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Investigation on thermal performance of the wall-mounted attached ventilation for 

night cooling under hot summer conditions 

Wenhui Ji a, b, Qing Luo a, b, Zili Zhang c*, Houhua Wang a, b, Tao Du a, b, Per Kvols Heiselberg d 

a Department of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China 

b Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing 400045, 

China 

c Department of Engineering, Aarhus University, Aarhus 8000, Denmark 

d Department of Civil Engineering, Aalborg University, Aalborg 9220, Denmark 

Abstract：In Hot Summer and Cold Winter Climate Zone, the cooling potential of natural/passive night 

ventilation is limited during summer due to the insignificant difference between the outdoor and indoor 

temperatures. Therefore, a novel mechanical ventilation strategy, the wall-mounted attached ventilation 

(WAV) system, is proposed in the present paper to improve ventilation efficiency of night cooling. The 

idea is that WAV can produce a downward airflow over the internal wall surface that is somewhat 

similar to a sidewall jet, so as to achieve enhanced heat transfer in the room. This paper starts with a 

series of experiments in a test chamber, and continues with thermal analysis of the heat transfer 

characteristics and heat removal performance of WAV. The performance of night ventilation with WAV 

is further evaluated in terms of ventilation efficiency index and energy performance index. It is shown 

that the overall average value of the convective heat transfer coefficient at the internal wall surface with 

WAV is 10.79 W m-2 ℃-1. With WAV, the amount of heat removed from the ventilated wall is about 

five times that in the natural night ventilation case, and the total amount of heat removed from the whole 
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chamber is twice as much. The average value of the surface cooling effectiveness of WAV is 1.48, and 

the overall coefficient of performance (COP) of WAV turns out to be 26.8. As a night ventilation 

strategy, WAV is capable to achieve good cooling performance under hot summer conditions. 

Keywords: night ventilation; wall-attached jet; convective heat transfer; heat removal; temperature 

efficiency 

Nomenclature 

a Thermal diffusivity (m2 s-1) 

A Surface area (m2) 

ACR Air change rate (ACH) 

c Specific heat conductivity (J kg-1 K-1) 

d Thickness (m) 

Fo Fourier number 

Fs,p  View factor (from surface s to surface p) (-) 

h Convective heat transfer coefficient (W m-2 K-1) 

Js Radiosity of surface s 

k Time instant 

��  Air flow rate (kg s-1) 

q Heat flux (W m-2) 

Q Heat removal amount (kJ) 

T Temperature (℃) 
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∆T Temperature difference (℃) 

Tex External surface temperature of the west wall (℃) 

Tin Internal surface temperature of the west wall (℃) 

Tinlet Inlet air temperature (℃) 

Toutlet Outlet air temperature (℃) 

Troom Room air temperature (℃) 

x Coordinate along the width of the wall 

∆x Grid size 

Greek symbols 

ρ Density (kg m-3) 

λ Thermal conductivity (W m-1 K-1) 

ɛs Emissivity of surface s (-) 

τ Time (s) 

∆τ Time step (s) 

η Effectiveness (-) 

σ  Stefan-Boltzmann constant (5.67 × 10-8 W m-2 K-4) 

Subscripts 

a air 

cond Conduction 

conv Convection 
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extr Extraction 

fan Electric fan 

rad Radiation 

surf Surface 

vent Ventilation 

w West wall 

Abbreviations 

APJ Attached plane jet 

CHTC Convective heat transfer coefficient 

CJV Confluent jet ventilation 

IJV Impinging jet ventilation 

WAV Wall-mounted Attached Ventilation 

1. INTRODUCTION 

Buildings consume more than 40% of the world’s energy and generate nearly one-third of 

greenhouse gas emissions [1]. In China, due to the policy of promoting urbanization and the 

requirement of economic development, the total floor area of buildings has reached approximately 

57.3 billion square meters in 2015, and still displaying an upward trend [2,3]. Therefore, 

environmentally sustainable strategies are expected to be applied to maintain indoor comfort with a 

low level of energy consumption. Night ventilation is an important low-energy approach to adjust the 

indoor thermal environment and to improve indoor air quality, which is both economic and 
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environmental-friendly [4][5]. Especially for office buildings, the large heat load at daytime and the 

non-occupied situation at nighttime provide a good condition for applying the night ventilation strategy. 

Night ventilation is employed to release the stored heat with cool outdoor air during the night time, and 

further to provide a certain amount of cooling capacity for the following day. Existing studies show that 

night ventilation contributes to improving the indoor thermal conditions [6–8] and reducing the 

cooling load [9], and even completely eliminating the energy consumption of air conditioning under 

proper climatic conditions [10]. In addition, the application of night ventilation is usually combined 

with thermal mass [11,12], PCM materials [13,14] and heat recovery air conditioning system [15]. 

Previous sensitivity studies reveal that the parameters that determine the night cooling effect can 

be classified into three groups, namely the climatic parameters, the building parameters and the 

technical parameters [16].  

The climatic parameters are related to the environment or climate. The climatic potential of night 

ventilation is highly dependent on the temperature difference between the outdoor air and room air 

during the ventilated hours, as well as the diurnal temperature swing which is the difference between 

maximum daytime and minimum nighttime temperature [17]. In Europe, Artmann et al. [18] propose 

the climatic cooling potential (CCP) as the index to evaluate the cooling potential of night cooling in 

all climatic zones of Europe. Results show that there is a very significant cooling potential in Northern 

Europe, while in relatively warm district night cooling is not sufficient to guarantee thermal comfort 

thus supplementary strategies are needed. In China, an earlier study [19] on night cooling in Northern 

China revealed a significant cooling potential, while in Hot Summer and Cold Winter Climate Zone 

(along the Yangtze River), the application of night cooling should be considered with caution [21,22]. 

In this Climate Zone, temperature difference between the outdoor air and indoor air during the night is 
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insignificant in summer time, making it challenging to implement night ventilation in the same way as 

in other Climate Zones. 

The building-specific parameters [23,24] are associated with the physical characteristics such as 

the building materials, the room geometry, the window types and the internal gains, et al., which 

should be taken into account when implementing the night ventilation system. Givoni [17] suggests 

that the characteristics of high-mass, good insulation and shading of a building effectively contribute 

to the cooling effect of night ventilation. For existing buildings, building-specific parameters act as 

inputs or constraints for the design/selection of night ventilation systems. 

The technical parameters, on the other hand, mainly refer to the airflow pattern, the airflow rate 

and the operation schedule of night ventilation, all of which have an influence on the heat transfer 

during night ventilation [25]. Traditionally, the common airflow pattern of mechanical night 

ventilation is cross ventilation. In the cross ventilation, which is based on Mixing Ventilation (MV) 

principle, the supply air is blended with the existing room air to ensure uniform air distribution [30]. 

Both experimental [26] and numerical [23,27] investigations have been performed on the convective 

heat transfer by the cross ventilation during the night. It provides excellent thermal comfort and large 

air-conditioned space, but often exhibits poor performance on heat removal [31]. The effects of 

enclosure shape and positions of openings on the performance of night cooling using cross ventilation 

have also been studied [28]. More recently, Landsman [29] conducted a comprehensive parametric 

study of night ventilation including the effect of ventilation schemes, with only the traditional cross 

ventilation and natural ventilation investigated. Considering that the climatic cooling potential of night 

ventilation in hot climates is limited, an alternative flow pattern, the jet flow, is considered for 

improving the cooling efficiency of the night ventilation system. 
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Previous studies on jet ventilation including Impinging Jet Ventilation (IJV) [32–35]and 

Confluent Jet Ventilation (CJV) [36–38], have proven that jet flow contributes to enhanced cooling 

effect as well as better thermal comfort. The IJV method is based on the principle of supplying a high 

momentum air jet that impinges downward onto the floor. Karimipanah and Awbi [39] carried out 

both experimental and numerical studies on the performance of the IJV system, and also compared it 

with displacement ventilation (DV) system, showing slightly better air quality and more uniform 

velocity distribution due to a better balance between the buoyancy and the momentum forces. 

Arghand et al. [40] also concluded that the higher air exchange efficiency of the corner-mounted CJV 

system is suitable for open-plan office environments. 

Furthermore, some novel jet flow methods have also been investigated. Cao [41][42] studied the 

characteristics of ceiling-mounted attached plane jet (APJ), including the mean flow field structure, 

the specification of jet regions and the maximum velocity decay. Li et al. [43,44] and Yin and Li [45] 

studied the airflow characteristics of air curtain jets based on the vertical wall jet principle. Recently, 

Yin et al. [46] conducted experimental studies on the performance of square column attached 

ventilation. However, the focus of all these previous studies is mainly on the flow properties of 

different jet ventilation methods, while the thermal performance of jet flow on heat removal is rarely 

investigated.  

The present study aims at evaluating the thermal performance of a novel mechanical ventilation 

system, the wall-amounted attached ventilation (WAV), for night cooling of an office-type room (with 

brick walls) located in Chongqing, China. The building parameters are thus specified as: 1) zero 

internal gain during the night; 2) the brick walls are the primary contribution to the thermal mass. 

Being part of the Hot Summer and Cold Winter Zone, Chongqing is one of the hottest and most humid 
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cities in China during summer, and experiences only slightly different outdoor air temperature and 

indoor air temperature at night. Therefore, the jet ventilation method rather than the cross ventilation 

method will be preferred for night cooling. Proposed and preliminarily tested by Ji et al. [47–49], the 

WAV system functions based on the vertical wall-attached jet principle. By introducing the outdoor air 

over the internal wall surface vertically with a high jet air velocity, enhanced heat transfer is to be 

expected, which will result in higher efficiency of heat removal from walls during the night cooling 

period.  

The WAV system for night cooling under hot summer conditions is extensively investigated in 

this paper using both chamber experiments and theoretical thermal analysis models. A series of 

experiments have been carried out using a rooftop test chamber in natural environment for a total 

duration of 26 days from June to July 2017. Three cases corresponding to different night ventilation 

schemes are considered in the experiments for performance comparison, i.e., with WAV, with natural 

ventilation and without ventilation. Time-varying temperature distributions at different parts of the 

room are measured together with the velocity fields. Next, for thermal performance analysis and 

comparison of night ventilation schemes, transient heat transfer models are established to obtain the 

internal surface convection and the heat extraction from walls. The wall surface temperatures 

measured from the experiments are used as unsteady boundary conditions for numerically solving the 

transient heat transfer models. The results show superior thermal performance of WAV comparing 

with the other two night ventilation schemes, in terms of the amount of heat removed from the 

ventilated wall and the total amount of heat removed from the chamber. Furthermore, the thermal 

performance indices and energy performance index of night cooling system with WAV are evaluated. 

The paper is organized as follows: methodology including the experimental descriptions and the 
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thermal analysis model is described in Section 2. Section 3 discusses the experimental results, thermal 

analysis and performance evaluation of nigh ventilation with WAV. The conclusions are summarized 

in Section 4. Fig. 1 shows the flow chart of the structure of this paper. 

 

Fig. 1 Flow chart of the structure of this paper 

2. Methodology 

 Both experimental and theoretical investigations have been performed. Experiments at a test 

chamber provide the temperature distributions on the wall surfaces and in the room, for three different 

night ventilation schemes. The established transient heat transfer models can be used for thermal 

performance analysis on night ventilation schemes, with unsteady boundary conditions of the model 

obtained from the experimental measurements. 

2.1 Experiments 
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2.1.1 Experimental set-up 

The experiments have been performed in a rooftop chamber located at the Laboratory of Urban 

Construction and Environmental Engineering of Chongqing University, Chongqing, China. The internal 

dimensions of the test room are 3.39 m (length) × 2.81 m (width) × 3 m (height), resulting in a volume 

of 28.58 m3. The test chamber has been constructed using double glazed windows and perforated bricks 

with external thermal mortar as the external insulation. The details of the materials used in the 

experiments are listed in Table 1. 

Table 1  

Characteristic of the envelope components of the test chamber (from inside to outside). 

Envelope 

component 

Material d (m) ρ (kg/m3) λ (W/m K) c (J/kg K) ɛ (-) 

Roof 

Cenment 0.015 1800 0.93 1050 

0.65±0.05 Cystosepiment 0.2 20 0.031 1470 

Iron sheet 0.002 7272 52 420 

Wall 

Cement 0.015 1800 0.93 1050 

0.88±0.02 

Thermal mortar 0.03 400 0.085 1050 

Ceramic concrete hollow brick 0.2 1100 0.334 1050 

Cement 0.015 1800 0.93 1050 

Floor 

Cement 0.015 1800 0.93 1050 

0.90±0.05 Asphalt 0.004 1700 0.5 1000 

Cement 0.015 1800 0.93 1050 
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Envelope 

component 

Material d (m) ρ (kg/m3) λ (W/m K) c (J/kg K) ɛ (-) 

Reinforced concrete, 0.2 2300 1.9 840 

Cement 0.015 1800 0.93 1050 

where d, ρ, λ and c are the thickness, density, thermal conductivity and heat capacity of the wall 

material, respectively, ɛ is the emissivity of the inner wall surface. As shown in Table 1, each wall has 

four material layers, which will be taken into account in the conduction model in Section 2.2.2.  

Fig. 2 depicts the chamber with the WAV system. The four different material layers of each wall 

are clearly illustrated in Fig. 2(a). The basic design of the ventilation scheme for generating the 

attached wall jet is as follows: outdoor air is supplied into the air duct driven by a ventilation fan. The 

wall-attached air jet is generated by supply air flowed vertically over the inner surface of the west wall 

from a long and narrow slot (4 in Fig. 2) at the bottom of the air duct (3 in Fig. 2). A square hole in the 

north wall is used as the inlet opening (1 in Fig. 2) and is placed at a position which is 2.6 m above the 

floor. The ventilation fan is installed in the inlet opening with sealant around the edges to keep the air 

flow rate constant while the fan is running. The supply air flow rate is regulated by a speed controller 

and is kept constant under the working condition of ventilation. Since the test chamber is located in real 

outdoor environment, the supply air temperature is not manually controlled, and it varies following the 

change of outdoor air temperature changes. Furthermore, another hole with an area of 0.4 m × 0.4 m in 

the east wall is used as the outlet opening (5 in Fig. 2). The air is drawn from the chamber through the 

outlet opening by the pressure difference between the indoor and outdoor environments.  

The properties of the ventilation system are: 
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� The supply duct has a height of 2.7 m above the floor; 

� The supply duct has an area of 0.25 m × 0.2 m and a length of 3 m; 

� The slot opening has an area of 0.02 m× 2.6 m. 

 

Fig. 2. The test chamber with the WAV system. (a) cross-section view; (b) 3-D view. (1. Axial fan; 2. Flexible connection; 3. 

supply air duct; 4. Supply slot; 5. Outlet opening; 6. Cement; 7. Brick; 8. Insulation; 9. Cement). 

2.1.2. Three cases with different ventilation schemes 

The measurement period is from June 27, 2017 to July 23, 2017 (totally 26 days). For each case, 

measurement is started at 8:00 am and ended at 8:00 the next morning with a duration of 24 hours. 

Three difference cases with different night ventilation schemes have been investigated as shown in 

Table 2, i.e., case 1 with WAV, case 2 with natural night ventilation, and case 3 without ventilation 

(door and windows closed). For the WAV case, the inlet air velocity is kept constant at 5.82 m/s. For 

the natural night ventilation case, the northern window is opened from 22:00 to 8:00, and the outlet is 

also kept open during the night. For Case 3, the door and windows of the test chamber are closed for 

all 24 hours. 

Since the outdoor air is directly supplied into the chamber during night ventilation, the real 
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cooling effects of the three ventilation schemes can be realistically investigated. On the other hand, 

the outdoor surroundings and thus the supply air temperature cannot be controlled. In order to make 

fair comparisons of these three cases, results from three days (July 12th for case 1, July 17th for case 2 

and July 21th for case 3) with similar outdoor environment have been selected for further analysis and 

comparison. The recorded variations of the outdoor dry bulb air temperature and relative humidity for 

these three days are presented in Fig. 3. 

Table 2  

Experimental conditions for the three different cases 

Case Date 

Outdoor air 

temperature (°C) 

Ventilation scheme 
Average inlet air 

velocity (m/s) 

ACR 

(-h) 

Fan power 

consumption (W) 

1 July 12th 32.01±4.68 WAV 22:00–8:00 5.82 10.27 40 

2 July 17th 32.04±4.52 

Natural night 

ventilation 22:00–8:00 

- 1.14 - 

3 July 21th 33.1±5.35 No ventilation - - - 
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Fig. 3. Outdoor dry bulb air temperature and relative humidity 

2.1.3. Measurements 

The following parameters have been measured for all three cases: 

� external and internal wall surface temperatures, 

� dry bulb air temperature and humidity of the outdoor environment and the indoor air, 

� temperatures and velocities of the supply air, the duct air, the exhaust air, the room air, 

� power consumption of the supply fan. 

The outdoor air temperature and the relative humidity are measured and recorded by a Tinytag 

automatic recorder located 2.4 m above the ground outside the chamber with rain and radiation 

protections. To determine the cooling effect of different night ventilation schemes, both external and 

internal surface temperatures have been measured with totally 40 type T thermocouples attached on 

walls from each orientation of the test chamber, as shown in Fig. 4(a). In order to obtain the temperature 

variation with time, the sampling period of each thermocouple is set to be 60 s, and data are logged by 

an Agilent data logger. Fig. 4(b) shows that totally five thermal anemometers are placed at three 

different heights of the central plane of the chamber to measure the room air temperature. Moreover, 

the air temperatures and velocities of the supply air, the inlet air and the exhaust air have been recorded 

using anemometers. All the sensors have been calibrated before installation. 
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Fig. 4. Location of sensors detecting: (a). wall surface temperatures; (b) air temperatures and velocities at the inlet and 

outlet, in the supply duct and in the room. 

Furthermore, the power consumption of the supply fan is measured using a power meter which has 

been checked by the installation company. The result of fan power has been given in Table 2. 

Finally, the accuracy and range of the measuring instruments used in the present study are 

summarized in Table 3. 

Table 3  

The accuracy and range of the instrumentation used in this study. 

Measured parameter Instrument Range Accuracy 

Temperature Type T thermocouple -50 ℃ to +500 ℃ ±0.15 ℃ 

Air velocity Testo thermal anemometer  0 to 20 m/s ±0.03 m/s  

Local climate Tinytag data recorder −25 ℃ to +85℃; 0–95% RH ±0.2 ℃; ±3% RH 

Power consumption Multifunction power meter 0.01 kW to 600 kW ±3% 

2.2. Transient heat transfer model for thermal analysis  

2.2.1 General description of the model 
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The test chamber is not adiabatic. Fig. 5 shows the schematic representation of the heat transfer on 

the west wall during the night. The x axis is defined along the wall width with its positive direction 

pointing from the external surface towards the internal surface. x=0 and x=d correspond to the external 

surface and internal surface, respectively, where d is the wall width. During the night ventilation 

(22;00 to 8:00), the external wall surfaces are cooled by night-time sky radiation as well as convection 

between outdoor air and external wall surfaces. The experimentally measured external wall surface 

temperature of west wall, exT , is considered as the outcome of the synthesis of ambient surroundings. 

The internal wall surfaces are cooled by convection convq  between the induced air and the internal wall 

surface, as well as by the radiative heat transfer radq  from the inner surface of the west wall to all 

internal surfaces of other walls simultaneously. inT , denotes the internal surface temperature of the west 

wall, which has also been measured from the experimental setup in Section 2.1. Besides, as mentioned 

in Section 2.1 each wall consists of four material layers, where j  (j=1,2,3,4) refers to the thj  layer of 

wall material. 

 

Fig.5. Schematic representation of heat transfers on the west wall during the night ventilation period. 
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For evaluation of the convection intensity of night ventilation schemes, we follow the approach 

recommended by Artmann [50] to acquire the transient convective heat flux at the internal surface of a 

wall as the difference between the conductive and radiative heat fluxes: 

4
( ) ( ) ( )conv cond radj

q q qτ τ τ
=

= −   (1) 

where τ  is the time. It should be noted that the conductive heat flux at the internal wall surface, 

4cond j
q

=
, refers to the heat flow through the 4th material layer, i.e. the 15mm-thick internal cement 

layer. The conductive heat flux is to be discussed in section 2.2.2, while the radiative heat flux is to be 

considered in section 2.2.3. 

2.2.2 Conduction model 

In order to evaluate the conductive heat transfer through walls, a 1-D transient conductive heat 

transfer equation [51] for the west wall is established as: 

2

2

T T
c

x
λ ρ

τ
∂ ∂=
∂ ∂

  (2) 

In practice, Eq. (2) needs to be solved in a discrete format. The time step τ∆  is set to be 60 s, in 

accordance with the sampling period of the sensors during the experiments. The measured external 

wall surface temperature and internal wall surface temperature of the west wall at the time instant k are 

employed as boundary conditions for the heat conduction model (Eq.2): 

For the external surface (x=0):  

0
( , ) k

exx
T x Tτ

=
=   (3) 

For the internal surface (x=d):  
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( , ) k
inx d

T x Tτ
=

=  (4) 

For each case, the calculation during of the heat transfer process of walls is from 8:00 for 24 

hours, thus the initial condition for Eq. (2) is the measured temperatures at 8:00: 

8:00

0, 0
( , ) exx

T x Tττ
= =

=   (5) 

8:00

0,
( , ) inx d

T x Tττ
= =

=  (6) 

A finite difference model [51] using an implicit scheme is built to solve Eq. (2) for obtaining the 

spatial distribution of the time-varying temperatures. Fig. 6 shows the differential model of the west 

wall. It is assumed that the west wall is discretized into 52 differential computing layers with the grid 

size x∆  of 5 mm as illustrated in Fig. 6(a), and the grid m shown in Fig. 6(b) corresponds to the thm  

computing layer.  

 

Fig. 6. Differential model of the west wall.  

According to the energy balance analysis on the grid m as shown in Fig. 6(b), during time interval 

τ∆ , the increment of the internal energy heat of the grid m , 
m

kq∆ , equals to the difference between 

the heat absorbed from the left grid 1m−  into the grid m ,
,m in

kq  and the heat removed from the grid 
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m  to the right grid 1m+ , 
,m out

kq : 

, ,m m in m out

k k kq q q∆ = −  (7) 

The increment of the internal energy heat 
m

kq∆  on the left-hand-side of Eq. (7) is calculated as: 

1

, , , , , , , , , , , ,( ) ( )
2 2 2 2

m m

m

k k k k
k m m m

m m m m m m m m m m m m

T T T T Tx x x x
q c c c c c cρ ρ ρ ρ ρ ρ

τ τ τ τ

−
− +

− − + + − − + + − − + +

∂ ∂ ∂ −∆ ∆ ∆ ∆∆ = + = + ≈ +
∂ ∂ ∂ ∆

 (8) 

The heat injected into the grid m  is: 

1

,

m m

m in

k k
k

T T
q

x
λ −

−
−

−
= −

∆
 (9) 

The heat removed from the grid m  is: 

1

,

m m

m out

k k
k

T T
q

x
λ +

+
+

−
= −

∆
 (10) 

where ,mρ −  and ,mλ −  are the density and thermal conductivity of the left half of grid m , ,mρ +  and 

,mλ +  are the density and thermal conductivity of the right half of grid m, 1mλ −  and 1mλ + are the 

thermal conductivity of grids 1m− , m  and 1m+ , respectively. 1

1

2 m m

m m

λ λλ
λ λ

−
−

−

=
+

 and 1

1

2 m m

m m

λ λλ
λ λ

+
+

+

=
+

 

are the harmonic mean values of thermal conductivity. 

After substituting Eqs. 8-10 into Eq. 7 with an implicit scheme, the new energy balance equation 

for the grid m at the junction of two material layers is obtained as: 

1 1 1
1 12 2 2

, , , , , , , , , , , ,

2 2 ( ) 2
1

( ) ( ) ( )
k k k k

m m m m
m m m m m m m m m m m m

T T T T
c c x c c x c c x

τλ τ λ λ τλ
ρ ρ ρ ρ ρ ρ

+ + +− − + +
− +

− − + + − − + + − − + +

 ∆ ∆ + ∆= − + + − + ∆ + ∆ + ∆  

 (11) 
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For the grid in the same material layer of uniform thermal parameters, += = mλ λ λ− , and the new 

energy balance equation then becomes: 

1 1 1
1 12 2 2

2
1k k k km m m

m m m m
m m m m m m

T T T T
c x c x c x

λ λ λτ τ τ
ρ ρ ρ

+ + +
− +

 ∆ ∆ ∆= − ⋅ + + ⋅ − ⋅ ∆ ∆ ∆ 
 (12) 

By introducing the thermal diffusivity m
m

m m

a
c

λ
ρ

= , the Fourier number 2
m

m

a
Fo

x

τ∆=
∆

, 

2
, , , ,

2

( )m m m m

XF
c c x

τλ
ρ ρ

−
−

− − + +

∆=
+ ∆

 and 2
, , , ,

2

( )m m m m

XF
c c x

τλ
ρ ρ

+
+

− − + +

∆=
+ ∆

, Eq. (11) and Eq. (12) can be 

rewritten as:  

1 1 1
1 1(1 )k k k k

m m m mT XF T XF XF T XF T+ + +
− − − + + += − + + + −  (13) 

1 1 1
1 1(1 2 )k k k k

m m m m m m mT Fo T Fo T Fo T+ + +
− += − + + −  (14) 

Finally, the temperature distribution at the grid m  of the west wall, k
mT , at the time instant k  is 

obtained by solutions of the following equation: 

( )
( )
( )
( )

( )

1 1 1
1 1 0 1 1 1 2

1 1 1
2 2 1 2 2 2 3

1 1 1
3 2 2 2 4 3 4 4

1 1 1
4 4 3 4 4 4 5

1 1 1
7 7 6 7 7 7 8

1
8 7 7 7

+ 1 2

1 2

1

1 2

......

1 2

1

k k k k

k k k k

k k k k

k k k k

k k k k

k k

T Fo T Fo T Fo T

T Fo T Fo T Fo T

T XF T XF XF T XF T

T Fo T Fo T Fo T

T Fo T Fo T Fo T

T XF T XF X

+ + +

+ + +

+ + +

+ + +

+ + +

+

= − + −

= − + + −

= − + + + −

= − + + −

= − + + −

= − + + +( )
( )

( )
( )
( )

1 1
9 8 9 9

1 1 1
9 9 8 9 9 9 10

1 1 1
48 48 47 48 48 48 49

1 1 1
49 48 48 48 50 49 50 50

1 1 1
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1
51 51 50

1 2

......

1 2

1

1 2
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k k k k

k k k k

k k k k

k k k k
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F T XF T

T Fo T Fo T Fo T

T Fo T Fo T Fo T

T XF T XF XF T XF T

T Fo T Fo T Fo T

T Fo T

+ +

+ + +

+ + +

+ + +

+ + +

+

−

= − + + −

= − + + −
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= − ( ) 1 1
51 51 51 521 2 k kFo T Fo T+ +






















 + + −  (15) 
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Eq. (15), the finite-difference formulation of Eq. (2), is solved using Crank–Nicholson time 

stepping method with the measured internal and external wall temperatures as boundary conditions. 

This results in the transient temperature distribution within a multi-layer wall. At each time step during 

the night ventilation period, the conductive heat flux density, 
,

k
cond jq  through the thj  material layer of 

the west wall at time instant k, can then be obtained from Fourier’s law: 

, ,
,

k k
ex j in jk

cond j j
j

T T
q

d
λ

−
=  (16) 

where ,
k

ex jT  is the external surface temperature of the thj  layer of wall material, ,
k

in jT  is the internal 

surface temperature of the thj  layer of wall material, jd  and jλ  are the thickness and thermal 

conductivity of the thj  layer of wall material, respectively. 

2.2.3 Radiation model of wall surfaces 

During the night ventilation, the radiative heat flux is related to temperature differences between 

the inner wall surfaces. The radiation model assumes that the inner surfaces of the envelope are 

diffuse-grey surfaces and six surfaces form an enclosure. Besides, room air is a non-participating 

medium. The total radiation leaves the radiant surface s  per unit time and per unit surface area, sJ  

is calculated using Eq. (17). The net radiative heat flux ,rad sq  from the grey-body surface s  to all 

five other surfaces p  is then obtained from Eq. (18), which is defined as the difference between the 

radiations leaving and arriving the surface s : 

6
4

,
1

(1 ) , 1,2,...,6s s s s s p p
p

J T F J sε σ ε
=

= ⋅ ⋅ + − =∑  (17) 

6

, ,
1

, 1,2,...,6rad s s s p p
p

q J F J s
=

= − =∑  (18) 
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where sε  is the emissivity of surface s , σ  is the Stefan-Boltzmann constant, sT  denotes the 

average of the thermocouple readings at the internal surface of wall s , and ,s pF  stands for the view 

factor from surface s  to surface p . 

3. Results and discussion 

In this section, the experimental results are first presented and discussed, focusing on the cooling 

effects of night ventilation schemes on wall surface temperatures and room air temperature. The results 

of the theoretical models discussed in Section 2.2 are also analyzed including the enhanced convection 

over the wall surface and the heat removal from walls. Finally, the performance evaluation indices are 

employed to assess the cooling efficiency and energy efficiency of night ventilation with WAV. 

3.1. Experimental results and analyses  

3.1.1 Wall surface temperature 

Fig. 7 shows the experimental results of the time-varying external wall surface temperatures and 

internal wall surface temperatures of the three cases investigated. Each curve is obtained by averaging 

the measurements from all thermocouples attached on the same wall surface (five thermocouples for 

each surface). Furthermore, moving average of every five minutes (five data points) has been applied 

so as to reduce the influence from measurement noise on the results. As seen in Fig. 7, the similar 

tendency of the measured external wall surface temperatures in these three cases again verifies that the 

selected three cases have similar outdoor weather conditions, in accordance with the results in Fig. 3. 

The relatively high-frequency fluctuations of external surface temperatures of the west wall in the 
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afternoon are mainly due to the cloudy weather conditions. In Case 1 as shown in Fig. 7(a), an evident 

decrease of the internal surface temperature of the west wall is observed from 22:00 when it starts to 

apply the WAV system on this wall. It is interesting to note that the internal surface temperatures of 

other three walls also decrease with the application of WAV on the west wall. The gap between the 

external wall surface temperature and the internal wall surface temperature becomes significantly 

narrowed when WAV is switched on. However, due to the heating effect of the fan and the cooling loss 

during transportation, the internal wall surface temperatures are still always higher than the external 

wall surface temperatures. In Case 2 with natural night ventilation shown in Fig. 7(b), a slight decrease 

of internal wall surface temperatures is also observed from 22:00 when natural ventilation is started. 

However, although the outdoor air temperatures at daytime in Case 2 are slightly lower than that in Case 

1, the internal wall surface temperatures of are much higher than that in Case 1 at nighttime. This clearly 

reveals the superior performance of WAV on night cooling than natural ventilation. In Case 3 without 

ventilation (Fig. 7(c)), the outdoor air temperature decreases after 20:00. Nevertheless, the internal 

wall surface temperatures still increase slowly and reach 35 ℃, which indicates that the heat 

dissipation of structural mass during the night has bad influence on the indoor climate. Comparing the 

experimental results of wall surface temperatures of these three cases, it is found that the internal wall 

surface temperatures of Case 1 with WAV are approximately 5 ℃ lower than the cases without WAV, 

which proves that the WAV system has a significant temperature decreasing effect on internal walls. 
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Fig. 7. Measured external and internal wall surface temperatures. (a) Case 1: WAV from 22:00 to 8:00, ACR = 10.27 ACH; 
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(b) Case 2: Natural night ventilation from 22:00 to 8:00, ACR = 1.14 ACH; (c) Case 3: no ventilation for 24 hours. For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of the article. 

3.1.2. Room air temperature  

Fig. 8 illustrates the mean values and standard deviations (based on measurements from the five 

thermocouples at different locations of the central plane as shown in Fig. 4(b)) of the room air 

temperatures in the three cases. Compared with the Case 3, an obvious decline of the room air 

temperature is observed with the application of night ventilation in both Case 1 and Case 2, and the 

WAV system further exhibits a much better performance in cooling the room air temperature than 

natural night ventilation. Furthermore, from 22:00 to 4:00 at nighttime, the standard deviations of the 

room air temperature with WAV (Case 1) are very small, indicating the indistinctive differences 

between the five monitored room air temperatures at the central plane. It should be noted here that to 

further reveal the room air temperature distribution, more evidences are needed, e.g. measuring air 

temperature distribution at least at three vertical sections parallel to the wall with WAV, monitoring 

ventilation rate in the room. These should be considered in the further study. Then, after 4:00 the 

standard deviation of the room air temperature starts to increase. This non-isothermal condition of room 

air temperature starting from 4:00 might be explained by the fact that the eastern part of the room is 

warmed with the increasing outdoor air temperature due to sunrise, while the western part is still cooled 

by ventilation. The standard deviations in Case 2 are also reduced for a very short period after 22:00 by 

the natural night ventilation, but soon increase to relatively large values for the remaining nighttime. 

Furthermore, the standard deviations in Case 3 are rather constant with relatively small values, due to 

the insignificant air circulation in the closed chamber. 
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Fig. 8. Mean values and standard deviations of the measured room air temperatures in the three different cases. 

3.2 Results of thermal analyses 

3.2.1 Conductive heat flux of the walls  

Fig. 9. shows the time-varying conductive heat flux through the west wall from 22:00 to 8:00. In 

this paper, the heat injected into the room through the wall is defined positive and the heat removed 

from the room is defined negative. From 22:00 to 6:00, the conductive heat flux at internal cement 

layer is positive, while the conductive heat flux of external cement layer in all three cases is negative. 

This implies that the heat is dissipated from the internal wall surface to the room, and that at the 

meantime, the heat is also released from the external wall surface to the surroundings. When WAV is 

switched on at 22:00 in Case 1, an initial steep increase of the conductive heat flux through the internal 

cement is observed. Afterwards, the heat flux of the internal cement reaches the quasi-steady state 

quickly. In Case 2, the starting up of natural ventilation has a slight influence (enhancement) on the heat 

flow in the wall materials. Due to the circulation of room air driven by the natural night ventilation, the 
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heat flux of the internal cement is fluctuating around a constant positive value. In Case 3, the conductive 

heat flux of the internal cement is still positive but smaller than those in the other two cases, indicating 

that the heat stored in the walls is still released into the indoor environment. However, without outlet 

openings to exhaust the heat in the room, the cooling of the room and the walls only relies on the heat 

dissipating through the walls to the outdoor environment. After 6:00 the next morning when the sun 

rises, the conductive heat flux of the external cement increases dramatically in Case 3. On the other 

hand, due to the precooling effect of night ventilation, the heat flow rates of the external cement layer in 

Case 1 and Case 2 rise slowly, and thus the temperature increase of the whole room is delayed. 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

28 

 

 

Fig. 9. Conductive heat flux 
,

k
cond jq  (W/m2) of west walls. (a) Case 1: WAV from 22:00 to 8:00, ACR = 10.27 ACH; (b) 

Case 2: Natural night ventilation from 22:00 to 8:00, ACR = 1.14 ACH; (c) Case 3: no ventilation. For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of the article. 

3.2.2. Convective heat flux of ventilated wall with WAV during night cooling period 

Fig.10 shows the calculated instantaneous internal surface convection, convq  of the west wall 

with the WAV system (Case 1) for eight hours (22:00-6:00). Also, the picture depicts the measured 

temperatures including the inlet air temperature inletT , the internal surface temperature of the west 

wall inT , the room air temperature roomT  and the outlet air temperature outletT . During the night 

ventilation period, the room air and the wall surface are simultaneously cooled in proportion to the 

decrease of the supply air temperature. As for the convective heat flux, an initial steep transition (steep 

increase followed by a steep decrease) is observed in the first twenty minutes resulting from the 

start-up of night ventilation. After that, the quasi-steady state is soon reached with slight fluctuations 

for the rest of the ventilation period, due to the steady heat transfer process. In addition, the calculated 

convective heat flux from 4:00 to 6:00 is slightly higher than its average value. The main reason is 
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that during this period the outdoor air temperatures become relatively low, and thus the walls can be 

further cooled by night ventilation. 

 

Fig. 10. The convective heat flux at internal surface of the west wall and the measured temperatures. Case 1: WAV from 

22:00 to 8:00, ACR = 10.27 ACH 

In general, the convective heat transfer coefficient (CHTC) is related to the mechanism of airflow 

and the geometry of the specific system [52]. Since the air velocities and temperatures are not 

uniformly distributed on the wall, the CHTC values are different at different points on the wall. 

Nevertheless, for revealing the overall performance of the WAV system, the overall average of CHTC, 

h , is calculated using Newton’s Cooling Law: 

/ ( )conv in roomh q T T= −

 (19

) 

where convq , inT  and roomT  are the average values (both time- and spatial- averaged) of the 

convective heat flux, the internal west-wall surface temperature and the room air temperature, 
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respectively. Using Eq. (19), the overall average value of CHTC at the west wall during the night 

turns out to be 10.79 W m-2 ℃-1, indicating that the WAV system results in a high value of CHTC, 

which enables effective temperature decreasing of the test chamber.  

3.2.3. Heat removal amount  

In general, as a low-energy cooling strategy, night ventilation functions by generating a time lag 

between heat gains and heat losses, as well as reducing the cooling load needed in the following day. As 

mentioned in Section 1, the wall materials are considered as the primary elements of thermal mass in 

this study, since the contributions from the roof (the heat capacity of the roof material is low according 

to Table 1), floor and internal objects can be neglected. The thermal storage capacity of the wall 

depends on: (1) the thermal properties of each material layer, (2) its thickness, (3) the heat transfer at the 

wall surfaces and (4) the difference between the outdoor air temperature and the indoor air temperature. 

In order to evaluate the heat removal effect, the amount of heat increment of each layer j of the west wall 

is integrated resulting in the total heat removal from the west wall, wQ : 

4

1

( ) ( )w w j j j j
j

Q A c d Tτ ρ τ
=

= ∆∑

 (20

) 

where wA  is the surface area of the west wall, jc , jρ , and jd  are the thermal conductivity, density 

and thickness of the thj  layer of wall material, respectively. ( )jT τ∆  is the temperature increment of 

the thj  layer of wall material, i.e. the difference between the present temperature with respect to its 

temperature at 22:00.  
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Fig. 11 shows the accumulated heat removal from the west wall during the night for the three 

cases. A negative wQ  indicates that the heat is removed from the wall. The heat removal amount of 

the west wall without ventilation in Case 3 is taken as a reference. With natural ventilation (Case 2), a 

slight increase of heat dissipation is observed, which proves that in the natural convection regime, the 

heat stored in walls cannot be sufficiently removed. With WAV, the amount of heat removed from the 

wall is dramatically increased, i.e. about five times as much as that in Case 1 and Case 2, 

demonstrating the high effectiveness of heat extraction with the WAV system.  

 

Fig. 11. Accumulative heat removals from the west wall. Case 1: WAV from 22:00 to 8:00, ACR = 10.27 ACH; Case 2: 

Natural night ventilation from 22:00 to 8:00, ACR = 1.14 ACH; Case 3: no ventilation. 

In addition, the heat extracted from the whole test chamber (contributions from the four walls) per 

hour ,extr perhourQ  during the night time is calculated and presented in Fig. 12. Limited improvement of 

the amount of hourly heat extraction in Case 2 is observed comparing with Case 3. In contrast, the 

WAV system leads to significant enhancement of the hourly heat removal especially at two durations: 

the first ventilated hour (22:00-23:00) and the duration with relatively low outdoor air temperature 

(4:00-6:00).  
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Fig. 12. Hourly values of heat extraction from the whole chamber during the night time. 

Finally, the total amount of heat dissipation for the whole chamber from 22:00 to 6:00, extrQ , is 

also calculated for these three cases. The calculated values of extrQ  are 30835 kJ, 20834 kJ and 

16704 kJ for Case 1, Case 2 and Case 3, respectively. Hence, WAV results in approximately double 

amount of heat dissipation compared with the non-ventilation case and about 1.5 times amount 

compared with the natural ventilation case. This is because the predominate forced convection in the 

WAV system enhances the efficiency of heat removal. 

3.3. Performance indices of WAV 

3.3.1. Surface cooling effectiveness  

The surface cooling effectiveness surfη  recommended by Artmann [50] has been employed in the 

present study: 

outlet inlet
surf

surf inlet

T T

T T
η −=

−
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 (21

) 

where inletT  is the inlet air temperature, and 
surfT  is the hourly average value of all surface 

temperatures. 

As shown in Fig. 13, the hourly surface cooling effectiveness of WAV (Case 1) declines as the 

difference between the outdoor air temperature and indoor air temperature decreases. Excluding the 

first ventilated hour (in order to eliminate the initial transient effect), the overall average value of the 

hourly surface cooling effectiveness of WAV during the night ventilation is calculated to be 1.48. 

According to Artmann et al. [50], the surface cooling effectiveness of both DV and MV with the same 

air change rate is about 0.8, indicating that WAV exhibits a better surface cooling performance than 

DV and MV. 

 

Fig. 13. Surface cooling effectiveness surfη  of WAV. Hourly mean values, first ventilated hour excluded. 

3.3.2. Night ventilation effectiveness  
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The performance on heat removal of night cooling systems can also be described using the night 

ventilation effectiveness, ventη , which is the ratio of cooling amount provided by ventilation ventQ  

and the total heat extraction amount from the chamber extrQ  (calculated in section 3.2.3): 

vent
vent

extr

Q

Q
η =

 (22

) 

( )vent a outlet inletQ c m T T= −&

 (23

) 

In Eq. (23), ac  is the thermal conductivity of room air, and m&  is the mass flow of supply air. 

Using Eq. (22), the calculated night ventilation effectiveness with the WAV system is 0.153. As can be 

seen from Fig.5, the test chamber is not adiabatic, thus both the heat dissipation by the outdoor 

environment and heat extraction by the indoor night ventilation contribute to the temperature 

decreasing effect on walls during the night.  

3.3.3. Energy consumption analysis  

Coefficient of performance (COP) of the WAV system is defined as: 

COP extr

fan

Q

Q
=

 (24
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) 

where extrQ has been calculated in section 3.2.3, and fanQ  is the fan power consumption as presented 

in Table 2. 

During the calculation period from 22:00 to 6:00, the overall COP of the WAV system is 26.8, 

indicating that WAV can achieve extraordinary performance on energy saving with a low level of fan 

power consumption.  

4. Conclusions and outlook 

In this study, thermal performance of the novel WAV system for night cooling of an office-type 

room under hot summer conditions were investigated by both chamber experiment and theoretical 

model. The thermal performance of cases with WAV, with natural ventilation and without ventilation 

were compared, in terms of the effect on the temperature decreasing and heat removal. Three different 

performance indices were also used to further reveal the performance of night ventilation with WAV. 

From this study, the following conclusions can be drawn: 

The measured temperature fields show that the WAV scheme results in a better temperature 

decreasing effect on both the wall surfaces and the room air, comparing with the natural night 

ventilation. Although WAV is only applied to the west wall, the internal surface temperatures of the 

other three walls are also slightly lowered, implying a superior performance of WAV on cooling the 

whole room.   

Based on the results of the established heat transfer model, it is seen that the enhanced convection 

between the induced air and the internal wall surface is achieved. With WAV, the amount of heat 
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removed from the ventilated wall is about five times that in the natural night ventilation case or 

non-ventilation case. Moreover, WAV results in approximately double amount of heat dissipation from 

the whole chamber compared with the non-ventilation case, and about 1.5 times amount compared 

with the natural ventilation case. 

The surface cooling effectiveness, night ventilation effectiveness and COP were calculated. The 

average values of the surface cooling effectiveness and the night ventilation effectiveness of WAV are 

1.48 and 0.153, respectively, indicating that night ventilation with WAV performs efficiently in 

temperature decreasing and heat removal. The overall COP of WAV turns out to be 26.8, and this large 

value demonstrates the high energy saving potential of the WAV system with a low level of initial cost 

of ventilation facilities.  

This study is limited to the thermal performance comparisons of WAV with natural night 

ventilation (and non-ventilation as well), and comparisons with other types of air distribution methods 

need to be performed in the future. Further studies on different airflow rates, multi-heat sources in a 

room and thermophysical properties of walls (such as using PCM) are also beneficial for revealing 

more possibilities and limitations of WAV.   
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Research highlights 

 

• A novel wall-mounted attached ventilation (WAV) night cooling system proposed 

• Experiments carried out to understand the temperature decreasing effect of WAV  

• Transient heat transfer models established to analyse the thermal performance of WAV 

• WAV has much better performance on surface cooling and heat removal than natural ventilation 


