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Abstract—Condition monitoring of rolling element bearings 
is of vital importance in order to keep the industrial wheels 
running. In wind industry this is especially important due to 
the challenges in practical maintenance. The paper presents an 
attempt to improve the capability of prediction of remaining 
useful life of rolling bearings. The approach is based on the 
understanding of the wear of bearings i.e. wear modelling is 
briefly discussed. A simulation model has been built to produce 
vibration data of the monitoring of rolling bearings taking into 
account typical vibration excitations in addition to the wear. 
The simulation model is used to develop signal analysis 
methods and means of prognosis of the remaining useful life. 
One complete example of the above described process is shown 
and discussed in the paper. 

Keywords—rolling element bearing, condition monitoring, 
vibration measurements, signal analysis, diagnosis, prognosis, 
remaining useful life 

I. INTRODUCTION 

Rolling element bearings (REBs) are the most 
vulnerable mechanical components in rotatory machines. 
Failures of REBs decrease the availability of relevant 
equipment, which may cause economic loss. To deal with 
this issue, researchers around the world have proposed many 
techniques to predict the evolution of damage; have 
constructed tools to predict the remaining useful life (RUL), 
and finally have developed preventive strategies for 
operation and maintenance (O&M). The primary objective 
of this paper is to review some commonly used diagnosis 
and prognosis approaches for REBs, to propose some tailor-
made evaluation procedures especially suitable for 
engineering applications, and to do a case study to validate 
the procedures.  

A. Literature Review 

The diagnosis and prognosis of REBs can be done from 
three perspectives, i.e. physics-based method (Method 1), 
data-driven method (Method 2) and the combined physics-
based and data-driven method (Method 3). This paper will 
focus on the application of Method 3.  

A physical model (also commonly known as degradation 
model) refers to a model that can physically characterize the 
real deterioration of the mechanical components in a 
qualitative or quantitative manner. An example is for 
instance the Paris-Erdogan law, which has become rather 
popular due to its good performance in characterizing the 
crack propagation. The Paris-Erdogan model is based upon 

a ‘direct’ damage indicator, i.e. damage size. For a REB, the 
damage indictor may, however, not be necessarily the crack 
size. 

A general form of damage could be defined here for the 
extension of Paris-Erdogan law, e.g. for spalling areas or 
pitting. Some researchers have proposed a modified Paris-
Erdogan [1, 2]. In principle, a physical model should be 
constructed based upon mechanics analyses and the 
measurement and inspection information either from the real 
in-service REBs or from full-scale laboratory tests. A 
physical model based upon the direct damage indicator has 
advantages over data-driven methods, as for instance it can, 
once it has been derived, straightforwardly explain the 
failure mechanism and quantify the damage evolution. 
Unfortunately, commonly such a model is difficult to put 
into practice, as for instance, the real damage sizes of REBs 
during their lifetime are rarely known or available in 
practice. What is even worse, the results from full-scale 
laboratory tests are commonly not applicable to engineering 
practices. Therefore, efforts should be put in selecting some 
useful indirect damage indicators. Often, vibration signals 
have been successfully put into practice for diagnosis and 
prognosis for many years. As a forerunner of the application 
of vibration signals, Gebraeel developed a general 
degradation model which follows an exponentially varying 
law based upon the observations of deterioration of REBs 
[3, 4].  

You and Meng applied the degradation model proposed 
by Gebraeel for predictive maintenance scheduling for 
mechanical components [5]. Following the principles 
proposed by Gebraeel, various researchers adopted this 
degradation model to predict RUL of mechanical 
components. For instance, Li et al. adopted the main ideas 
proposed by Gebraeel but modified the probabilistic 
distribution of the model parameter to a Gamma distribution 
to fit the vibration signals of their cases. With the updated 
model parameters, they estimated the probabilistic 
distribution of the RUL [6]. Si et al. first constructed a 
general stochastic process-based degradation model and 
presented a degradation path-dependent approach for 
adaptive RUL estimation via real-time condition monitoring 
data [7].  

Over the last decade, data-driven methods have got large 
attention, as they allow for RUL prediction without the 
necessity to exactly understand the failure mechanisms. 
Commonly used data-driven methods include: Artificial 



Neural Networks (ANN), Hidden Markov Models (HMM), 
Genetic Algorithms (GA), Support Vector Machines 
(SVM), as well as many others. We mention that the HMM 
has for instance been combined with degradation modelling 
in engineering applications; i.e. in [8] Prakash, Narasimhan 
and Pandey adopted the degradation mode proposed by 
Gebraeel and generated virtual degradation vibration signals 
as testing data for pre-trained HMM to do prognosis and 
maintenance for bearings and predict the RUL of low-speed 
bearings.  

B. Scope of Work 

This paper aims to propose procedures to do diagnosis 
and prognosis for the industrial operators. Therefore, based 
upon the basic concept of the degradation model proposed 
by Gebraeel, a degradation model is constructed by 
performing simplified trend analysis and curve fitting. The 
results will be further validated by statistical analyses on 
(high-pass filtered) vibration signals as well as expert 
judgement. 

The outline of this paper is as follows: Section 1 presents 
a short literature review and a brief comparison between 
commonly used approaches. In Section 2 a brief 
presentation of wear of REBs and an illustration of typical 
wear processes of REBs are given. In Section 3 Simulation 
model the presentation of dynamic analysis model used to 
generate raw vibration signals is given. Section 5, Signal 
analysis and fault diagnosis, presents the simplified short-
term trend analysis and the statistical analysis of high 
frequency vibration components performing diagnosis of the 
unhealthy bearing and prediction of RUL based upon trend 
analysis and expert judgement. Section 6 Discussion 
summarizes some of the weaknesses and strengths of the 
presented approach. Section 7 presents a short conclusion. 

II. WEAR OF ROLLING ELEMENT BEARINGS 

Bearing wear typically begins with normal cyclic 
loading, mainly vibration. This results in a phenomenon 
called fretting, where small amplitude, localized and 
tangential motion occurs between any of the three pairs of 
surfaces in relative motion to one another. With the 
lubricant forced away from the contact area, local and 
permanent changes begin to take place. These changes 
include, loose oxidized and relatively hard particles, 
exposed and hard surface asperities and surface fatigue. As a 
result, the surfaces will experience micro pitting called false 
brinelling. 

The resulting failure processes can be divided into two 
categories: surface and sub-surface failures, based on their 
location. Since the material is at least somewhat fatigued 
and continues to be perturbed during bearing rotation, 
material failures tend to occur. Having hardened surfaces to 
protect against wear, faults cracks and other material 
failures typically initiate in the sub-surface region. 
However, failures located either on the surface or very close 
to it, are also common. In addition to surface and sub-
surface rolling contact fatigue initiated failures, all regular 
failure mechanism are also relevant in bearing operation. 
These include for example: real brinelling, corrosion and 
manufacturing errors, among others [9]. 

The wear process in bearings, which eventually leads to 
failure, can be divided into five stages [10]. In the initial 

stage the formation of dents occurs. This is commonly 
increased by poor operating conditions, such as 
inappropriate lubrication and contamination. The dents are 
then further reshaped and evolve into defects. Next, the 
defects grow in size and propagate. This is followed by 
spalling of the material and damage growth. Finally, the 
process ends in bearing failure. The whole process is 
depicted in Fig. 1. 

 

Fig. 1. The evolution of bearing wear, from [10] 

III.  SIMULATION MODEL 

A simulation model has been created in order to be able 
to produce vibration acceleration data for testing and 
development of different kind of diagnosis and prognosis 
tools for the detection of bearing faults and the prediction of 
the remaining useful life. The simulation model can handle 
unbalance, misalignment, cage, outer, and inner race faults 
and can also introduce noise into the measuring signals.  

A. Unbalance 

Unbalance is usually considered as very easy to simulate 
since only a sinusoidal signal needs to be introduced at the 
running speed. Naturally, the height of the amplitude of the 
signal depends on the amount of unbalance there is. It is 
possible that some other excitation takes place at the 
running speed and possibly at a different phase. In this paper 
the applied model simply covers the basic unbalance and no 
harmonic components that might be caused by for instance 
the blades although easy to introduce, are not considered.  

It should be noted that the unbalance acts as an exciter 
for misalignment and bearing faults i.e. if there would be no 
unbalance or any other excitation in the rotating system, 
there would not be any loading on the bearings and 
consequently no wear. Also, misalignment gets the original 
excitation from other root causes.  

B. Misalignment 

If unbalance is the most common fault type in rotating 
machines then misalignment is the next most common. The 
problem with misalignment is that it increases the loading of 
bearings and thus can be the root cause of bearing failures. 
When condition monitoring is carried out based on vibration 
measurements, it is commonly known that the harmonics of 
the rotation speed in the vibration spectrum reveal the 
presence of misalignment. What is not so widely realized is 
that there are actually not really harmonic components 
acting as loads due to misalignment, but that it is a feature 
of the Fourier Transform to show somehow “twisted” 
signals i.e. signals that are not purely sinusoidal with these 



harmonics of the rotational speed [11]. In the simulator the 
misalignment fault is created by flattening the originally 
sinusoidal signal on one side based on the idea that in case 
of misalignment the bearing is pressed on one side and thus 
the vibration is not symmetric. The end result is naturally 
that we see these harmonics of the rotational speed in the 
spectrum just as expected.  

C. Bearing faults 

In the previous section the wear of rolling element 
bearings has been described. From the simulation point of 
view it is important to take into account the first natural 
frequency of the bearing structure in question i.e. outer inner 
race etc. The impact that is the result of the rolling element 
hitting the fault i.e. geometrical change of the race way 
excites the bearing vibration at the first natural frequency. 
The natural frequency is a function of the bearing geometry 
and the larger the bearing, the lower the frequency. In case 
of small bearings that are used in laboratory tests, it might 
be over 10 kHz and in case of large bearings that can be 
found in wind turbines, it might well below 1 kHz. 
Typically, vibration measurement equipment are tuned for 
envelope detection at frequencies from 1 kHz to 5 kHz. 

When the bearing fault is tiny, it is typically very sharp 
at edges and consequently causes a very clearly seen impact. 
However, when it increases in size the impact is not sharp 
anymore and can actually consist of a number of impacts. 
The simulation of the bearing takes into account the size of 
the bearing and the phase of the development of the fault. 
Detailed data of the bearing that has been simulated is 
shown in Table I. However, the current version of the 
simulator does not fully take into account the parameters 
that have been indicated with grey background. Instead, 
these are assumed to be typical representative values. 
Naturally, there is a lot of variation in the development of 
bearing faults and thus the simulator has some features built 
into it. 

TABLE I.  PARAMETERS OF THE BEARING IN THE SIMULATION 

Rotor mass 0.6 kg 

Rotor speed 2000 rpm 

Damping 200 Ns/m 

Inner Race Diameter (Di) 
49.912 mm 

Outer race diameter (Do) 
80.088 mm 

Pitch diameter (D) 65 mm 

Ball diameter (d) 15.081 mm 

Radius of curvature of the outer ring raceway (ro) 
8.01 mm 

Radius of curvature of the inner ring raceway (ri) 
7.665 mm 

Number of balls (Z) 8 

Contact angle  0o 

Radial clearence 0.005 mm 

D. Noise 

When vibration measurements are made there is always 
noise present. It can come from the same machines or other 
machines, measuring electronics etc. but the problem is that 
the noise always makes it more difficult to detect the signals 
that indicate wear. In order to make the simulation 

correspond to reality additional noise is introduced to the 
simulated measuring signal. Naturally, the type and amount 
of noise can be tuned. One special use for the noise is in the 
testing of cheap sensor and measuring solutions. The noise 
level can be tuned according to the technical specification of 
the measuring equipment and the cheap solutions can be 
tested against more sophisticated equipment in order to see 
how early the indication of bearing wear can be seen with 
each of these measuring solutions. 

Virtual vibration simulation of a bearing was done to 
generate the time series of vibration signals. The bearing 
used in [12] was selected for this case study. The duration of 
this simulation is about 6.5 years. The parameters are listed 
in Table 1. The average load amplitude is 20 N with ±10% 
deviation. The average running speed is 2000 rpm with 
±10% deviation. A total of 99 data files were collected, with 
each data file representing 0.2 seconds of vibration signal. . 

The time dependent development of the bearing fault 
was introduced based on the experience gained from 
laboratory tests with a set of four bearings that were run to 
failure in accelerated bearing tests [13]. The idea was to 
introduce such a development of the fault that the indirect 
condition monitoring methods would show similar 
development with simulated data and laboratory data. 
Unfortunately, even though bearings are widely monitored 
in the industry not a lot of data has been made available that 
could be used to study the whole life span of a bearing. The 
natural reason for this is that the lifetime typically is very 
long thus making it challenging to keep the records 
available for the whole lifetime. However, the simulated 
wear development can be claimed to resemble that of real 
bearings especially when the end of the lifetime is studied 
i.e. when there are indicators revealing the presence of a 
fault.  

In Figs. 2 and 3 two examples of simulation are shown. 
The time data presented in figure 2 shows the bearing in 
good condition without any indication of an upcoming 
failure, whereas in figure 3 the time data is taken from the 
period when the bearing is very close to collapsing totally. 
This wear can be seen as spikes in figure 3. 

 

Fig. 2. Time domain vibration of a faultless bearing 

IV. SIGNAL ANALYSIS AND FAULT DIAGNOSIS 

When signal analysis is carried out in order to detect the 
presence of a fault, it is logically important that the chosen 
signal analysis techniques are able to separate noise and 



other influencing factors from the features that reveal the 
presence of faults. Clearly in the case of REB faults it is of 
highest importance that the used technique can detect the 
influence of the impacts described earlier in this paper. One 
principal problem in doing this is that the impacts do not 
take place at constant intervals due the variation between 
sliding and rolling in a rolling element bearing. This basic 
challenge has been the reason why envelope detection has 
become so popular. The Hilbert transform that is carried out 
in connection with envelope detection simply helps in 
handling this issue. The small differences in the interval of 
the impacts become meaningless and also the type of the 
fault i.e. outer or inner race etc. can be defined through the 
use of spectrum analysis in the case of the time domain that 
has been passed through the Hilbert transform.  

 

Fig. 3. Time domain vibration of a faulty bearing 

A. Peak envelope 

As mentioned in the introduction, a combination of 
physical modelling (degradation model) and statistical 
analysis will be used to do diagnosis and prognosis for a 
specific case as briefly presented in Section IV.  

An optimal selection of damage indicators is very 
important to construct a degradation model. Generally, there 
are many vibration features to choose from. Possibly, some 
damage indicators might only predict the faults under well-
controlled testing conditions in laboratory. According to 
engineering experience, the difference of consecutive 
vibration signals is used as a damage indicator and a 
threshold value of two is applied. Pre-processing of the 
damage indicator time series is briefly described below: 

 Envelope analysis [12, 14] of the damage indicator 

time series; 

 Simplified trend analysis for the envelope of the 

damage indicator time series to predict the short-

term trend with consideration of 95% confidential 

interval, by using the Matlab Curve Fitting toolbox 

[15].  

A sensitivity study was performed to determine the 
optimal number of data points used for envelope analysis. 
According to the results, 2000 data points could be an 
optimal option. In order to give a higher resolution plots, the 
envelope of the damage indicator was truncated (i.e. 1st to 
58th data sets were truncated), as shown in Figure 4. It was 
noticed that the envelope fluctuated around a horizontal line 

over the initial 70~80 percent of time duration; an increase 
in envelope amplitude was observed from around the sample 
point No. 6.3×105 (around 2106 days from the start of 
operation); afterwards, the envelope increased significantly 
and finally went down which might mean the bearing failed. 
In this case study efforts were given to long-term trend 
prediction, however, the results of curve fitting may be only 
more applicable to a shorter period of time ahead of the 
failure. The envelope time series was fitted to an 
exponential law, i.e.  

𝑦 = 𝑎𝑒𝑏𝑡     (1) 

The means of a and b are 0.6027 and 1.848× 10-6, 
respectively. The 95% confidential intervals of a and b are 
[0.6, 0.6055] and [1.84×10-6, 1.857×10-6], respectively.  

 The fitted curve, as well as its 95% confidential interval, 
is shown in Fig. 5 and Fig. 6. According to the envelope 
curve, the first passage to the threshold seemed to be around 
the sample point No. 1.6×105 (around 535 days from the 
start of operation). Expert judgement shall be adopted 
together with the trend analysis results to determine whether 
it is necessary to conduct NDT inspections to prevent 
catastrophic outcome. According to the fitted trend curve, 
the first passage was around the sample point No. 6.4×105 
(around 2136 days from the start of operation) 

 

Fig. 4. Envelope of the damage indicator 

 

Fig. 5. Fitted exponential trend. Enlarged view of the black rectangular box 

is shown in Fig. 6. 

 

Fig. 6. Enlarged view of the trend 



B.  Kurtosis of High Frequencies 

In this section, the presence of a bearing fault is 
diagnosed by monitoring the kurtosis of the high frequency 
vibration signal. We start, however, by analysing the 
vibration signal for four samples in slightly more depth. One 
of the samples relates to the healthy state of the bearing 
(Sample 7) and the other three samples relate to the end of 
the life of the bearing (Samples 89, 91 and 95). We note that 
the end of the life of the bearing occurred for Sample 96. 

In Fig. 7 the raw vibration data for these four samples is 
plotted. Clearly, as previous displayed in Fig. 3, a faulty 
bearing commonly displays high frequency spikes. 
Therefore, we study the high frequency spectrum of the 
bearing in slightly more detail here. For each sample, the 
high frequency signal is obtained by subtracting the low 
frequency signal from the full signal. The low frequency 
signal is computed by averaging for each time observation t 
the vibration signal over the fifty observations before and 
after this observation and at time t itself (so over 101 
observations). In Fig. 8 the high frequency signal is plotted 
for the same samples as plotted in Fig. 7. 

 
Fig. 7. Time domain vibration signal for four samples: a) Healthy 

bearing, b-d) bearing close to end of life. The end of the life of the 

bearing occurred for Sample 96. 

 
Fig. 8. High frequency vibration signal for the four samples 

We have analyzed the high frequency signal further by 
aid of QQ-plots and by plotting the Log-kurtosis for all the 
samples. In Fig. 9 QQ-plots are shown for the high 
frequency signals of the four samples, while in Fig. 10 the 
Log-kurtosis of the high frequency signal is plotted for each 
of ninety-six samples. 

Fig. 9 shows that for the Samples 7 and 89 the high 
frequency signal is normally distributed around its mean of 
zero, while for samples 91 and 95 the high frequency signal 
displays many more observations in the tail of the 
distribution than expected for a Normal distribution. 
Further, from Fig. 10 we observe that the Log-kurtosis of 
the Samples 91 to 96 show excessively large values (all 
above 2), while also the samples 80, 86 and 90, show values 
larger than any of the first 79 observations. This implies that 
the kurtosis is possibly not only a good indicator for 
extensive bearing damage, but also for initial bearing 
damage. 

 
 
Fig. 9. QQ-plots of the high frequency vibration signal for the four samples 

 

 
Fig. 10. Logarithm of the kurtosis of the high frequency vibration signal 

plotted for each sample. 

An easily to be implemented automated strategy for 
bearing monitoring could therefore be implementing a 
Control chart (see e.g. [16]) for the kurtosis of the high 
frequency vibration signal, as implemented below in Fig. 
11. In this case we simply computed the standard deviation 
of the Log-kurtosis over the first forty samples and 
constructed the upper control limit as three standard 
deviations added to the mean (UCL= 1.13).   

 
Fig. 11. Control chart of the Log-kurtosis of the high frequency vibration 

signal. Points in red are above the upper control limit (horizontal dashed 

line). 



V. DISCUSSION 

In this study signal processing was done from two 
perspectives as presented in Section IV. First, simplified 
envelope analyses were performed to remove the effect of 
noise on the estimation of trend. Second, high frequency 
band-pass vibration signals were extracted for the statistical 
analysis of the kurtosis of this signal. According to the 
results of simplified trend analysis together with engineering 
judgement, the first passage of the signal to the threshold 
occurred at the 67th data set, while the start of the failure 
actually started from dataset 65 onwards. However, this 
rather precise observation could be due to coincidence as the 
increase in the envelope seems to be just a glitch, as not 
repeated for a long time until close to collapse (failure of the 
bearing happened at the 96th dataset). Further, the 
exponential fit is mainly influenced by the final fast, but 
very noisy, increase after 6e5 sample points in Fig. 5. 
Therefore the fit is probably not too reliable for the times 
before the strong increase in amplitude. Similar, but 
probably slightly more robust, results were gained by the 
high frequency analysis of the kurtosis. However, clearly, 
both signal analyses methods are able to detect the bearing 
fault and so the results seem promising.  

In the close future more simulated data sets of failed 
bearings will be generated in order to increase statistics and 
predictive power. By the high frequency kurtosis analysis a 
clear and easy to implement method for RUL prediction is 
envisaged. That is, from a sufficient amount of failure 
simulation datasets the plan is to deduct the probability that 
the bearing fails after time t when: a first out-of-control- 
observation has been observed; a second out-of-control- 
observation has been observed; etc. 

Finally, the main motivation for the development of the 
simulator is to provide aid in the development of remaining 
useful life prediction techniques. The researchers plan to 
further develop the simulator in order to make it mimic 
more closely the development of bearing faults and thus 
provide a tool that can easily provide a large amount of data 
for the development of more reliable and effective tools for 
the prediction of remaining useful life of rolling element 
bearings. Naturally, in the end all these findings need to be 
verified with real data. 

VI. CONCLUSION 

In order to be able to follow the Condition-Based 
Maintenance strategy it is necessary to know the condition 
of machinery. This is especially important in the case of 
wind turbines due to the challenges in carrying out practical 
maintenance work. In this paper, an approach to further 
develop the techniques for predicting the remaining useful 
life of rolling element bearings has been presented. The 
approach is based on the understanding of wear of bearings, 
through the simulation of vibration acceleration. The 
simulator provides the opportunity to get sufficient amount 
of condition monitoring data from various phases of the 
bearing life. This data can be used for the testing and 
development of sophisticated signal analysis techniques 
together with various diagnostic approaches and prognosis 
methods for the prediction of the remaining useful life. The 
complete procedure has been presented in this paper with 
one typical rolling element bearing. The example clearly 
shows how complicated and challenging the prediction of 
the remaining useful life of a rolling element bearing is. The 

results in the presented case are promising and meaningful 
but still far from optimal. It is expected that in the future the 
developed simulation model will also be further tested 
against real condition monitoring data from industry. 
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