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Abstract—Stochastic channel models are usually calibrated
after extracting the parameters of the multipath components
from measurements. This paper proposes a method to infer
on the underlying parameters of a stochastic multipath model,
in particular the Turin model, without resolving the multi-
path components. Channel measurements are summarised into
temporal moments instead of the multipath parameters. The
parameters of the stochastic model are then estimated from the
observations of temporal moments using a method of moments
approach. The estimator is tested on real data obtained from
in-room channel measurements. It is concluded that calibration
of stochastic models can be done without multipath extraction,
and that temporal moments are informative summary statistics
about the model parameters.

Index Terms—stochastic channel model, multipath, summary
statistics, parameter estimation, method of moments

I. INTRODUCTION

Realistic modelling of the radio channel is imperative to the
design and analysis of any wireless communication system.
Stochastic multipath models characterizing many different
radio environments have been reported in the literature [1]–
[4]. These models can be used to generate realizations of
the channel in simulations, and to analyse the behaviour
of communication systems. For a model to be useful for
simulation, it should be calibrated, i.e. its parameters should
be estimated such that the model fits to the measurement data.

Since the early works [1] and [2], parameters of a stochastic
multipath channel model have usually been estimated in a
two-step process as shown in Fig. 1(a). First, the multipath
parameters, for example the delays and their respective gains,
are estimated from the channel measurements, followed by
estimation of the model parameters, e.g. [4]–[7]. Resolving
multipath components using high-resolution algorithms such
as CLEAN [8], SAGE [9] or RIMAX [10] is not usually
trivial, and the overall estimation accuracy of the model pa-
rameters relies on how accurately the multipath parameters are
obtained. One particular problem which has been considered
only recently [11] is the effect that some multipath components
are undetected due to noise or bandwidth constraints. This
censoring effect causes significant calibration errors.

The error introduced by this intermediate multipath ex-
traction step can potentially be eliminated by methods that
bypass this step and estimate the model parameters from
other summaries, as depicted in Fig. 1(b). Other summary
statistics, apart from the multipath parameters, that can be
found in the literature include power delay profile, root mean

(a)

(b)
Fig. 1. Calibration procedures involving (a) multipath extraction, and (b)
general summaries.

square delay spread, angular dispersion, temporal moments,
and delay-Doppler function, among others [12]. Potentially
these summaries are informative about the underlying model
parameters and could thus be valuable for their estimation.

The choice of summary statistics is guided by a number of
concerns. First, summary statistics should be informative about
the model parameters. Ideally, a sufficient statistic should be
chosen, but in most practical situations, this is not feasible or
possible. In fact, the multipath parameters form a sufficient
statistic for the underlying point process, provided that all
multipath components are actually resolved without error,
which is unlikely the case. Moreover, the summary should be
easily computable. One such choice of summary statistics, that
does not introduce significant computational overhead, are the
temporal moments. These have been widely used in wireless
communication literature since the 1970s, see e.g [13], but
have, to the best of our knowledge hitherto not been considered
for calibration of multipath models apart from the sampling
approach proposed by the authors in [14].

In this contribution, we propose a method of moments
parameter estimator for the Turin model [1] without multipath
extraction. This model has recently attracted attention due to
its simplicity, see e.g. [4], [20]. We compute the temporal
moments from the transfer function measurements, without
transforming it to time domain. Expressions for the means and
covariances of the temporal moments are derived. Inserting
sample means and covariances from the measurements to these
expressions yield the parameter estimates. The performance of
the proposed estimator is evaluated by a simulation experiment
and validated using measurement data.

II. SIGNAL MODEL

Consider a single-input, single-output (SISO) multipath
propagation scenario where the received signal is measured
using a transmit and a receive antenna at a certain frequency



bandwidth, B. The received signal, Yk, is modelled in the
frequency domain as

Yk = Hk +Nk, k = 0, 1, . . . , (Ns − 1), (1)

where k is the frequency index, Hk is the transfer function, Nk
is the noise contribution, and Ns is the total number of sample
points. The major source of noise in such measurements is
noise from the measurement equipment itself, which can be
assumed independent and identically distributed (iid) at each
measurement point. Here the noise is modelled as iid complex
Gaussian variables, Nk ∼ CN (0, σ2

N ), k = 0, 1, . . . , Ns − 1.
The temporal moments can be computed in the frequency

domain as follows. Discrete-frequency, continuous-time in-
verse Fourier transform of Yk gives the signal in the time
domain, y(t)

y(t) =
1

Ns

Ns−1∑
k=0

Yk exp (j2πk∆ft) , (2)

where ∆f is the frequency separation between two samples.
The time domain signal is periodic with period

tmax =
1

∆f
=

(Ns − 1)

B
. (3)

Define the ith temporal moment of y(t) as

mi =

∫ tmax

0

ti|y(t)|2dt, i = 0, 1, 2, . . . (4)

Consequently, in the frequency-domain, we have

mi =
1

N2
s

∑
k

∑
k′

YkY
∗
k′ai(k − k′), (5)

with the definition

ai(k − k′) =

∫ tmax

0

ti exp (j2π∆f(k − k′)t) dt. (6)

A number of properties can be shown for this function. Since
mi ≥ 0 for all Yk, ai(k−k′) is a positive semidefinite function.
Also, ai(k) = a∗i (−k). Note that ai(0) = ti+1

max / (i + 1).
The magnitude of ai(k − k′) decreases rapidly as |k − k′|
increases. In particular, a0(k − k′) = 0 for k 6= k′. Therefore,
the diagonal terms in (5) are the most relevant for computing
the temporal moments.

The frequency domain method in (5) is preferred over (4)
here since we work with frequency domain measurements
and it leads to low complexity of the estimator derived in
Section III. It should be noted that no attempt has been made
to remove noise and effects of finite measurement bandwidth.
Thus, we avoid the employment of heuristics to set the noise
floor and truncate the time domain signal at an arbitrary point.
This is advantageous here, since the derived estimator and its
performance does not depend on such arbitrary choices, and
the results are more easily reproduced.

The temporal moments mi, i = 0, 1, 2, . . . , are random
variables with means

E[mi] =
1

N2
s

∑
k

∑
k′

E [YkY
∗
k′ ] ai(k − k′), (7)

and covariances

Cov(mi,mj) =

1

N4
s

∑
k,k′,n,n′

Cov(YkY
∗
k′ , YnY

∗
n′)ai(k − k′)aj(n− n′). (8)

It should be noted that the first and the second moment of the
temporal moments depend upon the second and fourth moment
of the received signal, respectively.

Employing the uncorrelated scattering assumption [15], the
second moment of Yk can be written as

E [YkY
∗
k′ ] =

∫
Py(t) exp (−j2π∆ft(k − k′)) dt+σ2

Nδ(k−k′),
(9)

where δ(·) is the Kronecker delta function, and Py(t) is the
power delay spectrum of the received signal1. The power delay
spectrum reads from (2) as

Py(t) =
1

N2
s

∑
k

∑
k′

E [YkY
∗
k′ ] exp (j2π∆f(k − k′)t) . (10)

Considering high bandwidths, Py(t) can be approximated as

Py(t) ≈ EsPh(t) + σ2
N/Ns, (11)

where Es is the energy of the transmitted signal, and Ph(t) is
the power delay spectrum of the channel. With the transmitted
signal in frequency domain being the rectangular window of
unit magnitude over the bandwidth, that gives Es = B.

III. METHOD OF MOMENTS ESTIMATOR FOR TURIN’S
MODEL

A. Channel model description
As an example of how the temporal moments can be utilized

to calibrate stochastic channel models, we derive a method of
moments estimator for the seminal model by Turin [1], applied
to an in-room setting. For a multipath channel, the transfer
function, Hk, reads

Hk =
∑
l

αl exp (−j2π∆fkτl) , (12)

where αl and τl are the complex gain and time-delay of the lth

multipath component, respectively. The delays form a homoge-
neous Poisson point process with arrival rate λ(t) = λ0. The
gains, conditioned on the delays, are modelled as independent
circular complex Gaussian variables with variance σ2

α(t).
Therefore, {(τl, αl)} forms a marked Poisson point process
of intensity λ0, with points {τl} and marks {αl}. For this
type of model, Ph(t) = λ(t)σ2

α(t), see [16].
Typically for in-room channel measurements, the power

delay spectrum has an exponentially decaying behaviour, and
can be approximated using the reverberation model in [17] as

Ph(t) =

{
G0 exp(− t

T ), t > t0
0 otherwise, (13)

1With s(t) as the transmitted signal, Py(t) is defined as in the noise free
case:

Py(t) = E[|y(t)|2] =
∫
Ph(τ)|s(t− τ)|2dτ,

where Ph(t) may be informally interpreted as Ph(t) = E[|h(t)|2], where
|h(t)|2 is the (instantaneous) power delay profile of the channel. [16]



where G0 is the power at delay zero called reverberation gain,
T is the reverberation time, and t0 is the delay of the first
multipath component. The arrival rate, however, does not enter
in (13). Substituting this model in (9) and carrying out the
integration gives the autocorrelation function of Y as

RY (k, k′) = E [YkY
∗
k′ ]

=
G0TBe

−t0( 1
T +j2π∆f(k−k′))

1 + j2π∆fT (k − k′)
+ σ2

Nδ(k − k′). (14)

As to be expected, Y is a wide-sense stationary process in the
frequency domain.

B. Estimator derivation

We follow a method of moments approach to estimate the
four parameters, G0, T , σ2

N , and λ0, from N observations of
the summary statistic consisting of three temporal moments
(m0,m1,m2). Out of the four minimum equations required
to solve for the parameters, three of them are taken to be the
equations for the mean. Using (14) in (7) gives the three mean
equations as:

µ0 =
G0TB

N2
s

β0(T ) +
σ2
N

B
, (15)

µ1 =
G0TB

N2
s

β1(T ) +
σ2
N t

2
max

2Ns
, (16)

µ2 =
G0TB

N2
s

β2(T ) +
σ2
N t

3
max

3Ns
, (17)

where µi = E[mi], and βi(T ) is defined as

βi(T ) =

Ns−1∑
k̃=−Ns+1

(Ns − |k̃|)e−t0(
1
T +j2π∆fk̃)ai(k̃)

1 + j2π∆fT k̃
, (18)

with k̃ = k − k′ and i = 0, 1, 2. Substituting σ2
N from (15)

into (16) and (17), and then dividing the two equations gives(
µ̂1 −

µ̂0

2∆f

)(
B

N2
s

β2(T )− e−
t0
T

3∆f2

)

−
(
µ̂2 −

µ̂0

3∆f2

)(
B

N2
s

β1(T )− e−
t0
T

2∆f

)
= 0. (19)

Here, µ̂i are the estimates of µi for i = {0, 1, 2}, found by
taking the sample mean of the temporal moments. Solving
(19) numerically for T (which is easily done using standard
numerical solvers) gives the estimate for the reverberation
time, T̂ . The estimate for the reverberation gain, Ĝ0, is then

Ĝ0 =
N2
s (2∆fµ̂1 − µ̂0)

2∆fBβ1(T̂ )−N2
s e
− t0

T̂

. (20)

The noise variance is then estimated by inserting Ĝ0, T̂ and
µ̂0 in (15).

The arrival rate, λ0, does not appear in the mean equations
(15)-(17), but in the covariances derived in Appendix. Any

Algorithm 1 Method of moments estimator
Input: Y, t0

1: Compute D from Y using (5)
2: Compute the sample means of {m0,m1,m2}, and the sample

variance of m0

3: Solve (19) numerically to find T̂
4: Use T̂ in (20) to find Ĝ0

5: Obtain σ̂2
N using Ĝ0 and T̂ in (15)

6: Estimate RY (p) from (14) using Ĝ0, T̂ , σ̂2
N , and then compute

γ̂
7: Obtain λ̂0 from (22) using Ĝ0, T̂ and γ̂

Output: T̂ , Ĝ0, σ̂2
N , λ̂0

of the covariance equations can be used. The simplest is the
equation for the variance of m0:

var(m0) =
G2

0Te
− 2t0

T

λ0
+
t2max

N4
s

Ns−1∑
p=−Ns+1

(Ns − |p|) |RY (p)|2︸ ︷︷ ︸
γ

,

(21)
where RY (p) is the autocorrelation function of Y at lag p.
Estimating γ requires the estimation of RY (p), which is done
by using Ĝ0, T̂ , and σ̂2

N in (14). The arrival rate is then
estimated as

λ̂0 =
Ĝ2

0T̂ e
− 2t0

T̂

v̂ar(m0)− γ̂
, (22)

where v̂ar(m0) is the sample variance of the zeroth temporal
moment and γ̂ is the estimate of γ.

C. Estimation procedure

Let the measurements of a SISO channel be stored in a
matrix Y ∈ CN×Ns , where N is the number of realizations
of the received signal. The first three temporal moments can
then be computed for each realization, resulting in a data
matrix D = [m0,m1,m2], where mi ∈ RN for i = 0, 1, 2.
The algorithm for estimating the parameters using method of
moments is given in Alg. 1. Note that t0 is considered as
an input to the estimator. This could either be obtained as
side information from the measurement set-up or estimated
by finding the first peak in the data. No further assumptions,
such as the number of multipath components to extract, are
required here.

IV. PERFORMANCE EVALUATION

A. Numerical experiment

To evaluate the accuracy of the estimator, we perform Monte
Carlo simulations for different values of SNR, defined as
SNR = G0TB/σ

2
N , and number of realizations, N , using

synthetic data generated from the model. The root-mean-
squared error (RMSE) of the different parameter estimates are
normalized by their ”true” values and shown in Fig. 2.

It can be seen from Fig. 2 that the RMSE of the estimates
decrease as the number of realizations (and hence the number
of data points of each temporal moment) increase. This
illustrates that the method of moments estimate is consistent.
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Fig. 2. Normalized RMSE of the different parameter estimates as a function
of number of channel realizations, plotted for different SNR values. Parameter
settings: G0 = 10−8, T = 10 ns, λ0 = 1 ns−1, t0 = 5 ns, B = 4 GHz,
Ns = 801, Number of Monte Carlo runs = 500. Note that the RMSE of
noise variance is in log-scale.

The normalized RMSE is fairly small in all four cases with
the arrival rate estimator showing the largest error. This is
expected since λ̂ is obtained as a combination of a variance
estimate and the three other estimates. The estimation accuracy
also improves with SNR. However, the improvement is less
pronounced for reverberation gain due to the high bandwidth.
Further analysis of the simulation data (not shown here) shows
that the parameter estimates are unbiased.

B. Application to measured data

To test the estimator’s applicability, we now apply it to a set
of measurement data described in [11]. The dataset consists
of channel transfer functions obtained using a vector network
analyser (VNA) in a room of dimensions 3×4×3 m3. The set-
up is SISO, with a virtual planar array of 25 × 25, resulting
in N = 625 realizations of the channel. The bandwidth of
the measured signal is 4 GHz, with Ns = 801 samples in
each channel measurement, resulting in ∆f = 5 MHz and
tmax = 200 ns. The delay of the first peak is t0 = 6 ns, found
through visual inspection of the data. The estimator was not
observed to be sensitive to variations in t0 of the order of 1/B.
For this dataset, our implementation of Alg. 1, programmed
in R version 3.4.3, took around 8 s when run on a notebook
with a dual-core Intel i7 processor and 24 GB RAM.

To further demonstrate the soundness of the proposed
method, we now use the obtained estimates to estimate the
power delay spectrum using (10). This is then compared with
the averaged power delay profile (PDP) of the measurement
data as shown in Fig. 3. The averaged PDP of simulated
signals, i.e. the simulated power delay spectrum from the
model using the estimates, is also shown. Both the theoret-
ical and simulated power delay spectrum obtained from the
estimates seem to fit the averaged PDP of the measurements,
although there is a slight discrepancy between the estimated
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Fig. 3. Figure showing the averaged PDP of N = 625 realizations of the
measurement data (black) and the simulated data (grey) versus the delay.
The estimated Py(t) computed from (10) is shown in red. The estimates
obtained are: Ĝ0 = −83.9 dB, T̂ = 7.8 ns, σ̂2

N = 2.8 × 10−10, and
λ̂0 = 10.0 ns−1. The estimated noise floor is σ̂2

N/Ns = −124.5 dB.

noise floor and the noise floor observed in the measurements.
This demonstrates that the estimator is able to extract the
model parameters accurately from real measurements without
the need for multipath extraction.

V. CONCLUSIONS

The proposed method of moments estimator can be used to
calibrate the Turin model with a constant arrival rate without
multipath extraction. The performance evaluation shows that
the parameters of the considered stochastic multipath channel
model can be estimated with good accuracy. The temporal mo-
ments, used in the estimation procedure, are easy-to-compute
summary statistics of the measurement data. Moreover, they
are informative about the parameters of the considered model,
i.e. reverberation gain, reverberation time, arrival rate and
noise variance. This estimation procedure bypasses the need
to truncate the measured impulse response via some heuristics
to estimate the decay of the power delay spectrum.

Comparison with performance bounds, such as the Cramer-
Rao bound, is hindered by the lack of a likelihood function.
Furthermore, comparison with calibration procedures involv-
ing multipath extraction with a number of heuristic choices is
non-trivial. These considerations are left for future work.

APPENDIX

The characteristic function for the received signal evaluated
at an arbitrary point v is defined as

C(v) = E
[
exp

(
j<vHY

)]
, (23)

where < denotes the real part. The joint moment of four
frequencies are obtained by letting v = [ν1, ν2, ν3, ν4]

T

and Y = [Yk1 , Yk2 , Yk3 , Yk4 ]
T . Since marked point process

{(τl, αl)} forms a two-dimensional Poisson point process with



rate p(α|τ)λ(τ) [18], we obtain by Campbell’s theorem the
cumulant generating function (log characteristic function) as

K(v) =

∫ Cα|τ
 4∑
j=1

νj exp (−j2π∆fkjτ)

− 1

λ(τ)dτ,

(24)
where Cα|τ (·) is the characteristic function for the circular
symmetric complex Gaussian p(α|τ) [20].

The covariance of the temporal moments is related to the
fourth moment of the received signal, Yk, which in turn can
be written in terms of the fourth cumulant of the signal [19,
Eq. (2.118)] as

Cov(YkY
∗
k′ , YnY

∗
n′) = Cum(YkY

∗
k′YnY

∗
n′)+E[YkY

∗
n′ ]E[YnY

∗
k′ ].

(25)
The fourth cumulant of Y is found by complex differentiation
of the cumulant generating function [19]

Cum(YkY
∗
k′YnY

∗
n′) =

24

j4
.

∂4K(v)

∂ν1∂ν∗2∂ν3∂ν∗4

∣∣∣∣
ν1,ν2,ν3,ν4=0

= 2

∫
σ4
α(t)λ(t)e−j2π∆f(k1−k2+k3−k4)tdt. (26)

With λ(t) = λ01(t > t0), we get

Cum(YkY
∗
k′YnY

∗
n′) =

2G2
0B

2

λ0

∫ ∞
t0

e−
2t
T e−j2π∆f(k−k′+n−n′)tdt

=
2G2

0TB
2ψ(k−k′+n−n′)

λ0 [2 + j2π∆f(k − k′ + n− n′)T ]
, (27)

where ψ(k−k′+n−n′) = e−t0(2/T+j2π∆f(k−k′+n−n′)). Now,
let Cov(mi,mj) = %ij1 + %ij2 . Then %ij1 , being the quadruple
sum over the cumulant expression, can be expressed in the
form of a double sum as

%ij1 =
G2

0TB
2

λ0N4
s

Ns−1∑
k̃,ñ=−Ns+1

(
Ns − |k̃|

)
(Ns − |ñ|)ψ(k̃+ñ)ai(k̃)aj(ñ)

1 + jπ∆f(k̃ + ñ)T
.

(28)
Since E[YkY

∗
n′ ] = RY (k − n′), %ij2 can be written as

%ij2 =
1

N4
s

∑
k,k′,n,n′

E [YkY
∗
n′ ]E [YnY

∗
k′ ] ai(k− k′)aj(n− n′)

=
1

N4
s

∑
k,k′,n,n′

RY (k − n′)RY (n− k′)ai(k − k′)aj(n− n′)

=
1

N4
s

Ns−1∑
p=−Ns+1

(Ns − |p|) (aj ∗RY )[p] (ai ∗RY ) [−p],

(29)

where the convolution defined as

(f ∗ g)[n] :=
∑
l

f [l]g∗[n− l].

Noticing that a0(k−k′) = tmaxδ(k−k′), var(m0) is given as
in (21).

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Carl Gustafson and
Prof. Fredrik Tufvesson (Lund University) for providing the
measurement data. This work is supported by: (1) VIRTU-
OSO, funded by Intel Mobile Communications, Keysight,
Telenor, Aalborg University, and Denmark Innovation Founda-
tion; (2) the Danish Counsil for Independent Research, grant
no. DFF 7017-00265 and performed within the framework of
the COST Action CA15104 IRACON.

REFERENCES

[1] George L. Turin, Fred D. Clapp, Tom L. Johnston, Stephen B. Fine, Dan
Lavry, “A statistical model of urban multipath propagation,” in IEEE
Trans. Veh. Technol., vol. 21, February 1972.

[2] Adel A. M. Saleh, Reinaldo A. Valenzuela, “A statistical model for
indoor multipath propagation,” in IEEE J. Sel. Areas Commun., vol. 5,
pp. 128-137, February 1987.

[3] Quentin H. Spencer, Brian D. Jeffs, Michael A. Jensen, A. Lee Swindle-
hurst, “Modelling the statistical time and angle of arrival characteristics
of an indoor multipath channel,” in IEEE J. Sel. Areas Commun., vol.
18, no. 3, pp. 347-360, March 2000.
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