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C.1. Introduction

Abstract

In this paper Discrete Material and Thickness Optimization (DMTO) is used to optimize
sandwich composite structures subject to both displacement and linear buckling constraints.
Using a new thickness formulation where density design variables scale ply thicknesses rather
than constitutive properties, it is possible to size both core and face sheet plies simultaneously.
This makes it possible to have different ply thicknesses for core and face sheet layers while
also covering ply-drops. Furthermore, separating core and face sheets allows enforcing a
symmetric lay-up which can be important to avoid warping during curing. The approach is
demonstrated in three numerical examples of increasing complexity.

Keywords Discrete material and thickness optimization; laminated composites;
sandwich structures

C.1 Introduction

Sandwich panels play an important role in many laminated composite structures. A
modern wind turbine blade is an example of a laminated composite structure, and
in this work the use of sandwich panels will mainly be discussed in this context.
In wind turbine blades sandwich panels are used to carry shear loads in a weight-
efficient manner while preventing local buckling. The internal shear webs carry the
shear load resulting from flapwise loads, and the sandwich parts in the aerodynamic
shell carry the shear load from edgewise loads. A typical wind turbine blade cross
section with flapwise and edgewise load directions can be seen in Figure C.1. The use
of sandwich panels in wind turbine blades is described in more detail in Thomsen
(2009).

Sandwich regions

W u Flaowi
apwise
M Core load

B Biax Edgewise
Glue load

Fig. C.1: Typical wind turbine blade cross section. Monolithic regions are mainly uni-directional
(UD) plies, while sandwich regions often use biaxial angle plies (£45°) as face sheets, and balsa
or foam as core material.

Monolithic regions

Sandwich panels in wind turbine blades often use PVC foam or balsa wood as
the core material. Balsa is available as flexible grid-scored panels and a sample can
be seen in Figure C.2. Flexible panels conveniently allow placing material in double
curved molds. Furthermore, the cuts allow resin flow during the infusion process.
Balsa panels are available in various thicknesses, typically ranging from 1/4 inch
(6.35 mm), up to approximately 50 mm. On each side the sandwich core is covered by
face sheets, sometimes called skins. The sandwich face sheets used in wind turbine
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Paper C. DMTO of sandwich structures

blades typically consist of several glass fiber reinforced plastic (GFRP) plies. Often
GFRP biaxial angle plies of +45° are used to provide damage tolerance and high
shear stiffness.

Fig. C.2: Flexible end-grain balsa panel (Courtesy of nord compensati).

Many composite structures are variable stiffness structures with both varying
thickness and varying lay-up. When it comes to determining the lay-up throughout
the structure, structural optimization is often essential. Recent reviews on optimiza-
tion of laminated composite structures can be seen in Nikbakt et al. (2018) and Xu
et al. (2018). From these reviews it is clear that heuristic methods, such as genetic algo-
rithms, are very popular for optimization of laminated composite structures. Heuris-
tic methods are convenient since they can handle discrete design variables without
modification. Discrete design variables can represent an integer number of plies or
the choice of fiber angle from a finite set of candidates, such as +45°,0°, and 90°.
Recent examples of the application of genetic algorithms to determine the lay-up of
wind turbine blades can be found in Pirrera et al. (2012), Chen et al. (2013), Barnes
and Morozov (2016), and in Albanesi et al. (2018).

The more general case of optimizing composite panels using heuristic methods
while considering manufacturability is studied in, e.g., Kim et al. (1999), Kristinsdot-
tir et al. (2001), Soremekun et al. (2002), Adams et al. (2004), Irisarri et al. (2014), and
Fan et al. (2016). Kim et al. (1999) divide a structure into patches, which are then in-
dividually optimized with regard to the patchwise number of plies and fiber angles.
Kristinsdottir et al. (2001) ensure continuity of plies across different panels (blending)
by defining a key panel from which each ply emanates to adjacent regions. Adams
et al. (2004), instead use a guide-based blending. Here the lay-up of all panels can
be obtained by removing a number of plies from the guide laminate. Irisarri et al.
(2014) use guide-based blending combined with a large number of manufacturing
constraints to optimize a 18-panel test problem. However, in general, while heuris-
tic methods are convenient for composite structures, they become computationally
demanding for many design variables.

For a larger number of design variables gradient-based methods are more efficient,
but require the design variables to be continuous. Examples of the sizing of wind
turbine blades using gradient-based methods while considering the lay-up in terms
of continuous thicknesses can be found in Bottasso et al. (2014), Forcier and Joncas
(2012), Buckney et al. (2013), and Sjelund and Lund (2018). However, the use of
continuous variables comes with the disadvantage that subsequent post-processing is
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C.1. Introduction

required to obtain a manufacturable lay-up (for example rounding thicknesses to a
finite number of plies).

Another approach which can improve manufacturability is multi-step methods
where successive optimizations are performed iteratively. Examples of multi-step
methods can be found in, e.g., IJsselmuiden et al. (2009); Bloomfield et al. (2009); Liu
et al. (2011); Irisarri et al. (2016); Peeters and Abdalla (2016). IJsselmuiden et al. (2009)
first take thicknesses and lamination parameters as continuous design variables, and
then secondly use a discrete guide laminate approach to ensure blending. Bloomfield
et al. (2009) and Liu et al. (2011) use a similar approach, while the latter also compare
results to a smeared stiffness approach. Irisarri et al. (2016) and Peeters and Abdalla
(2016), a combination of subsequent thickness, fiber angle, and stacking sequence
optimizations are performed to retrieve high performance fiber steered and variable
thickness panels.

A gradient-based method which allows each ply to choose between a number of
candidate materials is the Discrete Material Optimization (DMO) method in Stegmann
and Lund (2005). The candidate materials can simply correspond to different fiber
angles, but can also include, e.g., a core material candidate. To avoid (or limit) the
amount of post-processing, intermediate values of design variables are penalized in
order to obtain an (almost) discrete result. This method is used to optimize a wind
turbine main spar subject to multiple criteria in Lund et al. (2008). An extension to
the DMO method is the shape function with penalization (SFP) parameterization by
Bruyneel (2011), which can reduce the number of candidate design variables. This
is done by letting each of the four vertices in a 2D natural coordinate system rep-
resent a candidate, and using shape functions to calculate candidate weights. This
approach is extended to 3 and 8 candidate materials in Bruyneel et al. (2011), and
generalized to any number of candidates with the bi-valued coding with penalization
(BCP) approach by Gao et al. (2012).

A development of this method is Discrete Material and Thickness Optimization
(DMTO) which, in addition to material candidate choices, allow for thickness changes,
see Sgrensen and Lund (2013); Serensen et al. (2014) and Gao et al. (2013). In this
method each ply also has a density design variable (ranging from 0-1) that determines
if there should be material or not, like in topology optimization. The choice of material
or not in a certain layer is in practice accomplished by scaling constitutive properties.
The DMTO method has recently been extended by a new thickness formulation in
Sjolund et al. (2018). With the new thickness formulation, the density variables scale
ply thicknesses rather than the constitutive properties. The new thickness formulation
thereby allows for internal ply-drops without causing non-physical voids.

This paper will show how the DMTO method combined with the new thickness
formulation can be used to simultaneously find the optimal number of core and
face sheet layers in a sandwich structure, while also considering multiple fiber an-
gle choices for each of the face sheet plies. Furthermore, it will be shown how the
new thickness formulation also allows enforcing a symmetric lay-up, which is im-
portant to avoid warping during curing. Moreover, it allows ply-drops to be covered
which is essential to avoid delaminations. Finally, the approach will be demonstrated
in a number of numerical examples with multiple conflicting structural criteria such
as buckling and displacement.

109
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The DMTO method including manufacturing constraints is described in Section
C.2. The used optimization approach is explained in Section C.3. The method and
optimization approach are demonstrated in three numerical examples in Section C.4.
Finally, the conclusion is given in Section C.5.

C.2 Method

C.2.1 Parameterization

In the DMTO method there are both density and material candidate design variables.
A density design variable determines if there should be material or not in a layer
within a given domain. The density design variable vector p is defined such that:

1 if there is material in layer I of domain d
par = { y (C.1)

0 otherwise

Furthermore, material candidate design variables allow each layer within a patch
to choose between different material candidates. Candidate materials can either be
different fiber angles (e.g. UD/0°, UD/90° etc.), entirely different materials (UD/0°,
Balsa), or a combination. The material candidate design variable vector x is defined
such that:

Xy = { 1 if candidate c is selected in layer ! of patch p C2)

0 otherwise

Here both patches and domains refer to groups of finite elements. The distinction
between patches and domains allows individual parameterizations for both densities
and material candidates. An example of this is shown in Figure C.3. In this figure
every element is also a domain, while there is only one patch containing all elements.
Consequently, in a given layer the candidate choice is the same for all elements, while
the density can vary in each layer in every element.

Domain 1 Domain 2 Domain 3 Domain 4 Domain 5
X14¢ P4 % L
X13¢ P13 P23 P33 P43
X12¢ P12 P2 P32 P42 Ps2
Xlic Pu P21 P31 P4 Ps1 /
S~— -
T~
Patch 1

Candidate 2:
Candidate 1:
Fig. C.3: Example of parameterization into domains and patches. Here each element is a domain,

while all elements are included in the single material candidate patch. Hatched layers represent
zero density.

The usual method to include material candidate design variables in the problem,

is to relax the integer requirement of the design variables and let the constitutive
properties be a weighted sum of each of the candidate constitutive properties. If E; is
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the constitutive properties of candidate c, then the effective constitutive properties of
layer I in element e can be written as:

e
E; = Z xplCEC/ Xple € [0;1] (C3)
c—1

where n. is the number of candidate materials. To ensure a material choice it is
required that the sum of material candidates is equal to one, i.e.:

Tle
Y o xpe=1, Y(p,I) (C.4)
c=1

To favor discrete design variables implicit penalization is used. Implicit penaliza-
tion is used to reduce constitutive properties for intermediate design variables. For
multiple candidate materials penalization schemes can be found in, e.g., Hvejsel and
Lund (2011). The multiphase RAMP (rational approximation of material properties)
scheme, originally introduced in Stolpe and Svanberg (2001), is given as:

Xplc

1+p (1 —xplc)

where p is a penalization factor. To introduce penalization in the formulation (C.3) is
re-written to:

(C.5)

w(x) =

¢
E,; = Z w (X) E., Xplc € [O, 1] (C.6)
c=1

The RAMP scheme is shown in Figure C.4 where it can be seen that a design variable
xpc = 0.5 only provides 17% stiffness for 50% mass when using a penalization factor
of p=4.

RAMP penalization

——p = ¢ = 0 (unpenalized)

v(par)

T

e

oo
T

o
o)

7§O% mass

N
~

117% stiffriess/thicknes

o
)

Penalized function w(z,.) o

(==}

0.2 0.4 0.6 0.8 1
Design variable x,;. or pg

S

Fig. C.4: The RAMP penalization scheme for p = g = 0 (no penalization) and p = q = 4.

111



Paper C. DMTO of sandwich structures

The density design variables are used to scale the ply thicknesses. The approach of
scaling ply thicknesses rather than constitutive properties is introduced in the recent
work by Sjelund et al. (2018). With this approach a density of one corresponds to the
real ply thickness, a density of zero results in zero ply thickness, and intermediate
densities yield intermediate pseudo ply thicknesses. This corresponds to a thickness
in layer | element e of:

Fer = partpi (C7)
where £, is the physical ply thickness of the material candidates of layer I in patch p,

assuming that these candidates have the same physical ply thickness. Again, to favor
discrete density design variables, a RAMP scheme is used such that:

P
>{p) 1+q(1—pa) ©8)
where g is a penalization factor. Substituting (C.8) into (C.7), the effective ply thick-
ness is written as:
Eel =0 (p) tpl (C9)
Again the RAMP scheme is shown in Figure C.4 where it can be seen that a density
of pg; = 0.5 corresponds to a ply thickness of 17% of the physical ply thickness for
50% mass when using a penalization factor of g = 4. The multiphase SIMP scheme
in Hvejsel and Lund (2011) has also been implemented for both density and material
candidate design variables, but for simplicity only results obtained using the RAMP
scheme are presented. Numerical tests have shown very similar performance of the
two schemes for the examples presented.
Introducing the density design variables completes the parameterization, which
can be summarized as:

E, = i w (x) E (C.10)
Fy = vc(,l;) - (C.11)
f‘, xpe=1 Y(p1) (C.12)
;el 16 [0;1] ¥ (e1) (C.13)
xp1c € [0;1] ¥ (p,1Lc) (C.14)

In this paper the parameterization is demonstrated in three examples where the
structural mass is minimized while subject to a combination of either compliance,
displacement, or buckling constraints. In these cases zero thickness plies are unprob-
lematic. However, allowing for zero thickness plies in laminate design with strength
constraints may result in singular optima as demonstrated in Bruyneel and Duysinx
(2006). For the standard DMTO approach it has been demonstrated in Lund (2018)
how strength constraints can be included by using suitable penalization factors that
are different from those that interpolate stiffness parameters, in order to remove the
singular optima problem. However, for the new thickness formulation demonstrated
in this paper the inclusion of strength constraints is left for future work.
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C.2.2 Comparison with the original DMTO

In the original DMTO method, see Serensen and Lund (2013), Serensen et al. (2014),
and Serensen and Lund (2015), density design variables scale constitutive properties
rather than ply thicknesses (like the candidate design variables). A consequence of
the original approach is that intermediate voids arise if material is not removed from
the top, as visualized in Figure C.5 (left). With the new thickness formulation, where
densities scale ply thicknesses, intermediate voids can no longer occur, see Figure C.5
(right).

Original DMTO New thickness formulation

Pi3=0—> ?13=0

P13=0—>E;=0 N

Fig. C.5: Visualization of a density change in the original DMTO method (left) and with the new
thickness formulation (right). In the original DMTO method density variables scale the consti-
tutive properties, and thereby intermediate voids can occur. In the new thickness formulation
density variables scale ply thicknesses instead.

C.2.3 DMTO for sandwich structures

The new thickness formulation adds new possibilities regarding utilization of DMTO
for manufacturable sandwich structures. First it is possible to size both inner core
layers and outer face sheet layers simultaneously without introducing intermediate
voids. The separation of core and face sheet plies makes it possible to have individual
constraints on, e.g., the number of face sheet and core plies respectively. This sepa-
ration also makes it possible to have different ply thicknesses for core and face sheet
layers which is very relevant when using balsa as core material in combination with
GEFRP for face sheet layers. Next, since material does not have to be removed from
the top, it is straightforward to constrain the face sheets to be symmetric around the
core. Enforcement of symmetry removes the membrane-bending coupling which may
be important to avoid warping during curing. Furthermore, the number of design
variables can potentially be halved. Moreover, the new thickness formulation also
makes it possible to cover ply-drops with continuous external plies which is impor-
tant to avoid delaminations. Hence the parameterization allows determining both the
discrete number of face sheet plies, face sheet fiber angles, the total core thickness
as a multiple of a base plate thickness (e.g. 1/4"), while simultaneously ensuring a
symmetric and manufacturable result.

The approach of separating core and face sheet layers is exemplified in Figure C.6.
Here the dashed lines divide the eight layers through-the-thickness into a number
of groups. The first group is the two outer layers 1 and 8 shown in green. These
outer layers should always be present in order to cover ply-drops and also ensure at
least one face sheet layer. The next group is a number of additional face sheet plies,
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layers 2-3 and 6-7 shown in grey, which may be required for sufficient stiffness and
strength. Moreover, in all face sheet layers, a number of candidate materials (fiber
angles) are present. Finally, the last group is the core layers, shown in orange. Here
the core layers are shown as balsa which has a different ply thickness than the face
sheet layers.

In this example it can also be seen that the ply-dropping order is fixed in advance.
For the additional face sheet plies, those closest to the outer surface are removed first
such that p13 > p12, and p16 > p17, while core plies are simply removed from the top.
The method used to enforce the ply-dropping order is slightly more complicated than
simply constraining, e.g., p16 > p17. Instead, so-called thickness constraints are used,
explained in more detail in Section C.2.4.

The parameterization shown in Figure C.6 can be thought of as a guide laminate
for all elements grouped in a material candidate patch. The lay-up of all domains
located in the patch can be formed from the guide laminate. Taking offset in Figure
C.3, but using the guide laminate in Figure C.6, an example of a feasible and locally
symmetric lay-up is shown in Figure C.7. Also shown in this figure is the thick-
ness of dummy layers. Dummy layers have close to zero stiffness and can be used
in combination with mid-plane reference shell elements to obtain an offset material
removal during optimization. The dummy layer approach is explained in more detail
in Sjolund et al. (2018).

Constant face- P
sheet layer (top) [ (Face) Pig 5 18¢
Additional face- | (Face) P17, Xize P16 > P17
sheet layers (top)
(Face) P1e, Xi6c tDecreasing p
P1s
Core layers (Cor) P1a> P13
P14
(Core) TDecreasing p
Decreasin
Additional face- | (Face) P13, X13c i &P
sheet layers (bot)
Facey P12, Xne | P3> P12
Constant face-
X
sheet layer (bot) (Face) P, llc

Fig. C.6: Parameterization allowing the simultaneous sizing of groups of face sheet and core
layers.

¢ i l Thickness of
dummy layers

]
]

Fig. C.7: An example of a feasible variable thickness lay-up of five elements based on the pa-
rameterization shown in Figure C.6.
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C.2.4 Manufacturing constraints

Thickness constraints (Ply-drop order)

In the original DMTO method, Serensen and Lund (2013) formulated thickness con-
straints to prevent ‘density bands’. Density bands correspond to densities through-
the-thickness settling on the same intermediate value. These thickness constraints pre-
vent density bands by enforcing a difference in density in subsequent layers. Thick-
ness constraints work by limiting the maximum density in layer [ + 1 based on the
current density in layer [ such that:

Pag+1) < f (o, T) (C.15)
where f is a piecewise linear function defined as:
f1(0a, T) = arpa, ifoy <1-T
foar, T) = _ (C.16)
f2 (a1, T) = agpg; + by, otherwise
T 1 2T —1
where a; = =7 2= a b, = —

and T is a parameter in the range 0 < T < 0.5 that controls the slope of f; and f,. For
T = 0.5 the equation reduces to p;(; 1) < pg- The thickness constraint is plotted for
different values of the T parameter in Figure C.8. The influence of the T parameter
on the maximum allowable density in subsequent layers is visualized in Figure C.9.

Thickness constraints also govern the ply-drop order. In the original DMTO
method, plies are always removed from the top to prevent intermediate voids. How-
ever, intermediate voids can not occur with the new thickness formulation, and hence
any ply-drop order can be used.

In this paper thickness constraints are defined individually for core plies, addi-
tional face sheet layers above the core (top), and additional face sheet layers below
the core (bot), in the directions shown with arrows in Figure C.6. In this figure, the
thickness constraint for the core plies corresponds to pg5 < f (p44,T). Denoting cq
as the first core layer and ¢, as the last core layer, the core thickness constraints can
generally be written as:

Pai1) < f (par, T), Vd, l=ci,c1+1,...,ce—1 (C17)

For the additional face sheet layers above the core (top), this can similarly be written
as:

pagr1) < flea, T), Vd, I=ce+lce+2,...,n =2 (C.18)

where the first layer is c, + 1, and the last layer is n; — 2 because the constant top layer
is not included. Finally, in the additional face sheet plies below the core, the direction
is reversed. Taking offset in Figure C.6 this corresponds to pz5 < f (p43, T). In general
this is written as:

pd(l—l) S f (Pdl/ T) , Vd, | = C1 — 1, 1 — 2, e ,3 (C19)

where the first layer is ¢; — 1, and the last layer is 3 (defining the thickness constraint
between layers 3 and 2), since the first ply is constant.
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Thickness constraint

e
o0

N o
EN o

Max. density of layer [ + 1, p..1)
()
to

0 = 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Current density of layer [, p;

Fig. C.8: Plot of thickness constraint for different values of the T parameter. The thickness
constraint uses the current density of layer ! to determine the maximum density of the layer

above [ + 1.

T=0.1 T=0.2 T=0.3 T=0.4

|
,015,max = 0 00 p15,max = 0 0] p[imax = 016 p15,max = 0 75

D Pis S f(pl-.bD

P 14max ~ 0.01 P 14,max ~ 0.05 Plamax = 0.36 Pi4max = 0.83
y ‘> Prs < fip1sT)

ij’,max = 0 06 p13,max = 0.20 p13,max =0.73 p13,max =0.89
\ ‘> Pi3 < fip;nT)

,0]2,max =055 p12,max =0.80 p12,max =0.88 p12,max =0.93
‘ ! : > P12 < fip1, )

py =095 0, = 0.95 py, = 0.95 0, = 0.95

Fig. C.9: Visualization of the maximum allowable density in each of the five layers for different
T values, when the first layer has a density of 0.95.

Symmetry

When the thickness constraints are defined separately for face sheets and core, it is
straight forward to enforce symmetry of the face sheet layers around the core. This
guarantees a symmetric lay-up if only one core material candidate is used. Symme-
try is often important to uncouple the membrane and bending response which can
cause warping during curing. A symmetric density in the face sheets in Figure C.6
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corresponds to:

P11 = P18 (C.20)
P12 = P17 (C.21)
P13 = P16 (C.22)

while symmetric material candidate choices similarly correspond to:

X11c = X180 Ve (C.23)
X12¢ = X17¢ Ve (C.24)
X13c = X16c  VC (C.25)

Hence symmetry of face sheets can easily be included by a number of linear con-
straints. Another option is to let a design variable represent a bottom face sheet layer
and its symmetric counterpart simultaneously, and thereby potentially halving the
number of design variables. However, in this paper the former solution of using lin-
ear constraints is used due to being simpler to implement in the current framework.

Ply-drops

Another important manufacturing constraint is the ply-drop rate, sometimes mea-
sured as the tapering angle of the laminate, or simply the distance between subse-
quent ply-drops. Ply-drops lead to stress concentrations which follow from the sud-
den stiffness change and the resin rich triangular areas in the vicinity of the dropped
plies. A minimum allowable distance between subsequent ply-drops hence ensures
that the resulting stress concentrations do not influence each other. Dropping a balsa
core ply yields a larger thickness change than dropping a face sheet layer, but in prac-
tice the balsa is usually machined to a triangular shape to reduce the resin pocket and
thereby also the stress concentrations. In the following a face sheet or a core ply-drop
are not distinguished.

Here the ply-drop rate is considered in terms of an allowable change in density
from one domain to another as also done in Serensen et al. (2014). The change in den-
sity from one domain to another corresponds to the number of plies being dropped,
and given the dimensions of a domain it also implicitly corresponds to the distance
between subsequent ply-drops (in an average sense if domains are larger than the
minimum allowable distance between ply-drops). The change in density between two
domains is simply the difference in the sum of densities. Hence if S is the maximum
allowable number of plies that can be dropped from one domain to another, then the
constraint can be formulated as:

1
-s<) (Pdl _P(d+1)l) <S (C.26)
=)

where domain d and domain d + 1 are adjacent domains.
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C.3 Optimization approach

The gradient-based optimization approach is based on shell finite element models.
Sensitivities are found in a semi-analytical manner, and the optimization problem is
solved using sequential linear programming (SLP). The overall approach is visualized
in the flowchart in Figure C.10. Details of the approach will be described in the
following subsections. In general the approach is based on the implementations in
Serensen and Lund (2013); Serensen et al. (2014); Serensen and Lund (2015).

Initialize

Y

Finite element
analysis

Y

Design sensitivity
analysis

Yes
Converged? Final penalization?

No

Increase penalization

Update thickness
constraints

Y

Update
move-limits

Y

Linear
programming

Y

Update design
variables

Stop optimization

Y

Fig. C.10: Flowchart of optimization approach.

C.3.1 Finite element analysis

The finite element analysis is based on equivalent single layer (ESL) shell elements.
The shell elements use a 9-node isoparametric formulation as in Panda and Natarajan
(1981). The shell element is implemented in the in-house research code referred to as
the MUltidisciplinary Synthesis Tool MUST (2018). In the finite element method the
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discretized static equilibrium is written as:
KD =F (C.27)

where F is the global force vector, K is the global stiffness matrix, and D is the global
displacement vector. The global stiffness matrix is assembled from element stiffness
matrices. The element stiffness matrix of element e can be written as:

n
Ke=Y [ (Ba) EaBaaV (C.28)
=1

where B, is the strain-displacement matrix and E,; is the constitutive matrix.
Buckling load factors A; can be found by solving the linear eigenvalue buckling
problem given as:

(K n /\ng) ® =0 j=12... (C.29)

where @ is the mode shape associated with buckling load factor A, and K, is the
global stress stiffness matrix. The global stress stiffness matrix is assembled from
element stress stiffness matrices given as:

n
Koo =Y /V (Ger)" SGydV (C.30)
=1

where G, is a matrix containing derivatives of shape functions and S, is a matrix
containing layer stresses.

C.3.2 Design sensitivity analysis

Design sensitivities are found using the semi-analytical direct differentiation ap-
proach. In the direct differentiation approach the sensitivities of the displacements
D are found by differentiating the discretized static equilibrium in (C.27). If z; is a
generic design variable this can be written as:

dD oK oF

pr _B_ziD + oz (C.31)
where the right-hand side is usually called the pseudo load vector. In this paper the
external loads F are considered independent of the design variables, and hence the
last term vanishes. The approach is semi-analytical meaning that the partial derivative
of the global stiffness matrix is based on finite difference calculations of the element
stiffness matrices. Furthermore, the sensitivity of buckling load factors depends on
the partial derivative of the global stress stiffness matrix, which is also based on finite
difference calculations of element stress stiffness matrices. See, for example, Lund
(2009) for more details on buckling load factor sensitivities.
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C.3.3 Optimization

Sequential linear programming is used to optimize the problem. In this approach the
problem is linearized with respect to the design variables, and linear programming
is used to find the change in design variables that minimizes the objective while
satisfying the linearized constraints. This is done sequentially until convergence is
achieved. The linear programming problem is solved using the Sparse Nonlinear
Optimizer SNOPTA by Gill et al. (2005).

Adaptive move-limits and merit function approach

Since the linearization is only valid for small changes in design variables, move-limits
are used to control the allowable changes. To help convergence adaptive move-limits
combined with a merit function approach is used, see Serensen and Lund (2015) for
details. The merit function ensures the feasibility of the problem by penalizing the
objective function depending on the infeasibility. Adaptive move-limits are used to
tighten the move-limits if the merit function oscillates.

Penalization and continuation approach

Penalization is used to favor discrete design variables. However, if high penalization
powers are applied early in the optimization, it is likely to end up in a sub-optimal
local optimum. To find a strong local optimum a continuation approach is used. In
the continuation approach penalization factors are increased in steps. In this paper
the penalization factors are increased whenever convergence is achieved with current
penalization. Penalization powers for both candidate materials, p, and density g, are
used in the following steps:

p={1,4,20} (C.32)
g = {0,4,20} (C.33)

Convergence

Convergence of the optimization is defined in terms of a relative change of the merit
function. The relative change in merit function can be written as:

H D) — Dy
q)k—l

< tol (C.34)

where @y is the merit function in iteration k and tol is the convergence tolerance.
Whenever convergence is achieved, penalization powers are increased. When conver-
gence is achieved with the final penalization powers the optimization is terminated.
In general a convergence tolerance of 1072 is used in the examples. Furthermore,
termination is only allowed if the maximum infeasibility is less than a given tolerance
(here taken to 1%).
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Measures of non-discreteness

Measures of non-discreteness are introduced to quantify the non-discreteness of de-
sign variables. A measure of 0% means that all design variables are fully discrete
(either 0 or 1), while 100% non-discreteness means that all design variables are 0.5.
The measure of density non-discreteness, My, is based on the one used in Sigmund
(2007), and is given as:

4 V 1-—
Mdnd _ Ze,l elpel( Pel) 100% (C.35)

Ze,l Vel

The measure of candidate non-discreteness, M4, is taken from Serensen et al. (2014)
as:

2
1_ nlc
Yo VelP?[ H?C:1 < 1_xil )
e 100% (C.36)
Yoo Verper °

Mcnd =

C.4 Numerical examples and results

Three numerical examples will demonstrate the application of DMTO for sandwich
structures. All examples use the material properties listed in Table C.1. The GFRP UD
values are taken from Serensen et al. (2014) and correspond to typical material values
for epoxy infused GFRP with a fiber volume fraction of 50 %. In this table GFRP biax
corresponds to the equivalent properties of a 45° laminate based on the GFRP UD
properties. The GFRP biax material will in the following sections simply be referred
to as biax.

The results obtained will depend on the initial design variables, and it is impor-
tant not to favor a particular candidate material in advance. Initial candidate design
variables are equally distributed such that each candidate will have the same initial
material weight. Moreover, all examples are started from a full density configuration.
The finite element analysis for all presented examples is based on equivalent single
layer (ESL) shell elements, however the new DMTO thickness parameterization has
also been implemented for solid shell elements, see Sjolund et al. (2018).

No detailed mesh convergence study is included, but it is checked that doubling
the number of elements in example 2 only increases the tip displacement by 0.16 %
and the first buckling load factor by 0.09 %, while for example 3, quadrupling the
number of elements (halving element edge length) increases the tip displacement by
1.32 %, and the first buckling load factor by 2.51 %. These mesh sensitivities are
calculated based on initial models. However, in general the results are relatively mesh
insensitive due to the patch/domain parameterization.

All numerical examples have been run on a 24 core Intel Xeon i5 workstation run-
ning at 3 GHz. Most time is spent on sensitivity analysis which is very parallelizable,
and hence more complicated structures can be optimized given more computational
resources or time. The number of design variables in the three examples are 28, 434,
and 2672, respectively.
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Property GFRP UD GFRP biax Balsa Units
En 34.00 13.09 0.21 GPa
Ex 8.20 13.09 0.21 GPa
Ess 8.20 8.20 6.84 GPa
G12 4.50 9.55 0.08 GPa
G13 4.50 3.52 0.24 GPa
Ga3 4.00 3.52 0.24 GPa
0 1910 1910 220 kg/m>
v1p 0.29 0.45 0.23 -

13 0.29 0.29 0.01 -

13 0.29 0.29 0.01 -

t 1.00 1.00 6.35 mm

Table C.1: GFRP material properties used in all examples.

C.4.1 Examplel

In this example the mass of a simply supported (SS) square plate is minimized while
subject to both compliance and buckling constraints. The plate is loaded by a resulting
compressive force of 20 kN distributed on the right edge. The boundary conditions
and dimensions can be seen in Figure C.11. The figure also shows the used 12x12 finite
element discretization. All elements are grouped together into one material candidate
patch and one density domain, resulting in a relatively simple constant stiffness plate.
The problem is solved with 20% initial move-limits and thickness constraints with the
T-parameter in (C.16) of T = 0.3 .

The lay-up including possible material candidates is given in Table C.2. The outer
layers (1 and 8) have fixed full density, while the density of the remaining layers is
free to vary. The biax candidate corresponds to biaxial angle ply of +45°. Elastic
properties are listed in Table C.1. In order to assess the influence of each of the
constraints the optimization is performed in three cases:

* Minimize mass with constraint on compliance
¢ Minimize mass with constraint on buckling

¢ Minimize mass with both constraints

Layer(s) Thickness Candidate(s) Density
1 1 mm UD/0°, UD/90°, biax Fixed
2-3 1 mm UD/0°, UD/90°, biax Free
4-5 6.35 mm Balsa Free
6-7 1 mm UD/0°, UD/90°, biax Free
8 1 mm UD/0°, UD/90°, biax Fixed

Table C.2: Lay-up and material candidates.

122



C.4. Numerical examples and results

SS
H
>
: —
H
> -~
> <~
> )
§> <
LY/90° -
e X/0° SS le——
SS g > F
H
>
> -
ﬁ
> -~
> <
H
> SS -
2m

Fig. C.11: Finite element mesh and boundary conditions of the square plate used in example 1.
All edges are simply supported (SS), the left edge is also supported in the X-direction, and the
center node is constrained in the Y-direction to prevent rigid body displacements.

Results

In the first case the mass is minimized with the compliance constrained to be less than
4.15 J. This compliance corresponds to a maximum edge x-displacement of approxi-
mately 0.21 mm. The result is visualized in 3D with layer thicknesses scaled by 20 in
Figure C.12. The result uses four UD/0° layers and zero balsa core layers. This is to
be expected as the stiffness/weight ratio favors UD/0° compared to balsa and other
candidates. The optimized result can also be found in the first column of Table C.3.
Here grey cells indicate zero density. Note that a subsequent buckling analysis of this
design reveals a low buckling load factor of 0.031.
7 UD/0°
Y/90° Biax/0°
T<X/Oo Balsa/0°

Fig. C.12: 3D visualization of the compliance constrained result with layer thicknesses scaled by
a factor of 20.
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In the second case the mass is minimized with a constraint on the minimum
buckling load factor to be larger than 4.10. The optimized result is shown in Figure
C.13, and listed in the second column of Table C.3. Here the maximum number of
balsa layers are naturally present since it is a weight efficient way to increase the
bending stiffness. Furthermore, biax is preferred in four face sheet layers over UD/0°
and UD/90°. However, while the buckling load factor is much higher than in case 1,
the stiffness is also lower (compliance is increased).

7 UD/0°
T<Y/90° Biax/0°
X/0° Balsa/0°

Fig. C.13: 3D visualization of the buckling constrained result with layer thicknesses scaled by a
factor of 20.

In the third case constraints on both compliance and buckling are imposed. As
can be seen in Figure C.14 a compromise is achieved. The compromise contains two
UD/0° layers for sufficient longitudinal stiffness while two balsa and two biax layers
are chosen for sufficient buckling strength. The weight is only slightly larger than in
case 2, due to requiring 100% density in layers 3 and 6 rather than 99%.

7 UD/0°
Y/90° Biax/0°
%X/OO Balsa/0°

Fig. C.14: 3D visualization of the combined result with layer thicknesses scaled by a factor of 20.

Comparison of results

The result in the compliance constrained case is very intuitive as UD/0° has the
highest specific stiffness, and no bending stiffness is needed. Layers 3 and 6 only
reach a density of 94%, since this is sufficient to satisfy the compliance constraint.
However, with increased penalization these layers can be brought closer to 100%.
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The buckling result is also somewhat intuitive. The maximum number of balsa
layers are used to provide bending stiffness in a weight efficient manner. The face
sheet layers are chosen as biax (+45°). A density of 99% of layers 3 and 6 is needed
to satisfy the buckling constraint. To compare the influence of biax layers compared
to UD/0°, it is possible to evaluate the same density configuration, but replacing biax
with UD/0°. This yields a buckling load factor of 3.17, i.e. significantly lower than
4.10.

This can also be used to explain the little mass difference in the combined case.
The external layers (1 and 8) are the most important layers with regard to bending
stiffness. Changing these layers to biax almost brings the buckling load factor from
3.17 to 4.10. Changing the density of the UD/0° layers 3 and 6 from 99% to 100%
is thereby enough to satisfy the constraint. This one percent density change also
corresponds to the increase in mass. However, note that the one percent increase in
density corresponds to a higher increase in stiffness due to penalization.

Compliance Buckling Combined
C <415 A > 4.10 Both

Layer(s) Dens. Cand. | Dens. Cand. | Dens. Cand.
1 100%  UD/0° 100% Biax 100% Biax
2

3 99°%

4 100% Balsa 100% Balsa
5 100% Balsa 100% Balsa
: 59°%

7

8 100%  UD/0° 100% Biax Biax
Mass 29.61 41.69 41.82
Compliance 4.15 (7.91) 4.15
Buckling (0.031) 4.10 4.11
M,a 2.50 % 0.41 % 0.06 %
Mpa 0.0 % 0.0 % 0.0 %

Table C.3: Minimization of mass of plate subject to a compliance constraint, a buckling con-
straint, and both constraints simultaneously. Grey cells indicate zero density.

C.4.2 Example 2

In the next example the mass of a closed cylinder is minimized while subject to
displacement and buckling constraints. The finite element model, dimensions and
boundary conditions can be seen in Figure C.15. The cylinder is divided into 20 den-
sity domains, while all elements are included in one material patch. The cylinder
is manufactured in an external single sided mold, and hence the outer geometry is
constant. Therefore, during optimization, material is removed from the inside. This
corresponds to an offset material removal during optimization which is achieved us-
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ing the dummy layer approach. The problem is solved with 15% initial move-limits
and thickness constraints (C.16) use T = 0.3. The allowable density change between
adjacent domains is set to S = 2 corresponding to a maximum of a single ply-drop in
both face sheets (due to symmetry) or two ply-drops in the core.

Domain 1
Domain 2

Node used for displacement
constraint

F=1000 kN

Fig. C.15: Finite element model, boundary conditions, and domains of the cylinder used for
example 2.

The lay-up including material candidates can be seen in Table C.4. The external
layers have fixed full density with biax as the only material candidate. The other face
sheet layers have free density and two material candidates in UD/0° and biax while
core layers are balsa. The full density thickness is 57.4 mm as shown in Figure C.15,
but it may be changed during optimization in each of the domains. To reduce the
number of design variables, face sheet layers are taken to have a ply thickness of 2
mm rather than 1 mm. Again the minimization of mass is performed in three cases:

Layer(s) Thickness Candidate(s) Density
1 2.0 mm Biax Fixed
2-8 2.0 mm UD/0°, biax Free
9-12 6.35 mm Balsa Free
13-19 2.0 mm UD/0°, biax Free
20 2.0 mm Biax Fixed

Table C.4: Lay-up and material candidates.
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* Minimize mass with constraint on end displacement
* Minimize mass with constraint on buckling

¢ Minimize mass with both constraints

Results

The resulting lay-up from the case with only a displacement constraint can be seen in
Figure C.16 while results are listed in Table C.5. Both the thickness distribution and
choice of candidates are as expected. Most material is placed towards the constrained
end, and UD/0° is chosen for the maximum bending stiffness. However, it is inter-
esting to note that all sandwich layers have been removed. This is because sandwich
layers will push the internal face sheet layers inward (due to the fixed outer geometry)
and thereby lower the area moment of inertia of the cross section.

—~ 60

E m UD

=40 Biax

a ® Balsa

Q | = Dalsd]

2 20

=

<=

~ 0 X
0 2 4 6 8 10 12 14 16 18 20

Blade length (m)

Fig. C.16: Cylinder lay-up resulting from mass minimization with a displacement constraint.
The X-axis corresponds to the outer surface of the cylinder.

Next, the lay-up from the case with only a buckling constraint can be seen in
Figure C.17. Here the maximum amount of four balsa layers is used from 0-14 m. The
face sheet layers are dominated by biax candidates, although, perhaps surprisingly,
there are also three layers of UD/0°. However, the UD/0° layers are the first to be
dropped, and one of these layers in fact only exists in a single domain. As a check the
optimized density configuration can be evaluated with only biax or UD candidates
available in the face sheets. Only having biax candidates yields a buckling load factor
of 3.16, while only having UD candidates yields a buckling load factor of 2.53. The
lack of UD/0° layers in the optimized design also results in a very compliant design
with a tip displacement of 2.15 m as can be seen in Table C.5. Utilizing the balsa
layers yields a high local bending stiffness. By inspection all buckling modes involve
local bending, similar to the mode shown in Figure C.19, and hence the usage of
balsa makes good sense. Actually the optimized design is slightly infeasible with a
buckling load factor of 3.49. This is because an infeasibility tolerance of 1% is used.

Finally, the mass is minimized with both displacement and buckling constraints.
The resulting lay-up can be seen in Figure C.18. Again the result is strictly speaking
infeasible, but within the infeasibility tolerance of 1%. It can be seen that UD/0° layers
are used to achieve sufficient longitudinal stiffness (to satisfy the tip displacement
constraint) while balsa layers are added to provide sufficient local bending stiffness to
satisfy the buckling constraint. However, the UD/0° layers of course also contribute

127



Paper C. DMTO of sandwich structures

~60

é m UD

=40 ® Biax

% B Balsa

£20

L

=

=0 X
0 2 4 6 8 10 12 14 16 18 20

Blade length (m)

Fig. C.17: Cylinder lay-up resulting from mass minimization with a buckling constraint. The
X-axis corresponds to the outer surface of the cylinder.

to the local bending stiffness. In fact, the maximum number of balsa layers is only
utilized in a single domain, from 1-2 m.

[*))
[e)
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Fig. C.18: Mass minimization of cylinder with both compliance and buckling constraints. The
X-axis corresponds to the outer surface of the cylinder.

Displacement Buckling Combined

uy < 1.0 A>35 Both

Mass 5731 5719 6418
Displacement 1.00 (2.15) 1.00
Buckling (0.88) 3.49 3.48
Myna 0.91 % 0.92 % 3.34 %
M 0.0 % 0.0 % 0.0 %

Table C.5: Minimization of mass of a cylinder subject to a displacement constraint, a buckling
constraint, and both constraints simultaneously.

Comparison of results

For the case with only a displacement constraint all core layers are removed, thereby
creating a monolithic laminate. In this case as much material as possible is placed near
the fixed end, and from 0-7 m the maximum number of face sheet layers is utilized.
For the case with only a buckling constraint the thickness distribution is slightly
different as the peak thickness is located between 1-2 m. This is due to the fixed end
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preventing buckling mode shapes in its vicinity, and thus the maximum thickness
location is pushed slightly outwards. This is visualized in Figure C.19, where a mode
shape with peak displacement at 1.5 m is seen. This mode shape is taken from the
optimized model constrained only in buckling.

In the case with both displacement and buckling constraints it seems that the best
compromise is to add balsa layers for local bending stiffness and UD face sheet layers
for longitudinal stiffness. Adding balsa layers reduce the area moment of inertia of
the cross section which means that more UD/0° layers must be added to satisfy the
displacement constraint which in turn increases the mass of the cylinder significantly.

%
\\Ill,/ll ;, ”
SN

Fig. C.19: A buckling mode shape with the peak displacement near the constrained end from
the optimization with only a buckling constraint.

C.4.3 Example 3

In the third and last example the mass of a wind turbine blade main spar is mini-
mized. The main spar is similar to the one used in Lund et al. (2008) and Serensen
et al. (2014). The blade is subject to a displacement constraint in load case 1 (LC1)
of uy < 1.0 m, and buckling constraints in two load cases LC1 and LC2, both being
A > 6. The blade is loaded with a distributed load of 164.7 kN as shown in Figure
C.20 which corresponds to LC1, while LC2 is the same load case but with reversed
sign. The blade is 14 m in length and is divided into 120 domains where the den-
sity can vary independently (but limited by the ply-drop constraints). These domains
along with mesh and root dimensions are also shown in Figure C.20. Furthermore,
the main spar is divided into 8 material candidate patches as shown in Figure C.21.
Within a patch the choice of candidate material in a given layer is the same for all
elements.

The problem is solved with T = 0.3, move-limits of 10%, and an allowable density
change between each domain of S = 2. The lay-up is given in Table C.6 and is the
same as in example 2.
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Layer(s) Thickness Candidate(s) Density
1 2.0 mm Biax Fixed
2-8 2.0 mm UD/0°, biax Free
9-12 6.35 mm Balsa Free
13-19 2.0 mm UD/0°, biax Free
20 2.0 mm Biax Fixed

Table C.6: Lay-up and material candidates.

Results (default)

In this example the main spar is optimized with all criteria acting simultaneously.
Results from the optimization are listed in Table C.7 (column ’'Default’), and the re-
sulting lay-up in the 8 patches are shown in Figure C.22. In the spar caps, the peak
thicknesses of the face sheets are not located at the root, but rather at 9 m from the root
as marked with the blue stars. This is because, unlike the cylinder, the wind turbine
main spar has a varying cross section resulting in a varying ratio between the bending
moment and area moment of inertia. Due to the high requirements on buckling load
factors (A > 6), balsa is also used in the spar caps. In fact, the maximum amount of
four balsa plates are used around 4-5 m from the root in both spar caps. In Figure
C.22 the small numbers above the lay-up show the density sum of each domain. It can
be seen that in the spar cap domains close to the tip, the maximum allowable change
in density of S = 2 is utilized.

The resulting lay-up of the corner patches is non-smooth in the sense that many
thickness jumps can be seen. The thickness jumps are due to balsa being favored in
some positions while an additional face sheet ply is favored other places. In general,

\NLLLLISII T

Fig. C.20: The wind turbine main spar is divided into 120 domains. In each domain the densities
can change independently, only limited by constraints on the allowable density change. Also
shown is the dimensions of the root end.
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Default Variable peak Root peak
Mass 1427 1433 1465
Displacement LC1 1.00 1.00 1.00
Buckling LC1 5.99 5.99 6.00
Buckling LC2 5.99 5.99 5.99
M uq 6.53 % 5.69% 7.90%
M4 0.00 % 0.00% 0.00%

Table C.7: Minimization of mass of a wind turbine main spar subject to displacement and
buckling constraints.

a trend of multiple balsa layers near or in the tip can be seen, which is due to the
presence of local buckling modes near the load application as shown in Figure C.23.

The webs utilize the maximum number of balsa layers throughout most of the
length. However, as no edgewise load cases are included, the webs are not very
heavily loaded. In fact, the maximum allowable density change of two between web
domains and adjacent corner domains is utilized everywhere to remove as much ma-
terial as possible in the webs. Because this constraint prohibit any more material
removal, the maximum number of balsa layers are utilized since they weigh less than
GFRP candidates.

The main issue with the optimized result is that it is not desirable to manufacture
because of the many thickness jumps and sudden increase in balsa thickness towards
the tip. This is in spite of ply-drop constraints which limit the change in density
between adjacent domains.

Corner | Spar North{ Corner
NW . NE

_______

/L0177

i Corner

Spar South | g

Divided into 8 material
candidate patches

Fig. C.21: The wind turbine main spar is divided into 8 patches. In each patch different candidate
materials can be chosen for each of the face sheet layers. The dimensions of the tip and the
naming of the 8 patches are given.
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Fig. C.22: Thickness distribution and candidate choices of each of the 8 patches of the wind
turbine main spar. The 8 patches are also visualized in Figure C.21. The numbers above each
domain is the density sum of that domain. The red and blue stars denote the chosen peak
thicknesses of balsa and face sheets.

Results (variable peak)

To ensure a manufacturable result, a two-stage approach is suggested. In this ap-
proach a subsequent optimization is performed based on the results from the first
optimization. However, in the subsequent optimization, peak thickness constraints
are added to the problem. Peak thickness constraints define a peak thickness in the
length direction for both face sheets and core for each of the eight patches. In adjacent
domains on either side of the peak, the density sum must be equal to or smaller than
at the peak as shown in Figure C.24. The chosen thickness peaks are displayed with
red and blue stars in Figure C.22 for balsa and face sheets, respectively. Each of the
four corner patches have their peak number of face sheet layers in different positions,
in either domain 8, 9, or 10 (when counting from X = 0). For simplicity, the face sheet
peak is chosen to be domain 9 for all corners. The core peaks are chosen to domain
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Fig. C.23: Local buckling mode near the load application at the tip.

4 for all corners, ignoring the thick core domains near the tip as this is not ideal for
manufacturing. The webs have multiple domains with the maximum number of balsa
layers. Here domain 5 is chosen as core peak for both webs, as this is located in the
middle among the maximum core thickness domains. In a similar manner domain 5
is chosen as the balsa peak for both spar caps. When the peak thickness constraints
have been added, the optimization is started from a full density configuration as in
the first run.

Web West
*
LKL LKL KKESE D> >> >

Thickness (mm)

Blade length (m) X

Fig. C.24: Illustration of the peak thickness constraints used in a subsequent optimization. In the
subsequent optimization the density sum of balsa and face sheets must be decreasing on either
side of their respective peaks, marked with stars. The peak balsa thickness is chosen to be in the
center among the maximum core thickness domains.

Results from the subsequent optimization with peak thicknesses constrained is
shown in Figure C.25, and results are listed Table C.7 in column "Variable peak’. It
can be seen that the thickness distributions are much smoother, and that the resulting
lay-up is much easier to manufacture. There is a slight increase in mass as expected,
but the increase is only 6 kg (0.42%).
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Fig. C.25: Optimization re-run of the default results shown in Figure C.22. In this re-run peak
thicknesses have been enforced such that on either side of the peak thickness the density sum
must decrease. Peak thicknesses are defined for both balsa and facesheets as shown with red

and blue stars respectively.

Results (root peak)

Another approach which can be enforced from the start, is to again add peak thickness
constraints, but with all peaks located at the root. Results obtained from this approach
are shown in Figure C.26, and are listed in Table C.7 in column 'Root peak’. Again,
the obtained results are much more manufacturable than initial results because of a
smoother thickness distribution and because no plies are started/stopped multiple
times. However, this simplified approach of enforcing the peak thickness at the root
comes with a larger penalty on the mass as the optimized result in this case is 38 kg
(2.7%) heavier than the default result. The main advantage is that it can be enforced
from the beginning, and hence it does not rely on a subsequent optimization.
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Fig. C.26: Optimization with all peak thicknesses located in the root end.

C.5 Conclusion

In this paper the Discrete Material and Thickness Optimization (DMTO) method has
been applied for structural optimization of composite sandwich structures. The goal
of using DMTO for sandwich structures is to, throughout a structure, determine both
the integer number of face sheet layers, the fiber angle (from a number of candidates)
for each face sheet layer, and the core thickness while minimizing the mass using
gradient-based optimization. Here balsa is used as core material, and the thickness
is also discrete in the sense that only a finite number of balsa plate thicknesses are
available.

Using a new thickness parameterization that links density design variables to ply
thicknesses rather than constitutive properties, it is possible to size sandwich core and
face sheet layers simultaneously without introducing intermediate voids. This allows
core layers to always be positioned in the middle of the laminate, and to always be
covered by at least one face sheet ply. By separating core and face sheet layers it is also
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possible to use different ply thicknesses (for example, balsa plates are much thicker
than GFRP plies). Furthermore, it is possible to enforce symmetry of the face sheets
around the core.

The approach is demonstrated on three numerical examples: a simple constant
stiffness plate, a variable thickness cylinder, and finally a wind turbine spar. In all
cases the mass is minimized while considering compliance (displacement) and buck-
ling constraints. Moreover, manufacturability of the wind turbine main spar is dis-
cussed and it is shown how peak thickness constraints can help in this regard.
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