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Saša Bjelićb,∗, Erik G. Søgaarda
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8, 6700 Esbjerg, Denmark

bBioenergy and Catalysis Laboratory, Energy and Environment Division, Paul Scherrer Institut, Switzerland
cUniversity of Applied Sciences Northwestern Switzerland (FHNW), 5210 Windisch, Switzerland

Abstract

The influence of co-solvents on hydrothermal liquefaction (HTL) of Fallopia japonica was studied as a

function of temperature. Combination of low and high-resolution mass spectrometry with multi-layered data

mining strategy resulted in a comprehensive characterization of the reaction products, mostly water-soluble

organics (WSO) with a broad spectrum of chemical functionalities. The non-targeted analysis revealed

the presence of a core composition in the samples independent of the process conditions and consisting of

hydroxycarboxylic acids, imids, lactones, lactams, phenolics, various short-chain oxygenated aliphatics, and

cyclohexane derivatives. Changes in process conditions did not affect those species showing that a part of the

HTL product is not susceptible to process tailoring by addition of co-solvents. The findings indicated that

the effect of tetralin is a combination of solubilization and scavenging resulting in an increased abundance

of monomeric aromatics. For acetone, the results pointed to the promotion of retro-aldol splitting yielding

low molecular weight oxygenates.

Keywords: Acetone, Tetralin, Hydrothermal liquefaction, Fallopia japonica, Multivariate data analysis,

Kendrick mass defect

2010 MSC: 00-01, 99-00

1 Introduction

Hydrothermal liquefaction (HTL) is a thermochemical technique for the depolymerization of biomass

feedstocks into fuels and chemicals by means of near- or supercritical water (Tcr = 374 ℃, pcr = 22.1

MPa) [1]. The method is versatile in terms of feedstocks, does not require biomass drying, and it takes

place in a benign and environmentally friendly solvent with easily adjustable properties [2]. Currently,

HTL is on the technology readiness level 5 (TRL5) with the method tested on a pilot scale [3, 4] and an
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upcoming demonstration plant (TRL 6-7) [5]. The focus of HTL, and most modern commercial biorefinery

concepts, lies on the production of low-carbon footprint alternatives for transportation fuels, mainly road

diesel, marine, and jet biofuels. Liquid energy carriers produced from biomass are an attractive biorefinery

goal because their expansion would curb the use of petroleum and thus mitigate the overall CO2 emissions

from the transportation sector, by far the worst environmental polluter. In a recent study by Pedersen et al.

[6], it was shown that renewable transportation drop-in fuels from lignocellulosic biomass can be produced

through hydrothermal liquefaction and upgrading for approx. 0.82-1.14 $/GLE. It has been argued that the

economic viability of all biomass conversion processes in general, and HTL in particular, could be increased

further by a co-production of high-value chemicals. This concept originated from the petroleum industry,

where the petrochemicals represent a significant portion of the industry’s overall value chain despite their

relatively low volume output [7, 8]. Researchers have studied conversion of biomass into monomeric building

blocks, key platform intermediates, and fine chemicals by a plethora of biological and thermochemical con-

version techniques with varying degree of success. The focus today is on high-value aromatics from lignin

and sugars, furfural, and 5-hydroxymethylfurfural from lignocellulose, but numerous other pathways have

been proposed [9], including thermochemical routes. Chemicals of interest from HTL include small aliphatic

oxygenates and aromatic monomers.

The two most elementary challenges associated with the concept of hydrothermal biomass-fueled chem-

ical factory are poor selectivity and low yields, typically varying from 5 to 25 % [10]. While significant

progress in process optimization has been achieved by tailoring with catalysts and co-solvents [9], another

fundamental aspect of the problem, namely the poor understanding of liquefaction due to the lack of proper

characterization of the complex products, remains to be overcome. The heterogeneity of HTL products

originates from the randomness of conversion ruled by series of competing reactions including depolymeriza-

tion by hydrolysis of ester and ether bonds in the biopolymers, secondary transformations of the produced

monomers into intermediates, and repolymerization by condensation and cyclization, resulting in a com-

plex product pool [11, 12]. Analysis and characterization of HTL products is therefore an area of on-going

research and the most common techniques are able to describe certain fractions, e.g. gas chromatography

mass spectrometry (GC-MS) covers only the volatiles. The results obtained by Bridgwater et al. [13] for

products from pyrolysis specified that the content could be divided into 5-10 wt.% hydrocarbons, 10-25

wt.% oxygenated compounds (phenols, aldehydes, ketones and moderately polar alcohols), and 30-45 wt.%

highly polar compounds with low, moderate, and high molecular weights. According to a similar study by

Valdez et al. [14] on the composition of liquefaction products, only 10-35 wt. % of the compounds could be

identified with GC-MS, with the fraction going as high as 30-50 %, in the case of co-liquefaction (HTL in

water/organic solvent reaction media) as described by Biller et al. [15]. Villadsen et al. [16] concluded that

the standard GC-MS is inadequate for determining highly polar compounds such as sugars and fatty acids
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[17]. More advanced techniques including coupling of high performance liquid chromatography with mass

spectrometry (HPLC-MS) and Fourier transform ion cyclotron resonance (FT-ICR) are under development

around the world, e.g. up to 6000 individual peaks were identified by FT-ICR [18], but currently suffer from

not being quantitative or only analyzing certain fractions of the HTL products. It was previously shown that

a combination of novel analytical and statistical tools, such as high resolution mass spectrometry (HRMS)

[19] and multivariate data analysis (MDA) [20], provides the tools needed for handling the high level of

complexity of HTL products.

The focus of the current work was the development of strategies for effective and comprehensive char-

acterization of the complex products from hydrothermal liquefaction and similar processes through the

combination of standard (electron impact gas chromatography mass spectrometry, EI-GC-MS) and state-of-

the-art analytical instrumentation (ultra high performance liquid chromatography coupled to high resolution

mass spectrometry, UHPLC-HRMS) with customized data processing and mining techniques. The aim was

to apply those tools to understand the mechanistic behavior of co-solvents in catalytic hydrothermal near-

critical liquefaction of Fallopia japonica, an invasive plant native to East Asia, Japan, China, and Korea.

Its high resilience and low requirements (fast-growing, low water input, high tolerance to a wide range of

soil types, pH values, salinity, and temperature regions: above -35 ℃ [21]), would qualify Fallopia as an

attractive lignocellulosic energy crop candidate, thus turning an environmental burden into a sustainable

source of fuels/chemicals [22]. Different processes [23, 24] have already been considered for exploiting the

potential of Fallopia, including pyrolysis [25]. Despite the fact that lignocellulosic biomass feedstocks such

as Fallopia are generally considered too complex for modeling of an already complicated and poorly un-

derstood conversion process [26], it is important to study set-ups mimicking the real life applications of

HTL for a more realistic evaluation of its potential. As shown by Carrier et al. [27] in a study compar-

ing the conversion of biopolymers and lignocellulose, a chemical interaction between the intermediates from

hemicellulose and cellulose leads to shifts in reaction pathways and thus significantly diverging final products.

The potential of Fallopia japonica as a biorefinery feedstock for HTL in the presence of a homogeneous

catalyst (K2CO3) and co-solvents (acetone and tetralin) was studied as a function of conversion temperature.

Both have been reported as effective tools for process optimization and product tailoring, increasing the con-

version as well as selectivity [26]. Potassium carbonate was applied as a typical alkali salt catalyst promoting

base-catalyzed aldol splitting of the lignocellulosic monomers [28]. K2CO3 was preferred over alternatives,

e.g. alkali hydroxides such as NaOH, due to its low price and higher activity towards depolymerization of

lignocellulosic biomass [29]. The co-solvents were selected based on their differing properties. Acetone is an

aprotic polar compound, i.e. it has a lone electron pair that can accept hydrogen bonds, but it has no acidic

hydrogen centers [9]. Tetralin, on the other hand, is a non-polar solvent unable of creating hydrogen bonds

3



Page 4 of 28

Acc
ep

te
d 

M
an

us
cr

ip
t

nor accepting an acidic proton, but effective as a hydrogen donor [30]. Co-solvents in general are reported

to increase fuel yields from HTL and to improve their properties [31] by solubilization of reaction products

and scavenging of reactive intermediates [32]. A summary expanding the co-solvent effects with physical

changes to the reaction system, e.g. medium viscosity, compound solubility, and ion solvation, as well as

the thermodynamics of the chemical transformations, including lowering the activation energy of transient

reactions, was recently provided by Shuai and Luterbacher [9]. Previous studies of acetone as a solvent and

co-solvent reported reaction mechanism shifts [33] and promotion of products such as dehydroabietic acid,

furans and phenolics [34] with abundant ketonic groups [35]. Part of the effect is attributed to the incorpo-

ration of the co-solvent molecule into the products by its reaction with intermediates, e.g. 3-furanmethanol

to form trans-furfurylidene acetone. Tetralin as a co-solvent, on the other hand, is expected to act as proton

donor promoting reduction of the reactive intermediates, an effect shown for both the liquefaction of coal

[36] as well as biomass [37]. He et al. [33] demonstrated that while non-polar co-solvents such as tetralin

have little effect on the conversion itself, they offer a simple and effective polarity-based measure for func-

tioning the HTL products resulting in a purely liquid fraction more suitable for hydro-treating than the

mixed aqueous/semi-solid product obtained without co-solvent. Both acetone and tetralin are interesting,

yet relatively unexplored co-solvent candidates for product tailoring in HTL.

2 Materials and Methods

2.1 Materials

The biomass used in this study was a freshly harvested Fallopia Japonica, both leaves and branches.

The plants were cut into smaller pieces, dried in an oven at 105 ℃ for 24 h, ground down to a particle

size of 100 µm, dried again at the same conditions, and milled further into particles of roughly 10 µm

in diameter. The inorganic content of biomass included 2 wt.% water and 5 wt.% ash (dry basis). The

elemental composition was distributed as follows: 49 wt.% carbon, 7 wt.% hydrogen, 43 wt.% oxygen, 0.9

wt.% nitrogen, and 0.1 wt.% sulfur (on a water and ash-free basis). All used chemicals were obtained

from Sigma Aldrich. The following organic solvents and co-solvents were used: acetone (AC, ACS reagent,

≥ 99.5 %), diethyl ether (DEE, ≥ 99.5 %), and tetralin (T, ≥ 99.5 %). Bromobenzene was used as an

internal standard for the GC-MS analysis (IS, ≥ 99.5 %). K2CO3 (anhydrous, free-flowing, Redi-DriTM, ≥

99 %) was used as a catalyst. Sodium carboxymethyl cellulose (CMC, MW approx. 250 000 g/mol) was

employed as a dispersing agent (0.1 wt.%). Although CMC is an artificial carbon source, it is necessary

for stabilization of the slurry and prevention of biomass sedimentation. Since CMC is expected to behave

similarly to cellulose at hydrothermal conversion conditions, it is considered an appropriate measure for

laboratory HTL applications [3]. Distilled water was the primary reaction solvent. N2 (99.9 % pure) was

applied for purging of oxygen from the reactor system.
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2.2 Equipment and procedure

Liquefaction experiments were performed in a batch reactor designed to study biomass conversion in a

highly controlled environment (accurate temperature, pressure, and reaction time values), as described in

detail elsewhere [38]. Shortly: A 99 mL reactor equipped with a magnetic stirrer and a temperature control

system was connected to two hand-pumps enabling injection of biomass slurry into a pre-heated and pre-

pressurized environment, as well as fine pressure control through small injections/withdrawals of the reaction

fluid. Fast heating and quenching of reaction products resulted in a precise control of the reaction time at

the desired reaction temperature. A process and instrumentation (P&I) scheme for the system is provided

in the Supporting Information (Figure S10). The study was based on a full factorial experimental design

consisting of 12 runs each containing 2.5 wt.% Fallopia and 1 wt.% K2CO3 with variations of temperature

(280, 300, 320 ℃) and co-solvents (A: 0 or 1 wt.% and T: 0 or 1 wt.%). The mass fractions are expressed

in terms of the final composition of the reaction mixture, combining the pre-heated water/solvent and

the injected biomass slurry inputs. The runs were performed in a random order to ensure the statistical

independence of the obtained results. The experimental procedure was as follows: a 45 g mixture of water,

K2CO3, and co-solvent was injected into the reactor with one of the two hand-pumps; the reactor was purged

with N2 and heated up to a temperature 30 ℃ above the desired reaction temperature with pressure rising

simultaneously slightly above the saturation pressure at any given temperature. A feed slurry containing

biomass, water, K2CO3, and CMC was mixed using an IKA Ultra Turrax (30 min, 20000 rpm) and then

injected through the second pump until the desired pressure was reached (190, 220, and 250 bar for 280,

300, 320 ℃, respectively). The composition of the reaction mixture was calculated based on the desired

reaction conditions and the pre-heated mixture taken into account. The final concentrations are summarized

in Table 1. The injection of biomass slurry resulted in a small pressure and temperature drop followed by an

immediate increase up to the target values. The heating and pressure profiles for the system are presented

in Figure S11 (Supporting Information). After the reaction time (τ = 10 min), the products were rapidly

depressurized and cooled down in a cold trap. The gas products were not collected.

2.3 Analytical strategy

Once the reaction mixture was cooled down to room temperature, the products were separated by

centrifugation (6000 rpm, 4 hr) into aqueous (top) and non-aqueous semi-solid (bottom) fractions. The

top fraction containing water soluble organics (WSO) was analyzed after preparation steps required by

the specific analytical instrumentation. The analysis included total organic carbon analysis (TOC: AI-

Analyzer Multi N/C 2100S with pO2 = 5 bar, flow O2 = 160 ml/min, and Toven = 800 ℃, preparation:

dilution and filtration), as well as a detailed characterization of the organics by coupling of chromatography

and spectrometry (see Subsections 2.4 and 2.5 for specific details). The bottom fraction was additionally

separated into a lighter, acetone soluble phase, and a solid char phase (separated by filtration under vacuum,
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Whatman No. 5). The char fraction was assessed exclusively with regard to its carbon content (Perkin Elmer

2400 Series II CHNS analyzer) after drying in an oven at 105 ℃ overnight. The extraction of the water

insoluble organics (WIO) took place by evaporation of the solvent (vacuum at T = 35 ℃ and p ≈ 500 mbar).

WIO samples were prepared and characterized in detail correspondingly to the WSO, except for its carbon

content, which was determined by the CHNS-O analyzer instead of TOC. The C-inputs for carbon balances

into the reactor included biomass, co-solvents, CMC, and K2CO3, while the carbon outputs combined the

organic and inorganic C in the aqueous phase (determined by total carbon, TC, measurements), WIO, and

char (both determined by elemental analysis). The moisture content and the ash content in the biomass,

char, and the WIO were determined thermogravimetrically (TGA, N2 flow 35 cc/min, heating 10 K/min

from 25 ℃ to 110 ℃). The separation procedure after HTL and analytical strategy used for characterization

of different product fractions are summarized in Figure S12 in the Supporting Information.

2.4 SPME-GC-MS

The sampling method before GC-MS was optimized for each fraction: solid-phase microextraction

(SPME) for WSO [39] and liquid-liquid extraction (LLE) for WIO. The SPME equipment used in this

study (manual sampling holder with needles 23 gauge and 65 µm poly(dimethylsiloxane) divinylbenzene

PDMS/DVB adsorbent fiber) were purchased from Supelco (Bellefonte, PA, USA). The fibers were con-

ditioned daily in the GC injector according to the recommendations of the manufacturer (30 min at T =

250 ℃) before use. In between the runs, the fiber was cleaned (10 min at 225 ℃), and a possible carry

over was assessed by a blank run. A set of 15 initial extractions was used to develop an optimal SPME

extraction procedure (extraction temperature, time of extraction, presence of salt, pH changes). The aim

was to increase the partition coefficients and decrease the time required for obtaining equilibrium. Based on

the results, the variation of pH (below 2 and above 10) was the only factor with no tangible influence on the

extraction results. The final optimized method maximized the concentration of the volatile components in

the head-space. A sample (5 ml of the water phase) was placed in a 22 ml glass vial containing a magnetic

stirrer, 50 mg of internal standard solution (IS) and 1 g of NaCl were added and the vial was sealed using

a PTFE coated silicone rubber septum. The vial was placed in a thermostated bath adjusted to T = 50

℃. The fiber was exposed to the head-space (HS) of the sample for 10 min. After the sampling, the SPME

fiber was retracted into the syringe, injected through the septum into the GC, and desorbed for 1 min. The

apparatus used for gas chromatography mass spectrometry was a Perkin Elmer Clarus GC 580 and MS SQ

8 S with EI and a quadrupole ion analyzer. A Perkin Elmer Crossbond column (30 m x 0.25 mm ID, 0.25

µm 95 % dimethyl polysiloxane and 5 % biphenyl) with helium as a carrier gas (1 ml/min) was used to

separate the analytes. For SPME, the analytes were desorbed at T = 200 ℃ in a split mode (50:1) with 1

min solvent delay. The GC-MS program was optimized for the applied SPME fiber (T = 40 ℃ hold for 2

min followed by a heating ramp of 10 K/min to T = 200 ℃ hold for 2 min). WIO samples were extracted

6
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with DEE (1:1), injected at T = 300 ℃ in split mode (30:1) with solvent delay of 2.5 min, and heated (T

= 75 ℃ held for 1.5 min followed by a heating ramp of 10 K/min to T = 275 ℃ held for 10 min). MS

spectra were recorded at 70 eV ionization energy and scanned for m/z 75 - 600. The main components were

tentatively identified by the NIST 11 database.

2.5 UHPLC-HRMS

The WSO and WIO samples were analyzed directly and diluted 1:1000 in a solvent mix (1:1:1:1 vol.% of

methanol, acetone, toluene, and chloroform), respectively. Prior to the analysis, the solutions were filtered

(0.22 µm). Carry-over was assessed by a blank run in between each analysis. The injection was 1 µl and 10

µl in the case of aqueous phase with WSO and the WIO dissolved in the solvent mix, respectively. The time-

resolved separation of the analytes was performed in a Thermo Scientific DionexTM Ultimate 3000 Series RS

system (Thermo ScientificTM, Switzerland) including a pump, a column compartment, and an auto-sampler.

The used column and pre-column were Thermo ScientificTM AccucoreTM RP-MS (150 mm x 2.1 mm, particle

size 2.6 µm). The following program with mobile phase A (1 vol.% methanol, 1 vol.% acetonitrile and 0.2

vol.% HCOOH in high purity water) and mobile phase B (100 vol.% MeOH) was applied: 1 % B (0-1 min)

1 to 99 % B (1-6 min), 99 % B (6-8 min), followed by equilibration step and 99 to 1 % B (8-8.2 min), 1 % B

(8.2-10 min). The flow was set to 0.7 ml/min, the temperature of the column was kept constant at T=50 ℃.

A heated electrospray ionization (ESI, 3.5 kV spray voltage) in positive and negative mode was used for the

ionization of the analytes. Data acquisition was performed using Thermo ScientificTM Q-ExactiveTM hybrid

quadrupole-orbitrap mass spectrometer controlled by Xcalibur 4.1 software. Mass spectra were acquired in

full scan mode with an isolation window of 1 m/z from 50-750 m/z. The resolution was 70’000 at m/z =

200. Raw mass spectral data files were collected in triplicate including a blank between each run.

2.6 Data Processing and Mining

The UHPLC-HRMS data were imported into Compound DiscovererTM 2.1 software (Thermo ScientificTM,

Switzerland) and processed with standard settings except for mass tolerance (set to 2.5 ppm). Chromato-

graphic peaks detected in one of the input files but missing in others were checked by ”Fill Gaps“ option. The

composition (of a general formula CcHhOoNnSs) was predicted based on exact mass and isotopic patterns

and evaluated against MS/MS spectra. The identity of the compounds was determined where possible with

mzCloud [40]. Only features yielding formulas present in ChemSpider were used [41]. Measured data and

calculated features and properties of the samples were used as input to descriptive and differential statis-

tics, as well as various non-target data screening and mining techniques including: 1) Quantification of the

direction and strength of the linear association between process conditions (temperature, tetralin, acetone)

and an average species’ properties (aromaticity index AI, double bond equivalents DBE, molecular weight,

H/C ratio, O/C ratio, N/C ratio, the number of carbon, hydrogen, nitrogen, and oxygen atoms). The
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properties of the ”average” species from each run were computed by weighting the features of the compound

pool according to the normalized areas. Spearmann correlation coefficient was calculated with the values

ranging between -1 (i.e. higher levels of one variable are associated with lower levels of the other) and +1

(i.e. higher levels of one variable are associated with higher levels of the other). More details can be found

in the literature [42]; 2) Principal component analysis (PCA) was performed with the aim of mining hidden

trends. PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observa-

tions of possibly correlated variables into a set of values of linearly uncorrelated variables called principal

components (PCs). The first principal component represents the direction of largest possible variance in the

data, as do the following PCs under the constraint that they is orthogonal to the preceding components. In

this study, PCA was performed directly on the raw data (ncomp = 20, no scaling, the whole GC-MS data

set), as well as on the normalized peak areas (ncomp = 20, no scaling, UHPLC-HRMS, data splitted into

four groups according to the product fraction and ESI polarity: WSO positive mode, WIO positive mode,

WSO negative mode, and WIO negative mode). The results were evaluated by score plots (projection of

the samples to the principal components) and loading plots (contribution of each variable to the orientation

of the PCs) for pairs of principal components. Additional details about PCA can be found elsewhere [43].

The calculations were performed in R (version 3.2.2), a free software environment for statistical computing,

supported by mdatools package [44]; 3) Volcano plots, a type of scatter-plot that is used to quickly iden-

tify changes in large data sets composed of replicate data [45], were used to visually identify statistically

significant differences between the abundances of the molecular species detected in two different samples,

e.g. A0T0280C and A0T0300C (the influence of temperature in the absence of co-solvents). The plots show

the log2 of fold-change on x-axis as a function of the statistical significance (-log10[p-value] from a post-hoc

ANOVA analysis) on the y-axis. The terms down-regulated, non-affected, and up-regulated are used for

species whose abundance decreased, did not change, and was increased, respectively. The analysis was used

to assess the number of species affected by perturbations in the process parameters, as well as to create

groupings of species used in the subsequent analysis; 4) Analysis and comparison of the samples’ hydrogen

and oxygen contents by van Krevelen plots, a graphical-statistical method demonstrating the oxygen:carbon

ratios as a function of hydrogen:carbon ratios of the detected compounds as proposed by van Krevelen

[46]. The method provides a handy non-targeted assessment of hundreds of chemical species in a complex

mixture [47]. H/C and O/C ratios for WSO and WIO were plotted for all runs separately, in addition to the

differential van Krevelen plots focusing on the differences in the hydrogen:carbon and oxygen:carbon ratios

obtained by varying the temperature and co-solvents within the classes defined by volcano plot analysis.

In addition, the data points were colored according to their aromaticity index as proposed by Koch and

Dittmar [48]; 5) Kendrick plots showing the nominal Kendrick mass (NKM) as a function of Kendrick mass

defect (KMD) was used to group homologous series of species. The Kendrick mass is defined by setting

the mass of a chosen molecular fragment, in this case CH2, to an integer value in atomic mass units, here

8
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14 (1xC+2xH=1x12+2x1=14). The advantage of this method is that species belonging to a homologous

series will be positioned on a horizontal line due to identical mass defects, thus providing a compact visual

analysis. KMD method is a common tool for high-resolution mass spectra as is described in detail elsewhere

[49]. Kendrick mass and Kendrick mass defects were calculated as follows:

Kendrick exact mass ≈ CH2 = Observed exact mass x
14.00000

14.01565

Kendrick mass defect = Nominal mass−Kendrick exact mass

3 Results

3.1 Carbon balances

The trends of the HTL of Fallopia japonica at different conditions were assessed by means of carbon

distribution in the product fractions (Figure 1). The carbon distribution highlights the masses of carbon

ending up in a given fraction (WSO, WIO, or char, excluding gas and losses) divided by the total mass of

carbon retrieved in the analyzed products. Overall, high total (based on the carbon input from biomass)

recoveries of carbon were obtained in the absence of co-solvents (108 ±4 wt.%), showing a good control over

the process’ mass flows in the designed experiential procedure. In the presence of co-solvents, additional

losses were observed due to the evaporation of the volatile co-solvents and reaction products. Indepen-

dently of the process conditions, WSO was the most significant fraction of the products (WSOavg=70 wt.%,

WSOmin=48 wt.%, WSOmax=86 wt.%), due to the combination of a low biomass input, short residence

times, and the presence of solubilizing co-solvents. The formation of WSO is also typically favored at low

homogeneous catalyst/biomass ratios (< 0.5 in the current study) as reported by Rustamov et al. [50].

Largest WSO carbon pools were obtained in the absence of co-solvents and with acetone (76 ±12 wt.%, 76

±3 wt.%, and 61 ±13 wt.% for A0T0, A1T0, and A0T1 respectively). When tetralin was present, the flow

of carbon shifted towards WIO (31 ±9 wt.% for A0T1 and 24 ±3 wt.% for A1T1 vs. 16 ±5 wt.% for A0T0

and 17 ±3 wt.% for A1T0). The used acronyms are explained in Table 1. From this evidence alone, it is not

possible to determine whether the effect was due to a change in mechanism or the solubilization effect, i.e.

incorporation of the reaction products into the phases corresponding to the co-solvents’ polarity. The devi-

ation values represent the variation between different temperatures. At low temperatures, the production

of char was significant (17 ±3 wt.% at T=280 ℃ vs. 4 ±3 wt.% and 4±2 wt.% at T=300 ℃ and T=320 ℃,

respectively). The flow of carbon shifted from the char towards WSO and WIO with temperatures rising

from T=280 ℃ to T=300 ℃, indicating a boost in biomass conversion.

3.2 Characterization of WSO and WIO volatiles by GC-MS

The quality of the tentative identifications obtained from the NIST library for the detected GC-MS

species were evaluated in terms of match probability, compounds’ molecular weights, boiling points, and
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their abundance in the HTL-related literature. In the aqueous fraction, approx. 50 WSO species from

the pool of 150 detected peaks were assigned an acceptable match versus an average of 15/50 (identi-

fied/detected) compounds per run for WIO. The relatively low number of detected peaks and identifications

conforms with previously reported HTL results. According to Liu and Zhang [34], water based liquefaction

yields the smallest fraction of GC-MS identifiable products, with 44 vs. 57 species liquefied in water and

water/organic co-solvents mixtures, respectively. Fallopia was converted into a mixture of oxygenated or-

ganics: low molecular weight oxygenates (LMW, 0-1 %), cyclic carbonyl compounds (10-22 %), aromatics

(57-81 %), and repolymerization products designated here as higher molecular weight species (HMW, 8-26

%). While depolymerization of lignin in addition to dehydration of glucose were the main sources of the

aromatic compounds [51], the origin of cyclics is more uncertain. The presence of cyclopentanone derivatives

indicated a pathway involving hydrogenation of furans. Similar products were reported previously in the

literature [52]. The effect of conversion conditions on the production of volatiles from HTL was assessed

by the product distributions (Figure S13 in the Supplementary Information). According to the results, in

the absence of tetralin, cyclics and HMW classes were more abundant, while in its presence, the conversion

pathways shifted towards aromatic WSO. Similar findings have been reported previously for the HTL of

lignocellulose in the presence of small polar co-solvents [34]. According to the GC-MS results, the volatile

WIO fraction was constituted mainly of short-chained alkanes and alkenes, semi-polar aromatics, and re-

polymerized structures. A list of the top 10 most common WSO and WIO chemicals identified by GC-MS

is compiled in Table S2 in the Supplementary Information.

A further evaluation of the SPE-GC-MS data obtained for WSO was performed by application of PCA, a

simple eigenvector-based multivariate method for exploratory assessment of large data sets such as chromato-

graphic and spectrometric data [53]. In this method, the original data is projected onto a set of orthogonal

vectors called principal components (PCs). PCs are uncorrelated with each other linear combinations of the

original variables oriented along the directions of maximum spread of the data points. This method allows

to reduce the complexity and dimensionality of the data, thus increasing interpretability and minimizing

information loss [54]. It also allows to find hidden structures in the objects relationship, such as groups,

trends, and outliers. The results of PCA were evaluated with score and loading plots. A score plot is a

scatter plot, which shows the projection of data objects (samples) to the principal components (so every

marker/point on this plot represents a particular sample/measurement). A loading plot shows contribution

of each variable (chromatographic peak) to the orientation of the corresponding component. Objects (sam-

ples) positioned close to each other on a score plot are considered similar according to the variable (a peak

or a group of peaks) dominating the corresponding loading. Markers on the score plots were color coded

according to the conversion conditions (temperature, acetone, and tetralin). This resulted in a discovery of

a hidden trend related to the presence of tetralin (Figure 2) explained by PC1 responsible for more than
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67 % of the total variability between the groups with and without tetralin, respectively. The tendency was

traced to the increasing abundances of anisole (A), cresol (C), methylhexahydroindenone and trimethylhex-

ahydroindene (I), and dihydroeugenol (E) in the samples produced with (A and C) and without (I and E)

tetralin, respectively. Anisole and cresol are typical final lignin conversion products, dihydroeugenol is an

intermediate, and the indene/indenones are repolymerized structures [55]. The obtained results indicated

that tetralin as a co-solvent facilitates the conversion of lignin from lignocellulose into monomeric aromat-

ics and prevents repolymerization by acting as a capping agent for reactive species, similarly to the effect

of phenol as a co-solvent [38]. However, opposite to the application of phenol, the tetralin molecule was

not incorporated into the reaction products, as its scavenging effect was most probably realized through

hydrogenation of the reactive intermediates. The effect of hydrogenation was indicated with the presence

of dihydroeugenone, which originated from dehydration and H2 addition to known lignin depolymerization

products e.g. coniferyl alcohol.

3.3 Characterization of semi- and non-volatiles by UHPLC-HRMS

3.3.1 Molecular features

A full MS scan combined with tandem MS/MS scans of the most significant peaks allowed a compre-

hensive assessment of the samples’ composition with a high level of identification confidence as defined by

Schymanski et al. [56]. In all, 2407 and 1017 species were detected and assigned a sum formula among WSO

and WIO, respectively. The distribution of the species’ selected features, including their molecular weight,

aromaticity index, and number of carbon atoms, are shown on Figure 3. HTL of Fallopia resulted in a rather

narrow spectrum of reaction products with molecular weights ranging from 50 to 800 g/mol, low aromaticity

index values, and n=8 as the average number of carbon. An examination of the correlation between the

process parameters and an average species’ features (aromaticity index AI, double bond equivalents DBE,

molecular weight, H/C ratio, O/C ratio, N/C ratio, the number of carbon, hydrogen, nitrogen, and oxygen

atoms) weighted according to the normalized areas resulted in Figure 4. According to the findings, con-

version temperature was correlated inversely to the oxygen content of the reaction products, i.e. at high

reaction temperatures, the average species typically contained fewer oxygen atoms. While the presence of

acetone did not exhibit statistically significant effects, tetralin affected AI, DBE, along with lowering the

number of C and H, but increasing the O/C ratios. The decreasing polyaromaticity, lower degree of unsatu-

ration, and the size of the molecules were all indicative of preventing repolymerization through protonation

of reactive intermediates.

3.3.2 Mining of trends

Additional exploration of the general trends in the data was performed by PCA of the normalized

chromatographic peak areas obtained from the UHPLC-HRMS measurements. A multivariate approach
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corresponding to the SPE-GC-MS analysis was applied. The data was analyzed as a whole, as well as in

groups. The results were assessed by the means of scores (projection of the samples) and loading plots

(contribution of each chromatographic peak to the orientation of the PCs). While the results from the

entire data set were unclear and did not yield unambiguous trends, further insight was gained from the

analysis of the data grouped according to the ESI mode (positive and negative) and product fraction (WSO

and WIO). On average, no more than five principal components (PCs) were enough to explain more than

90 % of the data variance. The most distinctive trends were discovered for the WSO in the positive mode,

where the changes in temperature were represented by PC1 and explained 47 % of the variation in the

data (Figure 5). Additionally, the presence of acetone was explained by a grouping according to PC2 (18

%). The loadings were used to identify the molecular species responsible for the remarkable separation of

the samples. While with increasing temperatures repolymerized structures were promoted at the expense

of small molecular weight species and monomers such as dimethoxyphenol (Table S3 in the Supplementary

Information), the presence of acetone resulted in an increased abundance of short-chain aliphatic oxygenates

(e.g. heptadienal) and suppression of cyclic compounds. The corresponding analysis of WIO did not yield

unambiguous trends or clear patterns. In most of the analyzed WIO cases, the loadings responsible for the

trends encompassed a large group of chemical species rather than single compounds.

3.3.3 Statistically significant perturbations

The statistical validity of perturbations between different runs was assessed by means of volcano charts,

which plot log2 of the fold-change on the x axis versus significance (-log10 of the p-value from a post-hoc

ANOVA analysis) on the y axis. The fold change was calculated as the ratio of the peak area from one

run (A1) and the peak area from a second run (A2), e.g. (A1)/(A2). The abundance of different chemical

species was analyzed by comparing the intensity of the signal for different m/z values. Statistically relevant

changes in the composition can be found away from the central line (log2 < −2∧ 2 < log2) representing the

zero fold change and at the top of the plot representing the lowest p-values (p-value<0.005). Figure 6 shows

examples of the produced volcano plots with significantly down-regulated, non-affected, and up-regulated

populations of molecular species for pairwise comparisons of the runs. The terminology down-regulated,

non-affected, and up-regulated was used for species whose abundance decreased, did not change, and was

increased significantly, respectively. See Section 2.6 for more details. Figure S14 in the Supplementary

Information summarizes the combined number of WSO and WIO species in each group and for each set of

runs. Most significant down-regulation of the number of species took place in the presence of acetone going

from 300 to 320 ℃. Several condition sets resulted in significant up-regulation of the chemical species, most

notably by increasing the temperature from 280 to 300 ℃. Even more importantly, the results revealed that

a significant fraction of the HTL products remained unaffected by the varying reaction conditions, which

indicated that tailoring and optimization influences only a susceptible part of the intermediates, while a
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core of conversion products depends only on the supply of minimum activation energy. The results were

confirmed by van Krevelen plots (Figures S15-S17 in the Supplementary Information). According to these

findings, saturated and unsaturated aliphatics (H/C ratio >1) were the most common constituents of the

HTL products. Molecules on vertical lines differ by their amount of hydrogen. Molecules on horizontal

lines differ by their content of oxygen. Oxygen containing aliphatics were predominant among the WSO

(0< O/C ratio<1), while the O-content in WIO was significantly lower (the majority 0< O/C ratio <0.3).

The vertical line representing the O/C ratio of 0.0 and thus oxygen-free species was most prominent among

the aromatic and aliphatic WIO species. The hydrogen:carbon ratios were, on the other hand, much more

broadly distributed in WIO than in WSO (0.5< H/C ratio <2.5 vs. 1< H/C ratio <2, respectively). Figure

7 shows the differential van Krevelen plots with the data points classified according to the volcano results

(up-regulated, non-affected, down-regulated) for the influence of temperature and the presence of co-solvents.

The majority of the species fell in the ”non-affected” category and only few compounds were affected by the

perturbations in the reaction conditions.

3.3.4 Identification of compounds

From the pools of species with a molecular formula, the most significant compounds were selected based

on a defined peak area threshold (295 and 103 molecules in the positive and negative mode, respectively)

and a number of peaks was identified unambiguously (99 and 62 molecules in the positive and negative

mode, respectively) by searching mzCloud database [40]. A summary outlining the top 20 most abundant

compounds in the data set is presented in Table S4 in the Supplementary Information. Species related

to the co-solvents autonomous conversion under hydrothermal conditions were identified as well. 3,3,6,8-

Tetramethyl-1-tetralone was formed as the result of acetone self-condensation reactions taking place at

increased temperatures and in the presence of alkali [57] and involving: 1) aldol condensation of acetone to

diacetone and triacetone alcohol; 2) dehydration of triacetone alcohol to phorone; 3) 1,6-Michael cycliza-

tion of phorone to isophorone; 4) condensation of isophorone with mesityl oxide (formed by dehydration of

diacetone alcohol) [58]. In the case of tetralin, both dihydronaphthalene and naphthalene were identified

among the reaction products.

The data points with areas above the defined threshold were classified according to the volcano results

(non-affected core, up- and down-regulated), and the core species were processed by the Kendrick mass defect

(KMD) method, in which the species’ KMD values are plotted as a function of their nominal Kendrick mass

(NKM). According to the results in the negative ESI mode outlined in Figure 8, α-hydroxycarboxylic acids

were the most abundant species in addition to imids (two acyl groups bound to nitrogen) and lactones (cyclic

esters of hydroxycarboxylic acids). Carboxylic acids, which are valuable intermediates and fine-chemicals

used widely in the food, chemical, and material industries, were the main high-value output from HTL of
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Fallopia. A traditional pathway for their formation include oxidation of alcohols (-OH) into carbonyl (=O)

and then carboxyl (-COOH) functional groups. Numerous authors have reported the formation of acids

through retro-aldol splitting of glucose and fructose to glyceraldehyde, oxidation to puryvaldehyde, and

finally to formic acid, lactic acid, and acetaldehyde [59]. It should be mentioned that glyceraldehyde can be

reversibly converted into dihydroxyacetone, crossing the biomass conversion pathways with transformations

of acetone under hydrothermal conditions. Other authors reported the presence of acids such as acetic

acid, propionic acid, and glycolic acid [60, 61]. Long chained carboxylic acids (e.g. hexadecanoic acid) have

been previously reported in the products from HTL due to the hydrolysis of glycerides [16]. No studies

to date have reported the formation of C4-C7 hydroxy- and dicarboxylic acids from HTL, and their exact

origin is uncertain, although it can be speculated that they were produced by carboxylation and molecular

skeletal rearrangements of C5 sugars (e.g. xylose, arabinose, and lyxose) from hemicellulose producing e.g.

ascorbic acid [62]. In the positive mode, the core composition comprised a mixture of aliphatic, cyclic, and

aromatic species with a broad spectrum of chemical functionalities, e.g. lactams, phenolics, short-chained

unsaturated oxygenates, cyclohexane derivatives, and β-hydroxycarboxylic acids. In addition to visualizing

the composition of the core HTL products, KMD analysis was also used to identify species according to

their position on a horizontal line representing homologous series. An example includes the identification of

the last data point on the first horizontal line in the top part of Figure 8 as hydroxyheptanioc acid, a C7

hydroxycarboxylic acid in a homologous series starting with glycolic acid.

The influence of co-solvents on the conversion was studied further by examination of statistically sig-

nificant effects in pairwise comparisons of the species’ abundance (e.g. A1T0280 vs. A0T0280, A0T130

vs. A0T1300). The results showed that while numerous statistically significant differences in composition

related to variations in reaction conditions could be identified, no generally valid trends were present (Table

S5 in the Supplementary Information). These results do not represent any general trends in the data, but

are rather an one-on-one comparison of the effects. Overall, acetone caused shifts in the aromatic monomer

balances, e.g. it suppressed the yields of dimethoxyphenol and favored methoxysalicylic acid, possibly by

the increased hydrolysis of the former into the latter. Carboxylic acids were not universally favored in the

presence of acetone as the yields of compounds such as benzoic, homovanillic, and hydroxycinnamic acid

were lower with the co-solvent than without it. In the case of tetralin, aliphatic acids were promoted al-

ternative to aromatic acids. Common for both co-solvents was the favorable formation of aromatic-cyclic

dimers, e.g. phenylcyclohexanedione.
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4 Conclusions

In the current work, Fallopia japonica, an invasive species of weed and a potential lignocellulosic energy

crop, was depolymerized hydrothermally at varying temperatures in order to explain the influence of acetone

and tetralin co-solvents on the conversion and product formation. An illustration of the reaction trends at

different conditions for biomass conversion clarified by the data mining approach is presented in Figure

9. The major part of the product consisted of WSO. A result obtained by a combination of low biomass

loading and short reaction time. Addition of tetralin resulted in a partial shift of carbon from WSO towards

WIO, most probably through the solubilization of the less polar reaction intermediates in the co-solvent. A

combination of standard (GC-MS) and state-of-the-art (UHPLC-HRMS) analytical instrumentation, as well

as a non-targeted data mining strategy, resulted in a comprehensive characterization of both WSO as well

as WIO covering molecular species with wide-ranging volatilities, molecular weights, and polarities. While

according to GC-MS, aromatics were the most common HTL conversion products, UHPLC-HRMS pointed

towards short-chain oxygenated aliphatics with a broad spectrum of chemical functionalities. Application

of GC-MS alone would not allow the identification of e.g. α-hydroxycarboxylic acids, which constituted the

core composition of the obtained HTL products. Carboxylic acids, which are valuable intermediates and

fine-chemicals used widely in the food, chemical, and material industries, were the main high-value output

from HTL of Fallopia. In addition to the acids, imids, lactones, lactams, phenolics, cyclohexane derivatives,

and β-hydroxycarboxylic acids were also identified. Process conditions did not affect the abundances of those

species indicating that only certain parts of the products are susceptible to process tailoring and optimiza-

tion. The presence of co-solvents increased the abundance of monomeric aromatics (tetralin: anisole and

cresol) and small oxygenates (acetone: heptadienal) and decreased the abundance of repolymerized species

(methylhexahydroindenone and trimethylhexahydroindene) and aromatic intermediates (dihydroeugenol).

For tetralin, the effect was attributed to the prevention of repolymerization, most probably through hydro-

genation of reactive intermediates. For acetone, the results pointed to the promotion of retro-aldol splitting

resulting in low molecular weight compounds as the most important pathways for conversion following the

hydrolysis of the biopolymer chains.
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6 Artwork

Table 1: The composition of the reaction mixtures. The experiments were performed in a randomized order to ensure the

statistical independence of the obtained data (indicated next to the label coding). A-acetone, T-tetralin, B-biomass.

Run T (℃) A (wt.%) T (wt.%) B (wt.%) K2CO3 (wt.%) CMC (wt.%)

A0T0280C (10) 280 0.0 0.0 2.49 1.07 0.12

A0T0300C (11) 300 0.0 0.0 2.33 1.09 0.11

A0T0320C (12) 320 0.0 0.0 2.19 1.11 0.10

A1T0280C (01) 280 1.00 0.0 2.20 1.07 0.09

A1T0300C (04) 300 0.91 0.0 2.31 1.11 0.11

A1T0320C (08) 320 1.11 0.0 2.29 1.09 0.11

A0T1280C (06) 280 0.0 1.00 2.49 1.10 0.11

A0T1300C (03) 300 0.0 0.93 2.31 1.13 0.11

A0T1320C (07) 320 0.0 1.07 1.97 1.09 0.09

A1T1280C (05) 280 1.01 1.02 2.46 1.09 0.11

A1T1300C (09) 300 1.02 1.02 2.33 1.08 0.12

A1T1320C (02) 320 1.01 1.07 2.12 1.12 0.10
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Figure 1: Distribution of carbon in the product fractions from different runs.

Figure 2: PC1 vs. PC2 score (left) and PC1 loading (right) line plots identifying molecular species responsible for the largest

variation in the GC-MS dataset and explaining the hidden pattern and grouping between the samples produced without (blue

scores, negative loadings) and with (red scores, positive loadings) tetralin as co-solvent.

Figure 3: Selected features of the molecular species detected by high resolution hybrid quadrupole orbitrap tandem mass

spectrometry. The histograms show a combined result for WSO and WIO in both positive and negative ESI ionization modes.
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Figure 4: Spearman matrix showing the direction and strength of the linear association between process conditions and an

average species’ properties. Statistically significant (p-value<0.005) direction of the association are outlined in red (negative)

and blue (positive) with the magnitude of the correlation coefficients indicating the strength of the association.
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Figure 5: PC1 (46.47 %) vs PC2 (18.12 %) score (left) and PC1/PC2 loading plots (right) for WSO measured in the ESI

positive mode.

Figure 6: Volcano plots for AQ-R01: A1T0280C vs. AQ-R04: A1T0300C (temperature influence in the presence of acetone,

significantly down-regulated), AQ-R05: A1T1320C vs. AQ-R10: A0T1320C (tetralin influence at T=320 ℃, non-affected), and

AQ-R08: A1T0320C vs. AQ-R15: A0T0320C (acetone influence at T=320 ℃, significantly up-regulated). Note: the number

of points in all graphs are equal.
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Figure 7: Differential van Krevelen diagrams combined for statistically significant changes (left: down-regulated, middle: non-

affected, right: up-regulated) in WSO and WIO (combined analysis as obtained from Volcano plots) showing the differences

between the samples processed at different temperatures (top) and with/without co-solvents (bottom). The data was obtained

from UHPLC-HRMS. Size of the points is proportional to the area detected normalized by sum. The color code varies according

to the aromaticity index: blue - aliphatic, orange - aromatic, red - condensed aromatics.
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Figure 8: Kendrick plots for the molecular species constituting the core composition of the samples (constant amounts in all the

samples regardless of process conditions) with a area threshold of 107 for negative (top) and positive (bottom) ESI ionization.
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Figure 9: Illustration of the reaction trends at different conditions for biomass conversion clarified by the data mining techniques.

22



Page 23 of 28

Acc
ep

te
d 

M
an

us
cr

ip
t

References

[1] J. Akhtar, N. A. S. Amin, A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass,

Renew. Sustain. Energy Rev. 15 (3) (2011) 1615–1624.

[2] N. Akiya, P. E. Savage, Roles of water for chemical reactions in high-temperature water, Chem. Rev. 102 (8) (2002)

2725–2750.

[3] T. H. Pedersen, I. Grigoras, J. Hoffmann, S. S. Toor, I. M. Daraban, C. U. Jensen, S. Iversen, R. B. Madsen, M. Glasius,

K. R. Arturi, R. P. Nielsen, E. G. Søgaard, L. A. Rosendahl, Continuous hydrothermal co-liquefaction of aspen wood and

glycerol with water phase recirculation, Appl. Energ. 162 (2016) 1034–1041.

[4] R. B. Madsen, E. Lappa, P. S. Christensen, M. M. Jensen, M. Klemmer, J. Becker, B. B. Iversen, M. Glasius, Chemometric

analysis of composition of bio-crude and aqueous phase from hydrothermal liquefaction of thermally and chemically

pretreated Miscanthus x giganteus, Biomass Bioenerg. 95 (2016) 137–145.

[5] European Commission, Steeper Energy builds industrial scale plant worth € 50.6 million, Available online: https:

//ec.europa.eu/easme/en/news/steeper-energy-builds-industrial-scale-plant-worth-506-million, Accessed on 25

February 2018.
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Highlights

• Oxygenated water soluble aliphatics were the most common HTL products.

• High-value carboxylic acids constituted the core resilient to process tailoring.

• Tetralin promoted formation of aromatics through solubilization and scavenging.

• Acetone promoted low molecular weight oxygenates through retro-aldol splitting.
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