Lymphoid Tissues.[1]

The treatment of haematological malignancies plays an important role in the
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Background

history of cancer treatments. In fact, one of the first successful chemother-
apy treatments was a component derived from the warfare chemical mustard
gas which has been used for the treatment of a variety of haematological
malignancies.[2] Currently, treatment of haematologic malignancies ranges
from wait and watch strategies to therapies consisting of one or more of
chemotherapeutic drugs, immunotherapy, radiotherapy, transplantation, etc.

1.2 Overview of selected haematological malignancies

Diffuse large B-cell lymphoma

Diffuse large B-cell lymphoma (DLBCL) is the most common type of lym-
phoma and accounts for ≈ 30% of all lymphomas.[3] Patients diagnosed
with DLBCL have a ≈ 75% chance of surviving five years post-diagnosis.[4]
Subclassifications of DLBCL are often based on genetic information or on the
dissease location and large differences in treatment response and survival ex-
ist.[5] One of the most often used classification systems subdivides DLBCL
according to its cell of origin, more particularly DLBCL cases can be clas-
sified into germinal centre B-like (GCB) DLBCL and activated B-cell (ABC)
DLBCL.[6] While the GCB/ABC classification is recomended in the current
WHO classification [1]. Recently, there has also been an increased interest in
the treatment and epidemiology of specific gene alterations, e.g. double-hit
lymphomas.[7] However, currently there is no compelling data suggesting
that the presence of these alterations or the GCB/ABC classification have a
clinical implication with respect to the treatment of DLBLC. The location of
the involved sites, on the other hand, can have a large influence on the treat-
ment options and survival. For example, standard therapies are often unable
to reach a sufficiently high penetration rate of the blood-brain barrier and the
treatment of DLBCL presenting in the central nervous system is more chal-
lenging and associated with worse outcomes than systemic DLBCL.[8]

The majority of systemic DLBLC patients receive curative intent treatment.
The current standard of care consists of rituximab, cyclophosphamide, dox-
orubicin, vincristine, and prednisone (R-CHOP) or variations thereof.[5]

Altough there has been a surge in the interst of risk scores based on molecular
data, simple clinical risk scores still form the basis of DLBCL risk stratifica-
tion used in daily clinical practice. The international prognostic index (IPI),
which was developed in 1993, is the most commonly used prognostic index
for DLBCL.[9] The risk factors that make up the IPI are: age at diagnosis
> 60 years; Ann Arob stage III or IV; elevated lactate dehydrogenase; Eastern
Cooperative Oncology Group performance status 2, 3, or 4; and the pres-
ence of > 1 extranodal site.[9] The IPI score is then defined as the number of
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1. Haematological malignancies

present risk factors. Given the IPI score, patients are divided into four risk
groups: low risk (0 or 1 risk factor); low-intermediate risk (2 risk factors);
high-intermediate risk (3 risk factors); and high risk(4 or 5 risk factors).[9]
Recent studies have attempted to improve upon the IPI and examples of this
are the R-IPI and NCCN-IPI indices.[10, 11] Common among almost all pro-
posed prognostic indices is that they rely heavily on dichotomized risk factors
and result in the classification of cases into few, usually ≤ 4, risk categories.
These practices have been commonly critizized in the statistical literature, yet
remain wide-spread.[12] Papers I, III, and IV document the information loss
due to the dichotomization of the risk scores for DLBCL and improve upon
the currently available prognostic indices by avoiding this practice.[13–15]

Hodgkin lymphoma

In contrast to most cancer types, Hodgkin lymphoma (HL) has a bimodal in-
cidence pattern and patients diagnosed before turning 40 years old constitute
a significant portion of the HL cases. The majority of the patients receiving
current standard of care treatment will be considered cured and > 90% sur-
vives at least five years post-diagnosis.[16, 17] Given these high cure and sur-
vival rates, rational survivorship care is clinically important, in particular at a
time with limited ressources in available in the public health care setting.[18]
Hodgkin lymphoma is usually staged according to the Ann Arbor staging
system which ranges from stage I (lymphoma isolated to one location) to
stage IV (disseminated involvement of one or more organ outside the lymph
system).[19] Based on the Ann Arbor staging system, HL is often subdivided
into limited stage disease (Ann Arbor stage I or II without B-symptoms) and
advanced stage disease (Ann Arbor stage II with B-symptoms or Ann Arbor
stage III/IV). Although the Ann Arbor stage is still widely used, more novel
staging measures such as those based on PET/CT imaging are gaining trac-
tion.[20]

The mustargen, vincristine, prednisone and procarbazine (MOPP) chemother-
apy regimen was the first treatment that succesfully cured a large proportion
of advanced stage HL patients.[21] The main drawback of the MOPP regimen
is its high rate of secondary malignancies, which did not became clear un-
til more than a decade after its introduction.[22, 23] The successor of MOPP
was a combination of doxorubicin, bleomycin, vinblastine, and dacarbazine
(ABVD) which is highly efficacious and less toxic, and ABVD remains part
of the standard of care.[24] A more recently introduced chemotherapy regi-
men that is used in clinical practice is the bleomycin, etoposide, doxorubicin,
cyclophosphamide, vincristine, procarbazine, and prednisolone (BEACOPP)
combination which has led to even higher cure rates among advanced-stage
HL patients. The effect of BEACOPP on overall survival, however, remains
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Background

controversial.[25] In addition to chemotherapy, HL patients often receive ra-
diotherapy treatment and in order to reduce toxicities, the dosage and extent
of the fields used in these treatments have been substantially reduced over
the last decades.[26]

Acute promyelocytic leukaemia

Acute promyelocytic leukaemia (APL) is a subtype of acute myeloid leukaemia
(AML) characterized by the translocation of the retinoic acid receptor (RARA)
gene.[27] The accumulation of leukemic promyelocytes causes the clinical
hallmark of APL, acute and life-threatening coagulopathy. The treatment
of APL is based on the ability of all-trans retinoic acid (ATRA) to force the
differentiation of the leukemic promyelocytes and APL remains one of the
few cancers for which molecularly targeted therapy has been successfully in-
troduced.[28] The survival prospects of APL patients who receive an ATRA
based treatment are excelent compared to other types of AML, especially if
the patient survives the critical coagulopathy phase.[29, 30] Notwithstanding
the good long-term survival of APL patients treated with ATRA, the early
death rate remains high, likely due to a delayed administration of ATRA.[29,
30] The standard of care for APL consists of an induction treatment of ATRA
combined with chemotherapy and/or arsenic trioxide.[27] After the induc-
tion treatment, most patients receive a consolidation treatment consisting of
a similar regimen and with recent regimens five-year relapse risks < 15%
have been reported in clinical trials.[27, 31]

1.3 Data for epidemiological studies of haematological ma-
lignancies

Two major sources of data on the survival and clinicopathologic characteris-
tics of cancers patients are clinical trials and clinical registers.

Clinical trials are usually conducted to test the efficacy of new treatments.
In order to rigorously define the study population and treatment, the en-
rolment is often restricted to patients who meet strict eligibility criteria and
the treatments are administered in highly controlled settings.[32] For some
clinical trials, patients have to undergo extensive examinations before being
enrolled which can result in the exclusion of high-risk patients with acute
treatment needs.[32, 33] Furthermore, due to budget and time constraints of-
ten the follow-up period and number of enrolled patients is limited which
hampers the detection of late events and late toxicities.[34] Data from clinical
trials tends to be meticulously gathered and is generally of high quality.
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2. Analysis of survival data

Registers often cover large unselected populations and tend to be constructed
and maintained with a certain purpose in mind, e.g. quality control. There-
fore, the most prominent advantages of clinical register data are that the data
usually represents day to day clinical practice and describes large unselected
populations. An important drawback is that the estimation of causal effects is
hampered due to potential confounding. Furthermore, partly because these
databases are often not constructed to accomodate all needs of scientific re-
search, the data completeness and detail level tend to be lower than that of
clinical trials. In Denmark, population-wide registers have been established
for a large number of diseases. Two large clinical registers which were used
in this thesis are the nationwide Danish National Lymphoma Register (LYFO)
and the Danish Acute Leukemia Register.[35, 36] The coverage of these regis-
ters exceeds 95% and, hence, essentially all Danish lymphoma and leukaemia
patients are included in these registers.[35, 36]

In summary, data from clinical trials and clinical registers each have their
distinct advantages and disadvantages. In practice, the use of both leads to
robust and generalizable results that form the foundation of clinical practice.

2 Analysis of survival data

2.1 Introduction and notation

Patient data is often collected at diagnosis and when events have occurred,
such as deaths or relapses, event times are added to the database. At the
time of the statistical analysis a number of patients included in the databases
might not have experienced the event and the only information regarding
their event date is that it has not happened by a certain date. In statistical
lingo this is called censoring. The most commonly occurring type of censor-
ing, right-censoring, occurs when for some patients only a lower bound of
the event time is observed.

The analysis of censored and truncated data is the topic of survival analysis,
a branch of statistics. In the papers presented in this thesis neither truncation
nor left-censoring occurred and this section will focus on the concepts of sur-
vival analysis relevant for right-censored data. To ease the exposition we will,
without loss of generality, assume that all time variables are reported in years.

Throughout this thesis the potentially unobserved event-time and censoring
time of subject i will be denoted by Ti and Ci, respectively. In register studies,
Ti often corresponds to the time between diagnosis and death or progression,
and Ci corresponds to the time between diagnosis and the date at which the
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event status was last updated. The information which is usually available
in studies of right-censored data is the minimum of the event and censoring
times, Ui = min(Ti, Ci), and the status variable, ∆i = 1(Ti < Ci), which indi-
cates whether Ui corresponds to an event or a censoring.

In time-to-event studies, the inference targets tend to be either the hazard
function or the survival function. The hazard function is the event rate at
time t given survival up to time t or formally

α(t) = lim
h→0

P(t ≤ T < t + h|T ≥ t)
h

.

The survival function describes the probability of surviving up to a time t,
i.e. the survival function is

S(t) = P(T > t).

The majority of the statistical techniques for survival analyses tend to model
the hazard function, however, the survival function can easily be recovered
from a known hazard function by noting that

S(t) = exp
(
−
∫ t

0
α(u)du

)
.

A large proportion of epidemiological studies attempt to describe the sur-
vival of patients with a specific disease. In such analyses, there is often an
interest in describing and comparing the survival prospects of different sub-
groups. Given that the necessary data on survival status and covariates, X, is
available, these studies can be performed by modelling the hazard, α(t|X, θ),
or survival function, S(t|X, θ), in function of some parameters θ. Depending
on the dimension of the parameter space these models can be categorized
as non-parametric, semi-parametric, and parametric models. Although a rig-
orous description of each type is beyond the scope of this thesis, for each
approach one statistical model is introduced and its advantages and disad-
vantages are concisely described.

2.2 Survival models

Non-parametric models

The goal of most non-parametric estimators is to estimate a certain function
without imposing any strong constraints on its shape. The main advantage
of this is that only minimal assumptions are needed to obtain consistent es-
timators. Perhaps the largest drawback is that the estimation procedures can

8
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be fairly inefficient when compared to parametric alternatives.

The most often used non-parametric estimator in survival analysis is the
Kaplan-Meier (KM) estimator.[37] If we denote whether a patient is at risk
of experiencing the event at time t as Yi(t) = 1(Ui ≥ t), the number of pa-
tients at risk of experiencing the event at time t is Y(t) = ∑n

i=1 Yi(t). Defining
the number of events happening at time t as N(t) = ∑n

i 1(Ui = t)∆i, the KM
estimator can be written as

Ŝ(t) = ∏
s∈{Ui≤t|∆i=1}

(
1− N(s)

Y(s)

)
.

The most important assumption underlying the theoretical results for the KM
estimator is the assumption of independent (or non-informative) censoring.
By reporting KM estimates stratified according to some covariate the survival
functions of different subgroups are often compared. Depending on the sam-
ple size within each strata this can lead to unstable estimates.

Semi-parametric models

Semi-parametric models tend to impose constraints on some components of
the model, i.e. the parametric part of the model, while keeping the rest of the
model very flexible, i.e. the non-parametric part of the model. The rationale
behind semi-parametric models is that if the model parameters of interest are
the parametrized ones they will be estimated relatively efficiently while the
nuisance parameters are left unspecified to avoid model misspecification.

The Cox proportional hazard (CPH) model is without doubt the most popu-
lar semi-parametric survival model.[38] In the CPH model it is assumed that
given a baseline hazard, α0(t), the covariates have a proportional effect on
the hazard function

α(t|Xi) = α0(t)exp
(
X tθ

)
.

The coefficients of the covariates can be estimated without specifying the
baseline hazard by use of the partial likelihood estimator

θ̂ = max
θ

n

∏
i=1

 exp
(
X t

i θ
)

∑j|Yj(Ui)=1 exp
(

X t
j θ
)
∆i

.

This model is especially useful when only the covariate effects are of inter-
est. The baseline hazard can also be estimated, e.g. by using the Breslow-
estimator, and hence estimates of the hazard and survival functions can be
obtained.[39]
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Parametric models

Parametric survival models explicitly model the whole survival curve or haz-
ard function using a finite number of parameters. The main advantage is that
the survival process is fully parametrized and, if the model is correct, the
usual estimators are often more efficient than their non- or semi-parametric
counterparts. Their main disadvantage is that when the survival process
does not fit the parametric model, the interpretation and applicability of the
resulting model is limited. This disadvantage can be partly circumvented by
use of models based on flexible parametric functions, e.g. splines.[40]

An example of a parametric model used in survival analysis is obtained by
parametrizing the baseline hazard used in the CPH model. For example, set-
ting α0(t) = λptp−1, in which λ and p are parameters, leads to a Weibull
model with proportional covariate effects. The parameters in parametric sur-
vival models are usually obtained by use of a maximum likelihood estimator
(MLE) [41]

θ̂ = max
θ

n

∏
i=1

S(Ui|Xi, θ)α(Ui|Xi, θ)∆i .

Altough alternative estimation procedures exists, the MLE methodology is
the most commonly used as it generally leads to estimators which are asymp-
totically unbiased and achieve a high efficiency.

2.3 Time-varying coefficients

Covariates available in clinical registers are often only measured at the di-
agnosis date. A limitation of covariates measured at diagnosis is that the
magnitude of the covariate effects on the hazard function often changes over
time.[42] For example, in Figure 1 the hazard ratio of stage IV versus stage I
disease in DLBCL is shown. Around the time of diagnosis stage IV patients
have a largely increased hazard for dying as compared to stage I patients.
However, for patients surviving three or more years the stage measured at
diagnosis is not as influential and its effect becomes negligible around five
years post diagnosis.

One way of explicitly including this knowledge is by allowing the coefficients
to change in function of the time. E.g. replacing the constant coefficients in
the standard CPH model by spline effects in function of the time, Θ(t, θ),
leads to

α(t|X) = α0(t)exp
(
X tΘ(t, θ)

)
.

Other examples of models with time-varying effects include the parametric
Royston-Parmar model and the Cox model with non-parametric time-varying
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Figure 1: Hazard ratio of stage IV versus stage I disease in HL as estimated by a flexible para-
metric proportional hazard model.

effects.[40, 43]

2.4 Competing risk analyses

In cancer research, there are often multiple terminal endpoints, e.g. death
due to cancer and death due to causes unrelated to cancer. One common ap-
proach for handling multiple endpoints is the use of a composite endpoint,
e.g. death from any cause. A drawback of this approach is that the individ-
ual endpoints are not explicitly described. Competing risk analysis is a large
sub-field of survival analysis which focuses on modelling multiple terminal
endpoints, a visual example of the set-up of interest is given in Figure 2. If we
denote the set of potential endpoints by K, the information that is observed
in competing risk studies is the time of an event or censoring, Ui, whether the
observed time was a censoring or event time, ∆i, and the type of the event,
K ∈ K. The two quantities that are the main focus of competing risk analyses
are the cause-specific hazard and the cumulative incidence functions.

The cause-specific hazard function describes the event rate of a specific event-
type at time t given survival up to time t and is defined as

αk(t) = lim
h→0

P(t ≤ T ≤ t + h, K = k|T ≥ t)
h

, k ∈ K.

Given that the events always correspond to one death cause, it is easy to see
that the hazard function of any event occurring is

α(t) = ∑
k∈K

αk(t)
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Figure 2: A diagram visualizing the usual set-up in competing-risk studies.

and the probability of survival up to time t remains S(t) = exp
(
−
∫ t

0 α(u)du
)

.
The probability of event k happening by time t is known as the cumulative
incidence and can be derived from the cause-specific hazard functions

Pk(t) = P(T ≤ t, K = k) =
∫ t

0
S(u)αk(u)du. (1)

The most often used non-parametric estimator of the cumulative incidence is
the Aalen-Johansen estimator, which essentially substitutes the cause-specific
hazard functions in Equation 1 with the increments in the cause-specific
Nelson-Aalen estimators.[44]

The incorporation of covariate effects into the cause-specific hazard function
can be done as in the usual survival analysis setting. Fitting cause-specific
hazard models is done by treating the competing risk events times as censor-
ing times. The modelling of the cause-specific hazard is generally the most
appropriate in aetiological studies.

When the objective of a study is prognostication, the quantity of interest is
usually the cumulative incidence, i.e. the probability that a specific event
occurs. In this scenario, an important disadvantage of modelling the cause-
specific hazard is that a model for S(t) or for each cause-specific hazard
function has to be developed. Additionally, due to the involvement of S(t)
in Equation 1, interpreting the effect of a covariate on the cause specific haz-
ard in terms of the cumulative incidence becomes problematic. It could even
be that a certain covariate is associated with increased cause-specific hazard
rates but leads to a decrease in the cumulative incidence. Models that di-
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rectly model the cumulative incidence function have been developed. The
most popular approach is the Fine-Gray model which models the cumulative
incidence as

Pk(t|X, θ) = 1− (1− P0(t))exp(X tθ),

in which P0(t) is a baseline cumulative incidence.[45]

2.5 Pseudo-values

The objective of a survival analysis is often to determine the effect of co-
variates on some function of the event times, f (Ti), for example the five-
year survival, f (Ti) = 1(Ti ≥ 5). If f (Ti) could be observed for each ob-
servation then given a link function, g(·), regression models of the form
E( f (Ti)|Xi) = g−1(X t

i θ) could be estimated using the theory surrounding
generalized linear models. However, due to the censoring, f (Ti) is not nec-
essarily observed. To circumvent this issue pseudo-values can be used as
replacements of the potentially unobserved f (Ti) values.[46]

Given that we have an estimator ρ̂ for ρ = E( f (Ti)) the pseudo-value of
observation i is defined as

ρ̂i = nρ̂− (n− 1)ρ̂−i,

in which ρ̂−i is the estimate obtained using all observations except for ob-
servation i.[47] In an analysis based on uncensored data the natural ρ̂ es-
timator is 1

n ∑n
i=1 f (Ti) and the pseudo-values are then ρ̂i = f (Ti). When

censoring is present which estimator is used depends on the f (·) function.
E.g. when f (Ti) = 1(Ti ≥ 5) one could obtain an estimate of the five-year
survival using the the Kaplan-Meier estimator. When the Kaplan-Meier es-
timator is used in this way, Graw et al have shown that E(ρ̂i) → E( f (Ti))
and E(ρ̂i|Xi) → E( f (Ti)|Xi) as n → ∞.[48] By relying on results from func-
tional analysis, Overgaard et al have recently extended these results beyond
the Kaplan-Meier estimator and x-year survival psuedo-values.[49]

Once the pseudo-values are calculated they can be used as outcome variables
in generalized linear models of the form

E( f (Ti)|Xi) = g−1(X t
i θ).

The estimates are then obtained as the solutions to the following generalized
estimating equations (GEE)[50]

U(θ) =
n

∑
i=1

Ui(θ) =
n

∑
i=1

∂

∂θ
g−1(X t

i θ)V−1
i (ρ̂i − g−1(X t

i θ)) = 0,
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in which Vi is a working variance. To estimate the variance a sandwich esti-
mator can be used[47]

Σ̂ = I−1(θ̂) ˆvar(U(θ̂))I−1(θ̂),

in which

I(θ) =
1
n

n

∑
i=1

∂

∂θ
g−1(X t

i θ)tV−1
i

∂

∂θ
g−1(X t

i θ)

and

ˆvar(Ui(θ)) =
1
n

n

∑
i=1

Ui(θ)Ui(θ)
t.

It is known that this variance estimator tends to be biased, more particularly,
it tends to return conservative estimates and a number of alternative unbiased
variance estimators have been proposed.[49, 51, 52] In practice, however, the
sandwich estimator remains the most convenient.

3 Prognostic models

The research field of prognostic modelling is concerned with the probability
that certain events happen in the future. Information on the prognosis is val-
ueable in a large number of scenarios. First of all, the prognosis of a certain
disease is obviously of interest to patients. Additionally, treatment plan de-
cisions made by physicians are in part based on their knowledge about the
prognosis. Prognostic information can also guide health-economical decision
making, e.g. follow-up programs for relapse detection might be viewed as too
costly if the relapse risk is limited. Other applications include the selection
of patients for experimental treatment, comparing the performance in treat-
ing a disease across hospitals, etc.[53] In practice, prognostic models which
include risk factors are often preferred over describing the prognosis for the
whole population with the disease. In the statistical literature prognostic
modelling is usually referred to as predictive modelling and a vast literature
exists.[54] In the personalized medicine litterature the words prognostic and
predictive have been differentiated and in that field effect modifiers are often
called predictive variables.[55] The words prognostic and predictive will be
used interchangeably in this dissertation.

3.1 Prediction versus explanation

One of the essential differences between explanatory and predictive analyses
is which models are considered to be useful.
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In explanatory analyses, the goal is to obtain a model which allows the re-
searcher to reach a causal conclusion regarding the effects of interest, e.g.
which clinical factors have a causal effect on the survival of DLBLC patients.
Models which are known to incorrectly model the underlying system are
usually, and with reason, not considered. An example is the exclusion of
well-known confounders which would lead to biased estimates of the causal
effect of interest. In conclusion, a major goal of explanatory modelling is to
obtain a model in which the bias of the effect estimates is minimized.

In predictive analyses, the goal is to predict the outcome of new observations,
e.g. the five-year survival probablity of a newly diagnosed DLBCL patient.
A model is therefore considered to be useful when its predictions are ac-
curate. How the model accomplishes this and whether or not the model
actually resembles the underlying causal process is not necessarily of inter-
est. One could think that using a model that perfectly models the causal
structure is the way forward, however, quite often this approach will be sub-
optimal when considering a measure of the prediction error as optimality
criterion.[56] This scenario is visualized in Figure 3 in which a biased estima-
tor would tend to lead to estimates closer to the true value than an unbiased
estimator. In fact, estimators for which it is known that they will be biased
but have a lower variance than the usual unbiased estimators are commonly
used in prognostic studies. Perhaps the most well-known example of this is
the class of penalized estimators. For example, ridge regression techniques
tend to bias the estimators towards zero in order to obtain a reduction in the
variance of the estimators.

3.2 Measuring predictive error

Measures of predictive performance can be roughly categorized into two cate-
gories, calibration and discrimination measures.[57] Discrimination measures
quantify the ability of a predictive model to correctly rank patients according
to who is at higher risk to experience the event earlier. Calibration measures
are concerned with measuring whether the modelled probability of an event
is in accordance with the probability of that event being observed in the data.
In this section, we introduce one measure of calibration, the Brier score, and
two measures of discrimination, the C-index and time-varying area under the
receiver operating curve (AUC).

Brier score

To measure the calibration of survival models at time t, the squared error
between the survival status at time t, 1(T ≥ t), and the modelled probability
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True value

Unbiased estimator
Biased estimator

Figure 3: Example of the bias-variance tradeoff. A biased model might on average lead to
more precise estimates than an unbiased model with a larger variance. The curves represent the
distribution of two estimators from which the predictions are obtained.

of being alive, S(t|X, θ), is often used.[58, 59] This squared error is called the
Brier score and is formally defined as

B(t) = E
(
(1(T ≥ t)− S(t|X, θ))2

)
.

If we denote the survival function of the censoring mechanism by G(t) =
P(C ≤ t) and an estimator thereof by Ĝ(t) the following inverse probability
of censoring weighted (IPCW) estimator

B̂(t) =
n

∑
i=1

1(min(Ti, t) ≤ C)
Ĝ(min(Ti, t)|Xi)

(1(Ti ≥ t)− S(t|Xi, θ))2 ,

can be shown to be a consistent estimator of the Brier score at time t.[59]
From now on we denote the true underlying survival function, which is not
necessarily of the form S(t|X, θ), by S0(t|X). The following result is easily
derived

= E
(
(1(T ≥ t)− S(t|X, θ))2

)
= E

(
(1(T ≥ t)− S0(t|X))2

)
+ E

(
(S0(t|X)− S(t|X, θ))2

)
.

(2)

Hence, the Brier score consists of an irreducible error term and a mean
squared error arising from using an incorrect model. In practice, usually
a plot of the Brier score over time is reported together with a summary mea-
sure over the study period, [0, τ], one such a measure is the integrated Brier
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Figure 4: The Brier score of the survival of DLBCL patients as predicted by a Cox proportional
hazard model which included age as covariate and the Kaplan-Meier estimator.

score[60]

IBS =
∫ τ

0
B(u)du.

The Brier score curves for two models of the survival of DLBCL patients are
shown in Figure 4. More particularly, the models are a CPH model with age
as a covariate and a Kaplan-Meier estimator of the population survival. Since
the Kaplan-Meier estimate is independent of any modelling assumptions and
includes no covariate information it can be interpreted as a reference model
which is hopefully be outperformed by more advanced models, as is the

case in this example. The term E
(
(1(T ≥ t)− S0(t|X))2

)
which shows up in

Equation 2 gives some insight into the shape of the Brier score. Even if the
true model was known, the Brier score would be expected to differ from zero
and initially show an evolution closely related to S0(t|X).

C-index

The C-index measures the concordance between the ranking of failure times
and the ranking of the risk scores. Denoting the risk score given covariates by
R(X), the C-index of a randomly sampled pair of observations ((R(X1), T1),
(R(X2), T2)) is defined as

C = P(R(X1) > R(X2)|T2 > T1),

which corresponds to the probability that the risk score of patient one is
larger than the risk score of patient two given that patient one dies before
patient two. In practice this quantity is often estimated by the following
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IPCW estimator[61]

Ĉ =
∑n

i=1 ∑n
j=1 ∆iĜ(Ui)

−21(Ui < Uj)1(R(Xi) > R(Xj))

∑n
i=1 ∑n

j=1 ∆iĜ(Ui)−21(Ui < Uj)
.

Depending on the estimator of G(·), Ĝ(·) can be quite unstable for large
values which in turn can lead to unstable estimates of the C-index. Therefore
it has been suggested to use a truncated C-index instead[61]

Cτ = P(R(X1) > R(X2)|T2 > T1, T1 < τ),

which can be estimated as follows

Ĉτ =
∑n

i=1 ∑n
j=1 ∆iĜ(Ui)

−21(Ui < Uj, Ui < τ)1(R(Xi) > R(Xj))

∑n
i=1 ∑n

j=1 ∆iĜ(Ui)−21(Ui < Uj, Ui < τ)
.

Given that the C-index is defined as a probability its value is part of the [0, 1]
interval. If we randomly generated risk scores from a continuous distribution
independent of Ti, the C-index would be 0.5. Hence, a C-index of 0.5 corre-
sponds with a model which has no prognostic information at all and models
that are of use in practice should have a C-index > 0.5.

Time-varying AUC

A drawback of the C-index is that it does not describe the performance of
the risk score at different time points of interest but instead focusses on the
complete follow-up period. It is not unthinkable that some risk scores could
have a good performance in the period directly following diagnosis but lose
performance over time. Such evolutions of the discriminative performance
over time would not be described by the C-index. A measure closely related
to the C-index is the time-varying AUC. Different definitions have been pro-
posed in the literature.[62] The most intuitive definition of the time-varying
AUC at time t for a pair of observations ((R(X1), T1), (R(X2), T2)) is[62]

AUC(t) = P(R(X1) > R(X2)|1(T1 ≤ t), 1(T2 > t)).

Hence, the time-varying AUC measures the probability that patients who
have died by time t will receive a larger risk score than patients who are still
alive. The IPCW estimator of this quantity is[63]

ÂUC(t) =
∑n

i=1 ∑n
j=1 ∆iĜ(Ui)

−1Ĝ(t)−11(Ui ≤ t, Uj > t)1(R(Xi) > R(Xj))

∑n
i=1 ∑n

j=1 ∆iĜ(Ui)−1Ĝ(t)−11(Ui ≤ t, Uj > t)
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As for the C-index, a time-varying AUC of 0.5 can be obtained at any time t
by randomly assigning a continuous risk score to each observation.

3.3 Ensemble models

A large number of different survival models are available and this number
keeps on growing. In general, the objective of a prognostic study is to have
one prognostic model and model selection is an important issue. Ensemble
modelling is a general approach which avoids the selection of just one model
and instead combines a set of prognostic models, S1(·), . . . , Sk(·), into one
final model. The most common approach is to construct a weighted average
of the considered models

Sens(·) =
k

∑
i=1

βiSi(·).

Diversity in ensemble models

Usually ensemble methods work well when combining a diverse set of mod-
els. In fact, it can be preferable to use a diverse set of weaker models instead
of a set of similar models that perform well when used individually, this is
exemplified with a hypothetical example.

Suppose that we have a population where HL and DLBCL are equally preva-
lent and that we want to make a classifier for discriminating between the DL-
BCL and HL cases. To accomplish this, 100 pathologists are given the same
information and tell us whether the patient has DLBCL or HL. Let us assume
that, conditional on the information they receive, the classifications provided
by these pathologists are somehow independent of each other. Furthermore,
the provided classifications are correct in 60% of the cases. The predictions
are then combined and the final classification corresponds to the majority
vote. After some calculations, it is seen that the ensemble of pathologists will
get the answer right in around 97% of the cases. Let us now imagine a differ-
ent scenario in which we have another 100 pathologists who all use the same
classification algorithm which is correct in 90% of the cases. Each pathol-
ogist will therefore correctly classify a case with a probability of 90% and
the predictions are perfectly correlated. If we apply the same majority vot-
ing system, the board of pathologists will deliver the correct classification in
90% of the cases. Hence, by combining independent opinions of sub-optimal
pathologists we get a better classifier than by combining strongly correlated
opinions of well-performing pathologists.
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Selection of the weights

By imposing restrictions on the β parameters, different properties of Sens(·)
can be ensured. For example, if all included models lead to proper survival
functions it is natural to assume that βi > 0, ∀i ∈ {1, . . . , k} and ∑k

i=1 βi = 1
which ensures that Sens(·) is a survival function. Depending on the goal of
the analysis, there are a number of different approaches for estimating the
β parameters. The most simple approach is to give each model an equal
weight, βi = 1

k , ∀i ∈ {1, . . . , k}. Although this idea might seem simplistic,
it can lead to powerful methods such as the random survival forest method-
ology in which survival trees are combined with equal weight.[64] Another
popular approach is Bayesian model averaging in which the posterior proba-
bilities of the models given the data are used as β parameters.[65]

Another popular approach is stacking (also called super-learning).[66, 67]
The β parameters obtained by stacking are those that minimize a cross-
validated prediction error. In the case of survival models, one can e.g. use
the Brier score as measure of the prediction error.[68] Assuming that m-fold
cross-validation was performed, we can denote the models estimated using
the dataset in which the i’th observation was left out by Ŝ−i

1 , . . . , Ŝ−i
k . The β

parameter estimates are then defined as

β̂ = min
β

n

∑
i=1

1(min(Ti, t) ≤ Ci)

Ĝ(min(Ti, t)|Xi)

(
1(Ti ≥ t)−

k

∑
j=1

β jŜ(t)−i
j

)
.

If we add the constraint that βi > 0, ∀i ∈ {1, . . . , k} and ∑k
i=1 βi = 1 this is

the stacking method described by Wey et al.[68]

An important advantage of this stacking approach is that by minimizing the
cross-validated error, models which tend to overfit will not be given inappro-
priately large weights. Furthermore, both theoretical studies as well as prac-
tical applications have shown that stacking usually leads to a performance
improvement over selecting one best model.[67, 69]

4 Measures of survival

The survival and hazard functions are the two most often modelled quantities
in survival analyses. However, survival curves and especially hazard func-
tions might not be easily understood by the general public. Furthermore,
without a working knowledge of the research field, survival estimates might
be hard to interpret due to a lack of information on the expected survival had
the disease or condition not been present. As alternatives to the hazard and
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survival functions, we introduce the standardized mortality ratio and the loss
of life expectancy which both relate the survival of the patients to that of a
similar background population.

4.1 Standardized mortality ratios

The standardized mortality ratio (SMR) is defined as the number of deaths
observed, O, divided by the number of deaths that would be expected in a
background population with a similar gender, age, entry-date, and potential
follow-up, E. In cancer research, SMRs have often been used to compare the
survival of the study population to that of the general population and recent
examples can be found for DLBCL and HL.[4, 70, 71]

To calculate the SMR it is reasonable to assume that the study and back-
ground populations are independent conditional on the population charac-
teristics, hence an estimator of the SMR can be obtained as Ô

Ê
. The obvious

estimator choice for the numerator is Ô = ∑n
i=1 ∆i. For the calculation of E

two methods, the person-year method and prospective method, have been
proposed.[72, 73] Both rely on information about the survival in the general
population which can be extracted from databases such as the Human Mor-
tality Database.[74]

The person-year method is the most commonly used method.[75] From now
on, the hazard rate of a background population with similar characteristics
as observations i will be denoted by α∗i (t). The person-year estimator of the
expected number of deaths is then defined as

Êpy =
n

∑
i=1

∫ Ui

0
α∗i (u)du. (3)

Under the assumption that the hazard in the study population is equal to that
of the background population this estimator will lead to an unbiased estimate
of the expected number of deaths. However, if one is willing to accept this as-
sumption there is little use in estimating the SMR since, by assumption, it will
be equal to one.[73, 76] If the hazard functions in the study population and
background population are not equal the estimator presented in Equation 3
will be a biased estimate of the expected number of deaths.[73, 76] Intuitively
this can be explained by looking at the upper limit of the integral, Ui. Since
Ui depends on the hazard in the study population the estimator depends on
both αi(t) and α∗i (t). Although the estimator Ô

Êpy
loses its interpretation as a

standardized mortality ratio it can be shown that if αi(t) = θα∗i (t) then Ô
Êpy

is

the MLE of θ.[77]
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In order to use the prospective method information on the potential follow-
up for each observation i, i.e. Ci, is needed. In the register studies considered
in this thesis the potential follow-up time can be assumed to be equal to
the time between diagnosis and the date of the extraction of the vital status
from the national register. In other scenarios, Ci is often not known. The
prospective method is based on the fact that if we had a subject from the
background population with the same characteristics as observation i who
we also followed for Ci time then the probability of observing a death would
be[73]

1− S∗i (Ci) = 1− exp
(
−
∫ Ci

0
α∗i (u)du

)
.

Hence, the number of expected deaths in a background cohort with similar
characteristics and follow-up as the study cohort can be estimated as

Êpr =
n

∑
i=1

(1− S∗i (Ci)) .

Unlike Êpy, Êpr is an unbiased estimator of the expected number of deaths
irrespective of whether or not the hazard functions in the study and back-
ground populations are equal. The biggest drawback of this estimator is that
it requires knowledge of Ci which is unavailable in a lot of epidemiological
studies.[72]

In practice, the estimator choice will partially depend on whether or not the
potential follow-up times are available. In light of the bias of the person-
year estimator for estimating the number of expected deaths, the practice of
calling Ô

Êpy
an estimator of the SMR seems inappropriate and this estimator

should probably be referred to as a ratio of hazard rates.[78]

4.2 Loss of life expectancy

The life expectancy, or the expected time until the event happens is equal to

E(T) =
∫ +∞

0
S(u)du.

Similarly, one can define the life expectancy of a background cohort with
similar characteristics as

E(T∗) =
∫ +∞

0
S∗(u)du
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and the loss in life expectancy is defined as the difference between these two
life expectancies

E(T∗)− E(T) =
∫ +∞

0
(S∗(u)− S(u)) du. (4)

In order to estimate this quantity, one can plug-in estimates of S∗i (t) and Si(t)
into Equation 4. A major problem with this approach is that for time points
larger than the longest follow-up time Ŝ(·) is not based on any available data
and the tail of the survival function is based on extrapolation. When e.g. the
Kaplan-Meier estimator is used in combination with a dataset in which the
largest observed time point corresponds with a censored observation one gets
Ŝ(t) > 0, ∀t and

∫ +∞
0 Ŝ(u)du = ∞. In order to avoid this behaviour, it has

been recommended to use parametric estimates of S(·).[79, 80] Even when
parametric estimators are used the life expectancy estimates will be based
on extrapolation and can depend largely on the used method.[81] Especially
when the study population consists of young patients for who it is expected
that there is a long period over which the excess hazard changes, e.g. due to
late toxicities, very long follow-up is necessary to obtain reliable estimates of
the life expectancy.[80, 81]

An alternative to the unrestricted loss of life expectancy can be obtained by
replacing the upper bound in Equation 4 with a value τ which falls well
within the follow-up period.[82, 83] The restricted loss of life expectancy is
thus formally defined as

E(min(T∗, τ))− E(min(T, τ)) =
∫ τ

0
(S∗(u)− S(u)) du.

The theory surrounding pseudo-values for the restricted mean survival can
be extended to define pseudo-values for the restricted loss of lifetime

ρi =
∫ τ

0
S∗i (u)du− n

∫ τ

0
Ŝ(u)du + (n− 1)

∫ τ

0
Ŝ−i(u)du.

Regression models can then be obtained by using the pseudo-values as out-
come variables and the methodology described in Section 2.5 applies.

5 Landmark analysis

5.1 Introduction

Descriptions of the survival or risk of an event at times measured from the
diagnosis date are common throughout the literature. Recently there has
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been an increasing interest in the evolution of survival measures given that
patients reach landmarks such as two years of event-free survival. For ex-
ample, multiple studies have shown that the survival prospects of systemic
DLBCL patients become similar to those of an age- and gender-matched back-
ground population given that they reach two years of event-free survival.[4,
70] This dynamic information is useful in multiple settings such as patient
counselling, cost-benefit analyses of follow-up programs, and can be the mo-
tivation behind clinical trial end-points.

An example of a quantity modelled in a dynamic analysis is the probability
that patients who survive up to time s will survive another x-years. Hence,
the quantity of interest is P(T > x + s|T > s). More generally, we will denote
that the condition of interest is met at time s by L(s) = 1 and if it is not
met we will write L(s) = 0. The quantity of interest is regularly a summary
measure that describes the survival from the landmark time s over the next
x years and we denote this quantity with µ(s, x). Usually the window x is
kept fixed and the evolution of µ(s, x) in function of s is the quantity that is
reported. Returning to the previous example we get that L(s) = 1(T > s)
and µ(s, x) = P(T > x + s|L(s) = 1) = P(T > x + s|T > s). In this particular
scenario, an explicit expression of µ(s, x) can be obtained

µ(s, x) = P(T > x + s|T > s) =
S(x + s)

S(s)
.

A similar expression can be constructed for the cumulative incidence given
survival up to time s. However, for other measures such as standardized mor-
tality ratios the calculation by use of conditional expectations is less straight-
forward.

An alternative approach is landmarking which was originally introduced as
a method to avoid immortal time bias.[84] The idea of a landmark analysis
is that we only focus on the observations for which it is known that the con-
dition of interest was met. In the case where the condition is measured at a
time s we will denote the corresponding dataset by L(s). Measures such as
the standardized mortality ratio for patients for who the landmark condition
was met can then be estimated by applying the usual estimators to the L(s)
dataset.

A practical example can be found in Figure 5 in which the evolution of the
five-year overall survival (OS) measured from different OS landmarks is de-
scribed for DLBLC patients by applying the Kaplan-Meier estimator to land-
marked datasets. In this case, it is clear that the five-year OS increases over
time and seems to plateau at different times in different subgroups. A draw-
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Figure 5: The evolution of the five-year overall survival (OS). The x-axis displays the landmark
time, i.e. the number of years of OS reached. The y-axis shows the OS in the subsequent five
years for the DLBCL patients who survived up to the landmark time (x-axis).

back of using the landmarking approach in this way is that the estimates can
be quite unstable if relatively few observations meet the landmark condition.

5.2 Super models

To avoid the unstability of the landmark estimates µ̂(s, x) and in order to in-
corporate covariate effects, Van Houwelingen et al proposed to model µ(s, x|X)
by use of a spline model µ(s, x|X) = g(X tΘ(s, θ)) in which Θ(s, θ) is a spline
parameterized by θ and g(·) is an appropriate link function.[85] This ap-
proach of using coefficients in function of the time s has been coined super
modelling and multiple suggestions on how to fit such models have been
made.[85, 86] The method we focus on is the use of landmarked pseudo-
values since it provides a general framework for the dynamic modelling of
the restricted mean survival time and other summary measures.[86, 87]

A set of dynamic pseudo-values is defined for each of a number of uniformly
spaced times, s1, . . . , sk, in the interval [0, τ]. For each sj there is a dataset
L(sj) of patients who met the landmark condition and are uncensored at
time s. For each observation i ∈ L(sj) its dynamic pseudo-observation is
then defined as

ρ̂i,sj = nsj ρ̂sj − (nsj − 1)ρ̂sj

in which nsj is the number of observations in the L(sj) dataset and ρ̂sj is
obtained by using an appropriate ρ̂ estimator (see Section 2.5) on the L(sj)
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Figure 6: The evolution of the five-year overall survival (OS) modelled using a supermodel. The
x-axis displays the landmark time, i.e. the number of years of OS reached. The y-axis displays
the OS in the subsequent five years for the DLBCL patients who survived up to the landmark
time (x-axis).

dataset.[86] The generalized estimation equations then become[86, 88]

U(θ) =
k

∑
j=1

∑
i∈L(sj)

∂

∂θ
g−1(X t

i Θ(sj, θ))V−1
i,sj

(ρ̂i,sj − g−1(X t
i Θ(sj, θ))) = 0

Just as in Section 2.5, an estimate of the variance can be obtained by use of a
sandwich estimator.[86]

In Figure 6, the evolution of the five-year OS measured from different OS
landmarks is described for DLBLC patients by using the supermodel ap-
proach. Comparing Figure 5 and Figure 6 it is seen that the supermodel
estimates show less aberrant behaviour and are smoother.

6 Robust statistics

6.1 Introduction

Datasets from registers often contain some incorrect data. Potential sources
of errors in the data include measurement errors, data entry errors, etc. When
standard estimation methods are used the estimates can be heavily influenced
by a few outliers. Estimation procedures that lead to sensible estimates even
when a part of the data consists of outliers are called robust estimators. Ro-
bust statistics has been an active research field during the last decades.[89]

An example of the influence a few outliers can have on the ordinary least
squares estimator (OLS) of regression coefficients is given in Figure 7. The
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Figure 7: An example of different linear regression estimates based on a dataset with 100 obser-
vations simulated using a linear regression model and four additional outliers (the observations
shown in the bottom-right part of the plot). The estimates were obtained using the ordinary
least squares (OLS) estimator with/without outliers and a trimmed estimator.

dataset contained 100 observations which were simulated according to the
regression model Yi = Xi + εi in which Xi and εi were independently simu-
lated from a standard normal distribution. Additionally, 4 observations that
did not follow this relationship were added, these can be found in the bottom
right of the figure. The estimated regression line obtained using OLS clearly
does not represent the model that the majority of the data is based on. On
the other hand, the regression line obtained using OLS on the data-set of 100
clean data-set models the majority of the data well.

The detection of observations which do not follow a model that fits the ma-
jority of the data can e.g. lead to the detection of new disease subtypes or
prognostic biomarkers. An often used outlier detection approach is based
on the residuals calculated using the model parameter estimates. Because
standard non-robust estimates can be heavily biased in the direction of the
outliers, residuals based on these estimates are often unable to recover these
outliers, an effect called masking, and it might be that non-outlying observa-
tions are marked as outliers, an effect called swamping.[90] By use of more
robust estimators of the model parameters, the detection of outliers using
residuals becomes more feasible.

There are a number of different ways to construct robust estimators. The
most intuitive robust estimators are the class of trimmed-estimators which
are introduced below. Another type of estimators are M-estimators which
generalize the maximum likelihood principle to other objective functions. By
the appropriate selection of the objective function, M-estimators with certain
robustness properties can then be constructed.[89] Other robust procedures
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include MM-estimators, S-estimators, etc. For an introduction to these meth-
ods we refer to Maronna et al and Heritier et al.[89, 90]

6.2 Trimmed-estimators

Trimmed estimators attempt to find estimates which are optimal for the ma-
jority of the data by inspecting the fit on subsets of the full data-set. If we
denote the set of all subsets of size k by Ik and the contribution of the i’th ob-
servation to the log-likelihood by li(θ) then the trimmed likelihood estimator
is defined as:

θ̂ = max
χ∈Ik

max
θ

∑
i∈χ

li(θ).

If there are at most n− k outliers, at least one of the subsets χ ∈ Ik will not
contain outliers and maxθ ∑i∈χ li(θ) will tend to be larger than the similar
measures obtained with datasets containing some outliers. In practice often
k = n+1

2 is chosen which ensures that the estimator does not break down as
long as less than half the observations in the dataset are outliers.[91]

The regression line obtained by applying a trimmed log-likelihood estimator
to the simulated dataset is shown in Figure 7. It is clear that this estimate is
a better fit for the majority of the data than the standard OLS estimate.

An important shortcoming of this approach is that the estimate is based on
only a portion of the original dataset, independent of whether or not the ex-
cluded observations are outliers. This implies that the procedure is not effi-
cient when few or no outliers are present. This efficiency issue can be avoided
by refitting the model using all observations which were not considered out-
lying given the trimmed log-likelihood estimates.[91] A second weakness is
that the search space of subsets of size n − k tends to be very large if the
sample size is large. To avoid unnecessarily long computation times often an
approximate solution is obtained by inspecting a limited number of subsets
in Ik, e.g. 500 randomly selected subsets.[91]

6.3 Robust estimators for censored data

Currently few robust estimators that can be used in combination with cen-
sored data exist.[90] Some exceptions include robust procedures for the esti-
mation of the coefficients in the CPH model.[92–94] Recently, robust estima-
tors for some parametric accelerated failure time and additive hazard models
have also been introduced.[95–97] Notwithstanding these contributions, com-
pared to the number of methods available for (generalized) linear models the
selection of robust estimators that can be combined with censored data re-
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mains seriously limited. In particular, to our knowledge, no outlier robust
estimators exist for models with time-varying coefficients.

7 Overview of the thesis

The overarching theme of the papers that make up this thesis is the use of
statistical and machine learning methods to improve our knowledge about
the prognosis of haematological diseases. This is accomplished by relying on
the techniques introduced in the background material.

In Paper I, the performance of the IPI, a prognostic index for DLBCL, is in-
spected and compared to that of a CPH model which avoids some of the
major methodological issues that were present in the development of the
IPI.[9] By use of the Brier score, C-index, and time-varying AUC the per-
formance of the IPI is shown to be sub-optimal as compared to the CPH
model which is implemented as a dashboard application available on https:

//lymphomapredictor.org.

In Paper II, the survival of acute promyelocytic leukaemia patients is com-
pared to that of a similar background population. In this letter, the standard-
ized mortality ratio and landmarking methodologies introduced in Sections
4 and 5 are applied. It is shown that the relative mortality is fairly minimal
given that patients survive the critical three months period following diagno-
sis.

In Paper III, the predictive model introduced in Paper I is extended. A
stacked model for the survival of DLBCL patients is developed by combining
a number of non-, semi-, and fully parametric models. The performance of
the stacked model is then compared to that of the IPI and the CPH model
from paper I by use of the Brier score, C-index, and time-varying AUC. The
stacked model is shown to outperform both the IPI and CPH model but the
gain is relatively minimal given that additional clinicopathological variables
are included in the stacked model. Also the stacked model is available on
https://lymphomapredictor.org.

In Paper IV, eight commonly used prognostic indices for haematological ma-
lignancies are described. By use of the Brier score and time-varying AUC
their performance is compared to that of a simple regression model based on
age and performance status. None of the prognostic indices outperform this
simple model casting doubt on their usefulness in clinical practice.

In Paper V, the survival and relapse risk for young HL patients is described.
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To compare the survival of HL patients with that of a background popu-
lation the restricted loss of life expectancy is combined with the landmark
methodology. Furthermore, a landmark analysis based on a supermodel of
pseudo-values is used to describe the relapse risk. By using pseudo-values
of the restricted loss of life expectancy and relapse risk also multivariable
models are described. The results of these analyses show that limited stage
HL patients have excellent survival prospects. Furthermore, the five-year re-
lapse risk is low for patients reaching two years of event-free survival which
calls the use of follow-up programs focusing on detecting relapses post the
two-year event-free survival landmark into question. Finally, it is shown that
the relapse risk of advanced stage patients treated with 6-8 cycles of ABVD
is similar to that of advanced stage patients treated with 6-8 cycles of BEA-
COPP. This is interesting given that the BEACOPP treated patients tended
to have more adverse clinical characteristics implying that BEACOPP might
have a higher efficacy with respect to preventing relapses.

Paper VI describes the use of the Brier score as a loss function in order to ob-
tain a more robust estimation procedure for the coefficients of proportional
hazard models. This new loss function is used for a penalized piecewise con-
stant proportional hazard model which can model time-varying coefficients.
The performance of this estimation procedure is then demonstrated on real
and simulated data.

8 Limitations and future perspectives

8.1 Papers I, III, and IV

The prognostic models provided in Papers I and IV could be extended in
multiple ways. First of all, since cancer is fundamentally a genetic disease,
combining clinical data together with data describing the tumour genetics
and biology could potentially lead to superior prognostic models. Secondly,
in line with the landmark analyses of Papers II and V the presented prog-
nostic models could be extended in order to provide updated prognostic in-
formation at landmark time-points such as being in remission for two years.
Currently, survival curves given that the patient is alive a number of years
post-diagnosis can be obtained from http://lymphomapredictor.org. How-
ever, also conditioning on patients not having experienced a relapse would
be of interest. Two options for obtaining such dynamic prognostic models
are multi state models or landmarked survival models.

It seems reasonable to assume that the developed scores work well in the

30

http://lymphomapredictor.org


8. Limitations and future perspectives

Nordic countries which tend to have similar health care systems, treatment
guidelines, population characteristics, etc. However, to see whether or not the
prognostic models perform well in populations covered by other health care
systems, additional external validation studies will have to be performed.
Furthermore, given that treatment regimens and health care systems keep
evolving over time, the prognostic models developed in this thesis will have
to be updated accordingly.

8.2 Papers II and V

In Paper II and Paper V the differences between the survival of patients and
that of a background population are described. In the papers, quantitative
measures of this difference are given together with intervals. This approach
has as disadvantage that the dual hypothesis tests, i.e. a test of whether there
is a difference between the two survival curves, has as null-hypothesis that
there is no difference. One of the fundamental characteristics of hypothesis
testing is that being unable to reject the null-hypothesis does not necessar-
ily point towards the null-hypothesis being true. This problem is especially
apparent when the sample sizes are small. To overcome this drawback, non-
inferiority tests are often used in clinical trials. Similarly, when describing the
differences between the survival of the patients and that of the background
population non-inferiority tests could provide valuable complementary in-
formation.

A large number of young HL patients will be considered cured and are likely
to be alive decades after their initial diagnosis. Given the large number of
long term survivors, the importance of late onset toxicities such as cardio-
vascular disease is significant in HL.[98] In Paper V, the median follow-up
was nine years. Since most of these late onset-toxicities happen more than a
decade after treatment, our study was unable to take these into account. For
example, we detected a negligible five-year restricted loss of life expectancy
in limited stage HL patients. However, since the majority of late onset toxic-
ity events would not have happened during the follow-up of this study, the
unrestricted loss of life expectancy might still be increased. To which extent
late onset toxicities remain problematic with contemporary treatments will
have to be investigated when the follow-up is long enough and the necessary
data becomes available.

Finally, in paper V the 6-8 cycles of BEACOPP and 6-8 cycles of ABVD regi-
mens were compared. The results point towards BEACOPP leading to lower
relapse risks. In future research, analyses adjusted for potential treatment
confounders such as Ann Arbor stage could be of interest for the scientific
community.
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8.3 Paper VI

There are multiple potential extensions to the robust estimation procedure
presented in Paper VI. First of all, a number of additional theoretical guar-
antees could be derived, e.g. results regarding the asymptotic normality of
the proposed method when it is combined with proportional hazard models.
Such results would allow the construction of confidence intervals and make
the method more applicable in practice.

In the paper, it shown that leverage points have a limited influence on the
score equations obtained when the Brier score is used as loss function. The
derivation of this result currently relies on the proportional hazard assump-
tion. Whether or not the robustness properties are similar for other classes of
models remains uninvestigated. Furthermore, the current R implementation
remains rather slow and more advanced optimization techniques might lead
to significant calculation speed gains. Finally, by using the same methodol-
ogy, robust estimation procedures for competing risk models could likely be
constructed.
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