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Abbreviations 

BF: biceps femoris 

CPM: conditioned pain modulation 

CPT: cold-pressor test 

CS: conditioning stimulus 

EMG: electromyographic  

NWR: nociceptive withdrawal reflex 

RF: rectus femoris 

RTh: reflex threshold 

SOL: soleus  

TA: tibialis anterior 
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ABSTRACT 

Human studies have repeatedly shown that conditioning pain modulation (CPM) exerts an 

overall descending inhibitory effect over spinal nociceptive activity. Previous studies have 

reported a reduction of the nociceptive withdrawal reflex (NWR) under CPM. Still, how 

descending control influences the muscle activation patterns involved in this protective behavior 

remains unknown. This study aimed to characterize the effects of CPM on the withdrawal pattern 

assessed by a muscle synergy analysis of several muscles involved in the lower limb NWR. To 

trigger descending inhibition, CPM paradigm was applied using the cold-pressor test (CPT) as 

conditioning stimulus. Sixteen healthy volunteers participated. The NWR was evoked by 

electrical stimulation on the arch of the foot before, during and after the CPT. Electromyographic 

(EMG) activity of two proximal (rectus femoris and biceps femoris) and two distal (tibialis anterior 

and soleus) muscles were recorded. A muscle synergy analysis was performed on the 

decomposition of the EMG signals, based on a non-negative matrix factorization algorithm. 

Results showed that two synergies (Module I and II) were sufficient to describe the NWR 

pattern. Under CPM, Module I activation amplitude was significantly reduced in a narrow time-

window interval (118-156ms) mainly affecting distal muscles, whereas Module II activation 

amplitude was significantly reduced in a wider time-window interval (150-250ms), predominantly 

affecting proximal muscles. These findings suggest that proximal muscles are largely under 

supraspinal control. The descending inhibitory drive exerted onto the spinal cord may adjust the 

withdrawal pattern by differential recruitment of the muscles involved in the protective behavior.  

 

Keywords: nociceptive withdrawal reflex; electrical stimulation; cold-pressor test; withdrawal 

pattern; muscle synergy. 
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INTRODUCTION 

Limb withdrawal is a vital protective behavior in response to potential tissue damage. This 

involuntary body reaction to noxious stimuli is carried out through spontaneous spinal reflexes, 

which allow a quick retraction of the affected area from actual or potential danger. This reflex, 

named nociceptive withdrawal reflex (NWR), is encoded in polysynaptic neuronal pathways at 

spinal level and it ends in the motor neurons of the muscles that produce the withdrawal pattern 

(Sandrini et al., 2005).  

It is very well established that several intrinsic and extrinsic factors can modulate the overall 

NWR response. For example, changes of limb posture (Hagbarth and Finer, 1963), stimulation 

site (Andersen et al., 1999), gait phase (Spaich et al., 2006; Richard et al., 2015) and 

psychological states (Anon, n.d.; Bjerre et al., 2011; Bartolo et al., 2013) can  alter dynamically 

the NWR. In particular, an important mechanism of spinal modulation is the conditioning pain 

modulation (CPM), a phenomenon in which the behavioral response to a painful stimulus is 

inhibited by another heterotopic painful stimulus (Kennedy et al., 2016) most likely via 

modulation of the descending drive onto spinal nociceptive pathways (Heinricher et al., 2009). 

This central mechanism inhibits noxious inputs to reduce the adverse effect of pain in potentially 

dangerous circumstances (Millan, 2002). Alterations of CPM have been associated with the 

development of chronic pain (Lewis et al., 2012). 

Studies in humans have repeatedly shown that CPM exerts a descending inhibitory effect over 

the NWR activity (Willer et al., 1984, 1989; Le Bars et al., 1991; Terkelsen et al., 2001; Serrao et 

al., 2004; Biurrun Manresa et al., 2014). These previous reports have described the effect of 

CPM by characterizing the overall NWR response in terms of single muscle activity. Although 

this approach provides insights into the effect of CPM on the overall NWR, it gives little 

information on how descending modulatory pathways influence the muscle activation patterns 

involved in this protective behavior. This becomes relevant if the withdrawal reaction is 

considered as a net combination of several muscles acting across several joints. In fact, each 

muscle plays a different role in the overall withdrawal (Andersen et al., 2001). It is therefore 

plausible that the descending control exerts differential modulation that is dependent on the 

specific role of each muscle involved in the NWR (Kalliomäki et al., 1992). 

In this regard, Sherrington (1910) was the first to describe this defensive reaction in animals as a 

stereotyped ‘flexion reflex’. Since then, studies in humans have demonstrated that the NWR 
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involves a combination of flexor and extensor muscles acting across several joints (Eklund et al. 

1959; Hagbarth 1960; Kugelberg et al. 1960; Grimby 1963). Studies in animals (Schouenborg 

and Weng, 1994; Schouenborg, 2002) and later in humans (Andersen et al., 1999; Sonnenborg 

et al., 2001) have indicated that the NWR has a modular organization, where the optimal 

withdrawal movement away from the stimulus is the net result of the activation of independent 

reflex modules. Each individual reflex module consists of a specific cutaneous area called reflex 

receptive field (RRF) and a single muscle or a group of few synergistic muscles (Schouenborg, 

2002).   

Other reports in animals have provided evidence that the withdrawal response due to cutaneous 

stimulation of a particular site can be generated by a combination of specific muscle activation 

patterns, named muscle synergies (Tresch et al., 1999). These authors suggests that the central 

nervous system generates a repertoire of motor movements through a linear combination of 

different muscle synergies specified by networks in the spinal cord and/or brainstem (Bizzi et al., 

2002, 2008), and the NWR pathways might thus make use of these spinal networks.  

Hence, the aim of the study was to characterize the withdrawal pattern of the lower limb in 

humans during CPM. It is hypothesized that the different muscles involved in the NWR pattern 

are subjected to a differential descending modulatory control, reflecting the presence of 

withdrawal priorities across the joints of the lower limb. It would be then plausible to consider this 

defensive reaction as a complex hierarchized mechanism, possibly commanded by shared 

neural drives. Particularly, proximal and distal muscles might be differentially recruited due to the 

specific function of each muscle acting across joints. To this end, a muscle synergy analysis was 

performed on the NWR elicited by electrical stimulation on the sole of the foot. The analysis is 

based on decomposition of electromyographic (EMG) signals and is intended to describe the 

coordinated action between the muscles, describing their temporal activation profiles along with 

their relative weights (Ivanenko et al., 2016).  
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EXPERIMENTAL PROCEDURES 

Sixteen healthy volunteers (nine males, range 20-35 years) participated in the study. The study 

protocol was approved by the Region Nordjylland (Denmark) ethical committee (case number 

VN 2015-0038). All subjects gave their written informed consent before participating in the study. 

EMG recordings 

Surface EMG signals were recorded from two distal muscles, tibialis anterior (TA) and soleus 

(SOL), and two proximal muscles, biceps femoris (BF) and rectus femoris (RF). The electrodes 

(type 720, Ambu A/S, Denmark) were placed 20 mm apart over the belly of each of the four 

muscles along the main direction of the muscle fibers. Electrodes were located following the 

recommendations of surface EMG for Non-Invasive Assessment of Muscles (SENIAM) 

(Hermens et al., 2000) in a single differential configuration. The skin was cleaned and lightly 

abraded before the placement of the electrodes in order to decrease electrode impedance. EMG 

signals were sampled at 2400 Hz, amplified (up to 20000 times), band-pass filtered (5-450 Hz), 

displayed and stored between 500 ms before stimulation and 2000 ms after stimulation. 

Electrical Stimulation 

Transcutaneous electrical stimulation was applied on the arch of the foot by a computer-

controlled electrical stimulator (Noxitest IES 230, Aalborg University, Denmark) through a self-

adhesive cathode (type 700, 20 x 15 mm, Ambu A/S, Denmark). A large anode electrode (50 x 

90 mm, Pals, Axelgaard Ltd., Fallbrook, California, USA) was placed on the dorsum of the foot, 

to ensure that nociceptors were activated at the arch of the foot (Frahm et al., 2013). Each 

stimulus consisted of a constant-current burst of five individual 1-ms pulses delivered at 200 Hz, 

which the subjects perceived as a single stimulus located in the arch of the foot. Stimulation was 

delivered at random inter-train interval lengths ranging from 8 to 10 s. To ensure the presence of 

reflexes, the stimulation intensity was set to two times the reflex threshold (RTh) and assessed 

on the BF muscle (see below). 

Experimental design  

Initial setup 

Subjects were placed in an articulated bed in a supine position, with their knees flexed 

approximately 30o relative to the horizontal level and with back support in 120o. To minimize 
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potential effects of arousal or anxiety on the NWR responses, subjects were thoroughly 

familiarized with electrical stimulation by applying multiple stimulations at different intensities 

before data were recorded. 

Thresholds to electrical stimulation and NWR detection 

The RTh to single stimulation was determined in the BF muscle using a standardized staircase 

procedure, with a detection / non-detection criterion (see below), and controlled by custom-made 

software. First, stimuli were administered with increasing intensity using steps of 2 mA until a 

NWR was detected. Second, the intensity was decreased in steps of 1 mA until the NWR was 

not detected. Four more staircase reversals were obtained with 1-mA steps, and the RTh was 

defined as the average intensity of the last three reversals (Arguissain et al., 2015).  

The criterion to detect the presence of a NWR in the BF muscle was the interval peak z-score 

(Rhudy and France, 2007). The interval peak z-score was obtained from the rectified EMG and 

calculated as the difference between the peak amplitude in the reflex quantification interval of 

the BF muscle (60 - 180 ms post-stimulation) and the baseline amplitude mean (120 - 0 ms pre-

stimulation), divided by the standard deviation of the baseline amplitude. A NWR was detected 

when the interval peak z-score was larger than 12 (Rhudy and France, 2007; Biurrun Manresa et 

al., 2011). 

Experimental design 

Figure 1 shows a schematic of the experiment design. The experiment consisted of a single 

session divided into 3 blocks: Pre-CPM, During-CPM and Post-CPM. 

Pre-CPM and Post-CPM: subjects were asked to immerse their right hand, wide open up to the 

wrist, in a lukewarm bath (30.3 ± 0.7 °C), with a circulating water flow.  

During-CPM: the cold pressor test (CPT) was used as the conditioning stimulus (CS), which was 

performed by immersing the subject’s right hand, wide open up to the wrist, in a bucket with ice 

water (2.7 ± 0.5 °C), with a circulating water flow. The bucket had an inner and an outer 

compartment separated by a mesh screen to prevent direct contact between the ice and the 

hand. Subjects maintained the hand in the water bath for as long as they could tolerate it, or for 

a maximum period of 3 min. 
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In each block, ten electrical stimuli were delivered on the arch of the foot to elicit NWRs. Before 

and after the immersion of the hand in the water, skin temperature was monitored to ensure that 

the skin temperature before the Pre-CPM and Post-CPM blocks was similar. A resting period of 

5 to 7 min was included between blocks. 

 

 

Fig. 1 Experimental design. Subjects were sitting on a comfortable adjustable bed with back and knee support. 

Electrical stimulation was delivered at the arch of the sole of the foot in order to elicit the NWR. The EMG of four 

muscles were recorded (RF, rectus femoris; BF, biceps femoris; TA, tibialis anterior; SOL, soleus). The 

experimental session was split in three blocks (Pre-CPM, During-CPM and Post-CPM) each one lasting 

approximately three minutes with a short rest between blocks. During blocks, subjects were asked to put their left 

hand into a water bath at different temperatures according to the block. 
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Data Analysis 

CPM effect 

Since the main objective was to observe the effects of CPM over the NWR pattern, only subjects 

who positively responded to the CPM effect (i.e. inhibition of the NWR) were further included in 

the EMG decomposition analysis. In order to quantify the CPM effect, the magnitude of the EMG 

activity of the BF muscle was calculated as the root-mean-square (RMS) in the reflex 

quantification interval. The across-trial average RMS of the BF muscle was obtained for each 

subject and each experimental block.  

Muscle synergy analysis 

EMG signals were high-pass filtered (digital zero-phase, fourth-order Butterworth filter, 50Hz 

cutoff) to clean it from motion artifacts (Cheung et al., 2009). Subsequently, the signals were 

rectified and low-pass filtered (digital zero-phase, fourth-order Butterworth filter, 20Hz cutoff) to 

obtain the EMG envelopes (d’Avella et al., 2006; Cheung et al., 2009).  

For the EMG decomposition, a post-stimulus reflex window was chosen between 60 and 250ms 

to capture the concurrent activity of all recorded muscles. The median of the EMG envelopes 

was calculated per muscle, block and subject. After offset level subtraction, envelopes were 

normalized to the median of the maximum values across blocks.  

Muscle synergies were further extracted, per subject and block, by decomposing the obtained 

EMG envelopes using a non-negative matrix factorization (NMF) algorithm (Lee and Seung, 

1999, 2001; Tresch et al., 1999). Each muscle activation pattern can be reconstructed as a 

linear combination of spatial muscle synergies, known as time-invariant synergies. This 

reconstruction is defined as: 

 

           (Eq. 1) 

 

where     is a m × t matrix containing EMG measures (m number of muscles; t time points);   

is a m × s muscle weights matrix, which represents the fixed (time-invariant) muscular 

contribution to each module (s number of synergistic modules);   is an s × t time-varying 

coefficient matrix, which represents the time activation of each module; and    is the residual 
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matrix. All elements are constrained to be non-negative, as muscle activation by definition is a 

positive variable. In principle,  ,   and s are unknown parameters. 

To obtain   and  , the algorithm randomly initialized all values, which converged to a local 

solution of the factorization in Eq. 1 (Lee and Seung, 2001). To avoid local minima, the algorithm 

was run 1000 times for each subject and block. The best reconstruction of the original EMG was 

kept based on the minimization of the mean squared error (MSE) between the reconstructed 

patterns and the original EMG signal (Frère and Hug, 2012). 

This process was repeated between 1 and m times, and the first iteration that accounted for over 

90 % of ‘variance accounted for’ (VAF) was the one that defined the minimum number of module 

synergies s that could explain the original EMG signals (Torres-Oviedo, 2006).  

The “centered” VAF is defined as: 

 

       
     

 

                  
  (Eq. 2) 

 

where      denotes the Frobenius norm of a matrix (Frère and Hug, 2012; Wojtara et al., 2014), 

and            represents the mean vector of each row in     (d’Avella et al., 2006). In order to 

define the number of synergies   with this ad-hoc criterion, it was considered that the total 

variability of all subjects per experimental block had to be above the 90% VAF threshold 

(Kristiansen et al., 2015). 

Once s,   and   were defined, the obtained matrices were used to reconstruct the individual 

muscle pattern that took part in each synergistic module for each muscle. The muscle patterns 

were defined by the product of the muscle weights and the time activation of each synergistic 

module. The reconstructed EMG signals was then defined as the sum of the muscle patterns. 

The RMS of the individual muscle patterns and the reconstructed EMG signals was calculated 

on the aforementioned time window of interest (between 60 and 250 ms) for each subject and 

for each experimental block. 
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Statistics 

CPM effect 

To assess the CPM effect, non-parametric Friedman ANOVA was performed to compare the 

NWR sizes, with ‘Condition’ as a factor (Pre-CPM, During-CPM and Post-CPM). Post hoc non-

parametric Wilcoxon tests were used in case of significant effect. The comparisons considered 

were between the Pre-CPM and the During-CPM blocks, and between Pre-CPM and Post-CPM 

blocks.  

Time-varying coefficients 

For each synergistic module found, a point-by-point Wilcoxon rank-sum two-tailed test using a 

permutation strategy (1000 permutations) and a maximum cluster threshold of 97.5 was applied 

between Pre-CPM and During-CPM conditions and between Pre-CPM and Post-CPM 

conditions.  

Muscle weights 

Two-way repeated measure analysis of variance (RM ANOVA) was used for each synergistic 

module found, to test the effect of CPM on the muscle weights. The main factors were Condition 

(Pre-CPM; During-CPM; Post-CPM) and Muscle (TA – SOL – BF – RF). The Greenhouse-

Geisser correction was applied to compensate for deviations in sphericity. 

Muscle Patterns and Reconstructed EMG 

For each synergistic module and for each reconstructed EMG, non-parametric Friedman 

ANOVA was performed to compare the RMS of the muscle patterns, with ‘Condition’ as a main 

factor (Pre-CPM, During-CPM and Post-CPM). Post hoc non-parametric Wilcoxon tests were 

used in case of significant effects. The comparisons considered were between the Pre-CPM and 

the During-CPM blocks, and between Pre-CPM and Post-CPM blocks. 

In all statistical tests, a p-value smaller than 0.05 was regarded as significant. Bonferroni 

correction was used to account for multiple comparisons.  
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RESULTS 

The mean RTh intensity across all subjects measured in the BF muscle was 8.62 ± 4.51 mA 

(range 3 – 18 mA), so the mean stimulation intensity used was 17.23 ± 9.03mA (range 6 – 36 

mA). 

A primary screening of the dataset showed that 35 out of 1920 (1.82%) observations had to be 

eliminated due to voluntary contractions or technical problems.  

CPM effect 

The rectified EMG activity of the BF, averaged across subjects for the three different blocks, is 

shown in fig. 2 A (Pre-CPM, red; During-CPM, blue; Post-CPM, green). A pre-analysis of the 

dataset revealed that four out of sixteen subjects tested did not show NWR inhibition during the 

CS (Fig. 2, B). As the focus of this study was to describe the NWR pattern in terms of muscle 

synergies under CPM, these subjects were excluded from the analysis.  

A significant main effect of Condition was found for the RMS of the BF muscle (Χ2 = 11.167, p = 

0.004). The post hoc analysis showed that  the NWR measured in the BF were smaller when 

subjects had their hand in the ice-cold water bath (During-CPM) in comparison to when they had 

their hand in lukewarm water at the beginning of the experiment (Pre-CPM) (Z = 3.059; p < 

0.01). No significant modulation was detected in the post-CS recording (Fig. 2, C). 
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Fig. 2 CPM effect on BF muscle. (A) Figure shows the average across subjects rectified EMG of the BF for the three 

different blocks (Pre-CPM, red; During-CPM, blue; Post-CPM, green).  The dotted square specifies the reflex 

quantification window of the BF muscle (60-180ms post stimulus). (B) Lines describe the mean RMS of the NWR 

measured in the BF muscle for each subject and block. The CPM non-responders (dotted line) were excluded from 

the muscle synergy analysis. (C) Boxplots describe the mean RMS of the NWR measured in the BF muscle in the 

quantification window considering only CPM responding subjects. A significant difference was found between Pre-

CPM and During-CPM (p < 0.01).  
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Muscle Synergies  

Number of extracted Module Synergies  

Figure 3 displays the %VAF across subjects as a function of the number of synergy modules, for 

each experimental block. As it can be observed, two module synergies explain more than 90% 

of the VAF in the majority of the cases (i.e. experimental blocks per subjects). Although, there 

are few cases (8/36) where the 90% threshold was not reached. However, a third module 

synergy would explain less than 8% of the variance. In addition, the withdrawal reflex elicited 

from a resting position is expected to be a simple movement. Therefore, the muscle weights   

and the time-varying coefficients   with two module synergies (s = 2) were further considered for 

the analysis. Consequently, Eq. 1 is expressed as follows: 

 

          
            

   
          

            

   

          

  
          

  
        

          

        
          

     (Eq.3) 

 

 

Fig. 3 Number of Module synergies. Boxplots describe the ‘variance accounted for’ (%VAF) across subjects for the 

three different blocks (Pre-CPM, red; During-CPM, blue; Post-CPM, green). Gray lines represent the individual 

responses.  For the three different situations, the minimum number of module synergies that was considered for the 

population tested was two. 
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Time-varying coefficients 

Figure 4 displays the two module synergies (Module I and II) for the three experimental blocks. 

Module I displayed an early component that presented a maximum amplitude around 90-110 

ms. Module II displayed a late component with a latency onset around 120 ms and a maximum 

amplitude around 140-220 ms. 

For Module I, a significant decrement of the time-varying coefficient was found in the time 

interval between 118-156 ms During-CPM in comparison with Pre-CPM. In other words, subjects 

had a smaller activation of Module I when they kept their hand in the ice-cold water bath in 

comparison with when they had their hand immersed in the lukewarm bath at the beginning of 

the experiment. Furthermore, a significant decrement of the time-varying coefficient was found in 

the time interval between 187-222 ms Post-CPM in comparison with Pre-CPM. Thus, subjects 

had a smaller activation of Module I when they had their hand immersed in the lukewarm bath, 

after the conditioning block, in comparison with the beginning of the experiment. 

For Module II, a significant decrement on the time-varying coefficient was found in the time 

interval between 150-250 ms During-CPM in comparison with Pre-CPM. In other words, subjects 

had a smaller activation of Module II when they had their hand in ice-cold water bath in 

comparison with lukewarm water bath. No further significant effects were found. 
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Fig. 4 Module Synergies - Time varying coefficients. Figure describes the two found module synergies 

decomposed in the time varying coefficients for the three different blocks (Pre-CPM, red; During-CPM, blue; Post-

CPM, green). Gray lines represent the subject individual activations coefficients, full colored lines represent the 

median and the shades indicate the 25-75 percentile. Module I:  A decrement in the time-varying coefficient was 

found between 118-156 ms post-stimulus interval (p-value is shown in black full line), when participants were 

subjected to the conditioning stimulus. In addition, an after-effect can be seen between 187-222 ms post-stimulus 

interval (p-value is shown in black slashed line). Module II: Due to the conditioning, a decrement in time-varying 

coefficient was found between 150-250 ms post-stimulus interval (p-value is shown in black full line), no further 

significant effects were found.  
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Muscle weights 

For Module I, a significant main effect of Muscle was found (FG-G (3,33) = 21.531, p < 0.001), 

whereas no further differences were found due to Condition or interactions. The post-hoc 

analysis showed a minor level of contribution of the RF muscle in comparison with the 

contributions of TA (p < 0.001), SOL (p < 0.001), and BF (p < 0.001) muscles (Fig. 5, A).  

For Module II, a significant main effect of Muscle was found (FG-G (3,33) = 15.659, p < 0.001). A 

post-hoc analysis indicated a predominant contribution of RF muscle in comparison with the 

contributions of TA (p < 0.001), SOL (p < 0.001), and BF (p < 0.05) muscles. In addition, the BF 

muscle presented a higher level of contribution compared to the TA muscle (p < 0.01). The 

analysis showed no further differences due to Condition or Interactions (Fig. 5, B). 
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Fig. 5 Module Synergies – Muscle weights. Boxplots describes the two module synergies found (Module I and II) 

decomposed in the muscle weights for the three different blocks (Pre-CPM, red; During-CPM, blue; Post-CPM, 

green; gray dots indicate the subject individual weights), for the four muscles analyzed (TA, SOL, BF and RF). (A) 

The muscles weights analysis showed a minor contribution of RF muscle in comparison with the rest of the 

involved muscles (p < 0.001). (B) The muscles weights analysis showed a predominant contribution of RF muscle 

in comparison with TA (p < 0.001), SOL (p < 0.01) and BF (p < 0.05) muscles. In addition, a higher contribution of 

BF muscle was observed in comparison with TA (p < 0.01) muscle. 
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Muscle Patterns and Reconstructed EMG 

The RMS of the individual muscle patterns for each module synergy are shown in Figure 6. The 

RMS analysis of the muscle patterns of Module II showed a significant main effect of Condition 

(Χ2 = 9.50, p Bonferroni-corrected = 0.035) over the reconstructed pattern of the RF muscle. A post hoc 

analysis indicated that, in regards to the Module II, the RF muscle activation was smaller when 

subjects were under the conditioning stimulus (p < 0.01). No further differences were found. 

 

Fig. 6 RMS of the individual muscle patterns per module synergy. Lines describes the average and error bars 

represent the 95% CI of the RMS of the muscle patterns, per muscle (TA, SOL, BF and RF), for the two module 

synergies found (Module I, dark green; Module II, orange) and for each of the experimental blocks (Pre-CPM, During-

CPM and Post-CPM). The RMS analysis indicated a significant decrement of the RMS size of the RF muscle pattern 

for Module II, when subjects were exposed to the conditioning stimulus (p < 0.01). 

 

 

Figure 7 shows the individual muscle patterns (A) that were part of each synergistic module 

(Module I and II), together with the reconstructed EMG (B) for each muscle. A significant main 

effect of Condition was found for the BF (Χ2 = 10.17, p Bonferroni-corrected = 0.025) and RF (Χ2 = 

14.00, p Bonferroni-corrected = 0.004) muscles in the RMS of the reconstructed EMG. A post hoc 

analysis showed that the NWR was smaller in the BF (p < 0.05) and the RF muscles (p < 0.01), 

when subjects kept their hand in the ice-cold water bath in comparison with when they had their 

hand immersed in the lukewarm bath at the beginning of the experiment. Furthermore, the NWR 
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of the RF muscle was also smaller (p < 0.05) when subjects had their hand immersed in the 

lukewarm bath, after the conditioning block, in comparison with the beginning of the experiment. 

The analysis showed no further differences. 

 

Fig. 7 Muscle patterns and reconstructed EMG. Figure describes the individual muscle activation patterns for 

two module synergies found (A) and the reconstructed EMG (B), for the three different blocks (Pre-CPM, red; 

During-CPM, blue; Post-CPM, green; full colored lines represent the median and the shades indicate the 25-75 

percentile), for the four muscles analyzed (TA, SOL, BF and RF). The RMS analysis of the reconstructed EMG 

showed a significant decrement on BF (p < 0.05) and RF (p < 0.01) muscles when subjects kept their hand in cold 

water in comparison with the Pre-CPM block. Furthermore, a significant decrement of the RF activity (p < 0.05) was 

found when subjects kept their hand in lukewarm water in comparison with the Pre-CPM block. TA and SOL 

muscles did not show significant differences between blocks.  
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DISCUSSION 

This study aimed to characterize the withdrawal pattern of lower limb during CPM. A muscle 

synergy analysis was performed based on the activation two distal (TA and SOL) and two 

proximal (RF and BF) muscles. Results indicate that the NWR response to electrical stimulation 

on the sole of the foot can be reconstructed by a linear combination of two muscle synergies 

(Module I and II). Module I presented an early activation profile with a maximum amplitude 

around 90-110ms, which included a minor contribution of RF muscle in comparison with the 

other muscles. On the contrary, Module II presented a late activation profile with a maximum 

amplitude around 140-220ms, which included a major contribution of RF muscle in comparison 

with the other muscles and a higher muscular contribution of BF muscle in comparison with TA 

muscle. Additionally, results suggest a differential modulatory effect on these synergies during 

CPM. Module I presented a significant reduced activation amplitude in a narrow time-window 

interval (118-156ms), whereas Module II presented a significant reduced activation amplitude in 

a wider time-window interval (150-250ms) under CPM. Furthermore, the analysis of the 

activation of the individual muscle patterns showed that the later activation of the RF was the 

most modulated reaction during CPM. Finally, the results suggest that the descending inhibitory 

drive affects mainly the muscles implicated in the knee and hip flexion. 

Assessment of Conditioning Pain Modulation 

Since Le Bars et al. in 1979 first described the ‘pain-inhibits-pain’ phenomenon in animals, 

named diffuse noxious inhibition control (DNIC), several experimental studies have investigated 

its behavioral correlate in humans, named CPM. These studies have consistently shown that a 

heterotopic noxious conditioning stimulus produces an inhibition of the spinal nociceptive 

reflexes (Willer et al., 1984, 1989; Le Bars et al., 1991; Terkelsen et al., 2001; Serrao et al., 

2004; Biurrun Manresa et al., 2014). This modulation of the excitability of the nociceptive system 

at spinal level is believed to target mainly wide dynamic range (WDR) neurons in the dorsal horn 

(Schouenborg and Dickenson, 1985).  

The role of neurotransmitters such as opioids and amines in spinal and supraspinal systems 

under CPM is still under debate. Literature showed mixed results about the role of the 

opioidergic system in CPM (Suzan et al., 2013). While some studies reported that administering 

an opioid antagonist (i.e. naloxone) can block the CPM effect (Willer et al., 1990; Sprenger et al., 

2011), other studies did not find such effects (Peters et al., 1992; Edwards et al., 2004). A 
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possible explanation for the differences might be the type of CS paradigm employed to elicit 

CPM.  

The assessment of the NWR size of the BF muscle indicated an inhibition during CPM. Thus, 

during the CS, a depression of the reflex size was observed, suggesting that the descending 

inhibitory mechanisms of CPM were triggered. Furthermore, the BF response measured 5-7 min 

after the CS was not significantly different from the response at beginning of the experiment, 

which indicates that the obtained effect was due to the conditioning rather than a general 

habituation of the NWR. 

Noteworthy, four out of the sixteen tested subjects in the present study were considered CPM 

non-responders and therefore were excluded for the synergy analysis. Those subjects 

presented an enhancement of the NWR RMS under the CS, instead of a decrement or an 

absence of the response. Similar observations have been reported for the CPM paradigm in 

healthy subjects, where ~10% of CPM non-responders was found (Locke et al., 2014). A more 

recent report states that the number of non-responders using CPT as CS for CPM paradigm was 

between 11.5% and 46.2% of the tested subjects, across different test stimuli, and depending on 

the definition of CPM the quantity of non-responders could raise up to 75% (Vaegter et al., 

2018). Still, it is likely that there is a continuous spectrum of the magnitude of the CPM effect, 

which is probably dependent on the individuals’ variability and the CPM paradigm employed 

(Kennedy et al., 2016). Interestingly, it has been proposed that subjects displaying low-efficiency 

CPM could express a higher pain phenotype, which could lead to a higher risk of developing 

chronic pain (Yarnitsky et al., 2014). Studying CPM is relevant because CPM impairments have 

been speculated as mechanisms involved in the chronification of pain (Yarnitsky, 2010).  

Interpretation of the NWR synergies 

The present reflex observations suggest that at least two synergies are needed to describe the 

withdrawal pattern of the leg due to nociceptive stimulation on the arch of the foot, reconstructed 

from the activity of two distal (TA, SOL) and two proximal (BF, RF) muscles. These synergies 

were identified within the late - nociceptive - component interval of the reflex (RIII, 60-250 ms), 

and are differentiated by the time activation profiles but also the specific muscle contributions. 

Module I mainly presents an early component with a latency onset starting at 60 ms, and a 

maximum activation response within 90-110 ms after stimulation onset. This module had a major 

contribution of the TA, followed by the SOL and BF with negligible activity from the RF. On the 
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other hand, Module II presents a late component with a latency onset at 120 ms and a maximum 

activation response between 140-220 ms after stimulation. This module presents a major 

contribution of the RF and BF followed by activation of the SOL, with negligible activity from the 

TA.  

The time activation of these two synergies well corresponds to the temporal profiles of EMG 

activity of muscles involved in the NWR that were reported in previous studies. In these studies, 

the NWR was generally dissociated into an early (50 to 120 ms) and a late (120 to 200 ms) 

reflex component (Grimby, 1963; Shahani and Young, 1971; Willer, 1977; Meinck et al., 1985; 

Roby-Brami and Bussel, 1987; Dowman, 1991). In addition, the contribution of each muscle (i.e. 

weights) to the two synergies seems to be in agreement with the activation pattern  the different 

muscles have in the two reflex components reported in the literature (Sonnenborg et al., 2001). 

Specifically, the TA muscle (a distal dorsal flexor) generally presents a single burst of activity 

with an onset latency that corresponds to the early component of the NWR (Arguissain et al., 

2015), whereas the SOL muscle (a distal ankle extensor) presents a clear double burst with 

onset latencies that correspond to the early and late components, respectively (Andersen et al., 

1999). Furthermore, the BF usually presents a single burst that extends across the time window 

of the two reflex components (Willer et al., 1989), whereas the RF muscle (a proximal hip flexor) 

has a single burst that is present in the late stage of the reflex (Roby-Brami and Bussel, 1987; 

Decchi et al., 1997). Altogether, the two synergistic modules could be interpreted as the muscle 

group actions that are involved in the biomechanical reaction to a noxious stimulus on the 

medial part of the plantar side of the foot (Andersen et al., 1999). Particularly, Module I may 

characterize the immediate protective reaction to the noxious stimulus, preferentially involving 

distal joints (i.e. a recruitment of the TA muscle for the dorsiflexion of the foot and a recruitment 

of the SOL muscle for the stabilization of the ankle joint). In addition, the substantial activation of 

the BF muscle seen for Module I might indicate an early knee-flexion, as a limb preparation. 

Alternatively, Module II may characterize the withdrawal reinforcement, preferentially involving 

proximal joints (i.e. a recruitment of BF muscle for a stabilization of the knee joint and a 

recruitment of the RF muscle for a hip-flexion). Moreover, the high activation of the SOL muscle 

seen for Module II might suggest the unloading of the ankle joint. 

CPM effect on NWR synergies 

A substantial depression of the time activation of Module II was observed under CS. This 

modulation was detected between 150-250 ms, comprising the area of maximum activation 
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response for this synergy module component. The effect observed in Module II, which 

preferentially comprises the activation of proximal muscles, is in line with previous studies that 

investigated descending modulation of spinal excitability with the BF activity as main outcome 

measurement (Willer et al., 1984, 1989; Le Bars et al., 1991; Terkelsen et al., 2001; Serrao et 

al., 2004; Biurrun Manresa et al., 2014). Additionally, the time activation of Module I, which 

preferentially comprises the activation of distal muscles, was partially affected during CS. 

Noteworthy, the latter modulation was observed in the transition interval between the maximum 

amplitude of the two synergistic modules (118-156 ms), whereas the maximum activation 

response interval (90-110 ms) for this module remained unaffected. To the authors’ knowledge, 

there are no previous studies that investigated the CPM effect in distal muscles in humans. 

Nevertheless, studies in animals have reported that NWR of different hindlimb muscles could be 

differentially modulated by descending pathways activated by a distant noxious stimulus 

(Kalliomäki et al., 1992; Morgan, 1999). Particularly, while the CS inhibited the NWR in the 

majority of hindlimb muscles, reflexes in e.g. the plantar flexors of the digits were facilitated 

(Kalliomäki et al., 1992). This mechanism presumably reduces the chance of tissue damage by 

keeping the withdrawal capacity and escape reactions (Morgan, 1999). 

A second possible explanation for the differential modulation of the modules time activation 

relates to the different types of afferents that mediate the NWR. In the literature, the nature of 

the different components of the NWR has been extensively discussed (see Sandrini et al. 2005 

and Andersen 2007 for a review). Previous studies have described an early, inconstantly 

present component (RII, 40 – 60 ms) which is mediated by low-threshold, non-nociceptive Aβ-

fibers. The late, always present components are mediated by nociceptive Aδ-fibers (RIII, 60-250 

ms). Nevertheless, it is possible that both A and A afferent activity contribute to a different 

degree to the elicitation of these responses (Arcourt et al., 2017). In this study, the RII response 

was not included in the analysis due to its reported inconsistency (Hugon, 1973; Willer, 1977; 

Sandrini et al., 2005). Still, the NWR pattern presented an activity burst in the 60-250 ms time 

window, which was decomposed into two components by means of the synergy analysis. 

Therefore, the observed modulation of the Module II due to CS suggests that the late 

component of the NWR has a larger contribution of Aδ-fibers that are subjected to endogenous 

inhibitory modulation. Yet, further studies are still needed to clarify and identify the co-activation 

of these fibers. 
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Furthermore, the muscle weights showed no significant changes for either module due to CS. 

The fact that the muscle contributions were not modulated by CPM corroborates the modular 

organization nature of the withdrawal reflex suggested by Schouenborg and colleagues 

(Schouenborg and Kalliomäki 1990). The modular organization of the NWR, defined in terms of 

muscle synergies, has been previously described in animals (Tresch et al., 1999).  

Notably, despite of the RMS analysis of the individual muscle patterns that showed only a 

significant difference for RF muscle for the Module II (Fig. 6), the analysis of the reconstructed 

EMG showed a significant decrement of the BF and RF muscles activity during the conditioning 

stimulus (Fig. 7).  Noteworthy, the reconstructed EMG considers the combination of the muscle 

patterns from Module I and Module II. These observations suggest a complex interaction 

between the neural drive exerted into the spinal cord and the encoded muscle weights, where 

minor variations in the individual muscle patterns could result in a large effect of the complete 

muscle activity, ending in different degrees of withdrawal. It is the first time that the NWR is 

studied by means of synergistic analysis in humans. This analysis provided an integrative 

overview of the individual muscles acting together to achieve a common goal, and how the 

interaction of the activation time and the muscle contribution could involve a differential 

modulation of the net withdrawal.  

Altogether, the synergy analysis reveals that the supraspinal inhibition exerted onto the spinal 

cord may differentially affect the muscles involved in the withdrawal pattern. The present results 

indicate that the proximal muscles might be more susceptible to supraspinal modulation (Fig. 7).  

Therefore, in potentially dangerous situations where pain could compromise escape, the 

nervous system may activate and balance the most efficient withdrawal pattern by differentially 

modulating the muscles to protect the tissue but still allowing escape reactions. The net reflex 

result reflects a hierarchical system in which the withdrawal pattern is established based on the 

available muscle synergies that generate a specific reaction (Bizzi et al., 2008); this system is 

under a complex differential descending control that reduces the chances of tissue injury in 

situations of multiple noxious inputs (Morgan, 1999). 

Prospective neural mechanisms 

Results in this study suggest that the withdrawal reaction was adjusted by descending inhibitory 

drives exerted onto the spinal cord during CPM. Studies in animals suggest that the modulation 

of the excitability of the nociceptive system at spinal level targets mainly wide dynamic range 
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(WDR) neurons in the dorsal horn (Schouenborg and Dickenson, 1985; Kalliomäki et al., 1992).  

Since monosynaptic Ia reflexes are not altered by a conditioning stimulus, these inhibitory 

effects are presumably exerted on some (not all) WDR neurons that are intercalated in the 

withdrawal reflex pathways (Kalliomäki et al., 1992). Interestingly, spinal interneurons also play a 

significant role in the activation of synergistic motor modules. By means of multi-electrode 

recordings in the spinal cord of spinalized frogs, Hart and Giszter (2010) showed that certain 

sets of interneurons are likely responsible of organizing individual spinal motor primitives.  Taken 

together, it is possible that the differentiation between the recruitment of muscles (or group of 

muscles) during the elicitation of the NWR might happen at the WDR neurons, where the 

different synergistic modules are weighted according to several factors (i.e. supraspinal 

excitability, posture, etc.). Still, the specific spinal reflex pathways where the synergistic modules 

are imprinted for individual muscles in humans remain unknown. 

Methodological considerations 

In the present study, only four muscles were selected to perform the synergistic analysis of the 

reflexes elicited by electrical stimulation on the arch of the foot. This might be a low number of 

muscles to perform a synergy analysis. Steele and co-workers (2013) have indicated that the 

number of muscles under analysis entails an important factor in the identification of the number 

of module synergies involved, where the analysis of a subset of few muscles could lead to an 

over-estimation of the variance accounted for, resulting in a fewer module synergies selected. 

However, the authors suggest a few methodological strategies to account for a small number of 

muscles. For instance, selecting a subset of muscles where the large and dominant muscles are 

included could help to decrease the sensitivity of synergies to experimental constraints such as 

a few number of muscles being measured (Steele et al., 2013). In this study, the four muscles 

were selected based on the biomechanical functions of those muscles acting across the three 

principal joints in the lower limb. In a seated position (Fig. 1), a noxious stimulus coming from the 

arch of the foot generally produces a withdrawal of the limb towards the core of the body. This 

withdrawal assumes a dorsiflexion of the ankle joint along with a possible flexion of the knee and 

a further flexion of the hip (i.e. a dorsi-flexor (TA) and a plantar-flexor (SOL); a knee-flexor (BF) 

and knee-extensor (RF); and hip-flexor (RF) and a hip-extensor (BF)) (Andersen et al., 2001). 

Still, the effect of the conditioning stimulus (i.e. CPT) was evaluated on the same subset of 

muscles, providing new insights into how supraspinal modulation affects the motor programs 

encoded in the spinal cord. 
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