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B.1. Introduction

Abstract

In this work a new thickness parameterization which allows for internal ply-drops without
intermediate voids is introduced in the Discrete Material and Thickness Optimization
(DMTO) method. With the original DMTO formulation material had to be removed from the
top in order to prevent non-physical intermediate voids in the structure. The new thickness
formulation relies on a relation between density variables and ply-thicknesses rather than
constitutive properties. This new formulation allows internal ply-drops which is essential for
composite structures as it is common practice to cover dropped plies as to avoid delaminations.
Furthermore, it is demonstrated how the new thickness formulation in some cases improve
the convergence characteristics. Finally, it is also shown how solid-shell elements can be
utilized within the DMTO method for structural optimization of tapered laminated composite
structures.

Keywords Discrete material and thickness optimization; laminated composites;
manufacturing constraints

B.1 Introduction

Variable thickness and use of multiple materials is inevitable for laminated composite
structures such as wind turbine blades. Optimization is often essential for design of
such structures since multiple conflicting structural criteria in combination with sev-
eral load cases makes it non-trivial to find a good material lay-up. The variable thick-
ness is typically achieved through internal ply-drops. Material selection is not only
choosing the best fiber-resin system, possibly in combination with a sandwich core
material, but also choosing the best fiber direction for each layer. Typically, the fiber
directions are limited to a small prescribed set, for example 0°, £45°, and 90°, with
fixed layer thicknesses. The integer number of plies and finite choices of fiber angles
/ materials makes it a discrete optimization problem. The optimization problem is
further complicated by manufacturing constraints. Many manufacturing constraints
are related to the stacking sequence or thickness change, while others are seemingly
obvious, e.g. that adjacent areas of the structure must be inter-connected by contin-
uous plies (often called continuity or blending). A typically required manufacturing
constraint for variable thickness structures is regarding the allowable number of ply-
drops at a given position, and the distance between subsequent ply-drops. Another
common manufacturing constraint is regarding the maximum number of consecutive
plies with the same fiber orientation (often called contiguity). An overview of com-
mon manufacturing constraints can be found in e.g. Irisarri et al. (2014) and Peeters
and Abdalla (2017). A recent review of optimization approaches for laminated com-
posite structures can be found in Xu et al. (2018).

The perhaps most simple way to parameterize an optimization problem for lami-
nated composite structures is to divide the structure into a number of domains (some-
times called patches), and for each layer in every domain, determine the best material
/ fiber angle. Evolutionary algorithms (EA) are very popular for optimization of
composite structures, as is evident in the recent review by Nikbakt et al. (2018). An
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Paper B. A new thickness parameterization for DMTO

advantage of evolutionary algorithms is that they can directly handle discrete vari-
ables without relaxation. In a work by Irisarri et al. (2014) an evolutionary algorithm
is used to find an optimal composite structure with ply-drops while considering a
large number of manufacturing constraints. In another recent example Albanesi et al.
(2018) use a genetic algorithm (GA) for structural optimization of a wind turbine
blade where ply start/stop positions along with material choice are the design vari-
ables. In general however, for a large number of design variables, genetic algorithms
become computationally demanding.

Another popular strategy are gradient-based "multi-step" methods. Here the dis-
crete problem is relaxed to a continuous one thereby allowing the use of gradient-
based methods. Typically, this is combined with one or more subsequent steps (not
necessarily gradient-based) with the purpose of obtaining a manufacturable lay-up.
The continuous design variables are usually a combination of laminate thickness and
either lamination parameters (Bloomfield et al. (2009), Liu et al. (2011)), smeared prop-
erties (Zhou et al. (2010), Liu et al. (2011)), fiber angles for each ply (Irisarri et al.
(2016), Peeters and Abdalla (2016)), or ply-group sizing (Sjelund and Lund (2018)).
Subsequent steps depend much on the targeted manufacturing method and will not
be described here.

Gradient-based methods can also be used for solving the discrete problem without
subsequent steps. Two similar approaches for simultaneous solution of the optimal
thickness and material can be seen in Sgrensen and Lund (2013) and Gao et al. (2013).
The general idea is here to combine discrete material optimization (DMO) to deter-
mine the optimal material for each ply, see Stegmann and Lund (2005), with topology
optimization to determine the optimal thickness distribution. Implicit penalization is
used to favor a discrete design. The combined approach is called Discrete Material
and Thickness Optimization (DMTO) in Serensen et al. (2014) where it is also used to
minimize the mass of a wind turbine spar. Advances in the method include bi-valued
coding to reduce the number of material design variables, see e.g. Bruyneel (2011)
and Gao et al. (2013), a thickness filter using only one through-the-thickness density
design variable per geometry domain, see Serensen and Lund (2015), and inclusion
of failure criteria constraints, see Lund (2018). However, due to the topology inspired
approach to variable thickness by scaling the constitutive matrix, intermediate voids
arise if internal ply-drops are present. So far this has been solved by only allowing ex-
ternal ply-drops, though it is well known that ply-drops are always covered by outer
plies to avoid delaminations.

This work has two objectives. The primary objective is to introduce a new formu-
lation in the DMTO method regarding thickness changes. With the new formulation
internal ply-drops do not create intermediate voids since the density design variables
are related to the layer thicknesses instead of layer constitutive properties. This is sim-
ilar to the parameterization used in Peeters and Abdalla (2016). Furthermore, it will
be shown how the new parameterization influences the sensitivities, in some cases
providing better results in fewer iterations. The second objective is to display how
solid-shell elements can be utilized in a DMTO setting. Solid-shell elements require
a continuous geometry across ply-drops and a simple approach is demonstrated to
accomplish this. Benefits of solid-shell elements include access to the full 3D stress
state which can be important for strength analysis of ply-drops, and the option of a
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B.2. Method

layer-wise mesh refinement.

The remainder of the article is organized as follows: first the original DMTO
method along with the proposed new formulation is presented in section B.2. In
section B.3 the optimization approach is described. In section B.4 the new formulation
is benchmarked and new capabilities are demonstrated. Finally the conclusion is
given in section B.5.

B.2 Method

B.2.1 Discrete Material and Thickness Optimization
(DMTO)

In the original Discrete Material and Thickness Optimization method the parameter-
ization involves the constitutive properties on a layer basis. For each layer there is a
design variable for both the choice of material and regarding if there should be mate-
rial or not. The choice of candidate material is given by the material design variable
vector x such that

1 if candidate c is selected in layer ! of patch p
Xple = (B.1)

0 otherwise

while the choice regarding if there should be material or not is given by the density
design variable vector p such that:

(B.2)

_ | 1if there is material in layer / of domain d
Pal =\ 0 otherwise

Here both domain d and patch p refer to groups of elements. The reason for intro-
ducing both is to have individual parameterizations for material and density. The
constitutive properties for layer / in element e that is located in geometry domain d
and material patch p can be written as

c

n
Ey = pal Z xplcEC (B.3)
c=1
nC
Y xpe=1 V(o) (B.4)
c=1
par € {0;1} V(d,I) (B.5)
xpic € {0;1} YV (p,1,c) (B.6)

where n¢ is the number of candidate materials. In order to use efficient gradient-based
optimization methods the problem is relaxed, allowing pg; and xy, to be intermediate
values. Hence (B.5) and (B.6) become

par €[0;1] V(d, 1) (B.7)
Xplc € [0}1] V(p,l,c) (B.8)
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VA
Shell elements A Original DMTO
Layer 4 pri=0—>E,;=0
Layer 3 X
Layer 2 =
Layer 1
Domain 1 Domain 2

Fig. B.1: Visualization of thickness change with the DMTO method, when the geometry refers
to the mid-surface. If the density of layer 4 in domain 2 is reduced to zero, the constitutive
properties of that layer is likewise reduced to zero. The physical thickness however remains the
same.

Since intermediate values of p; and x,;. are non-physical an implicit penalization
scheme can be used to favor 0-1 values. If (B.4) is re-written as:

nC

E;=0v(p) ) w(x)Ec (B.9)
c=1

then functions v and w can represent different penalization schemes. Generalizations
of two different material interpolation schemes are given by Hvejsel and Lund (2011).
The SIMP scheme (solid isotropic material with penalization) corresponds to:

v(p) = py (B.10)
w (x) = x;’,C (B.11)

where g and p are penalization powers for densities and materials respectively. Simi-
larly the RAMP scheme (rational approximation of material properties) can be written
as:

_ Pl
o) =13 q(1—par) (512
Xplc
w (x) (B.13)

- 1+p(1—xplc)

When standard shell finite elements are used, the surface can either refer to the geo-
metric mid-surface of the shell, or it can be offset to bottom or top surface. A change
in thickness with the DMTO method is visualized in Figure B.1 when reference is
made to the geometric mid-surface. Since only the constitutive properties are affected
by a change in p the physical laminate thickness is unchanged. Hence even though
shell elements with a mid-plane reference is used, the thickness change during opti-
mization occurs in an offset manner.

B.2.2 New formulation

In the new formulation it is proposed to remove the relation between p and the con-
stitutive properties. Instead the layer thicknesses are functions of densities py such
that a density of one will result in the real ply thickness, a density of zero will result
in zero thickness, and intermediate density values will result in intermediate pseudo
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VA

A New formulation p24$= 0—>75,=0

0—)X—Q ®

Fig. B.2: Visualization of a thickness change using the new formulation, when the geometry
refers to the mid-surface. If the density of layer 4 in domain 2 is reduced to zero, the thickness
of that layer is reduced to zero. If a mid-plane reference is used, then the layers are moved such
that the new thickness-center coincides with the mid-plane.

thicknesses. It is assumed that the candidate materials in layer [ patch p have the
same ply thickness, t,,. In that case a pseudo layer thickness can be calculated as
ty = v (p) ty. With this relation the formulation becomes:

E, = i w (x) B¢ (B.14)
foy = z:?:)) tpi (B.15)
3 Xpe=1 V(p,1) (B.16)
;e_zlé [0;1] V(e 1) (B.17)
Xpe €[0;1] V(p,Lc) (B.18)

A thickness change with the new method is visualized in Figure B.2. Here it can be
seen that if mid-plane reference shell elements are used, then a change in thickness
will relocate the layers with respect to the mid-plane such that the resulting new
laminate is centered.

B.2.3 Offset with dummy layer

Often composite structures are manufactured in a single-sided mold which corre-
sponds to an offset type shell modelling. In this case the original DMTO method is
more appropriate in the sense that the bottom surface is fixed during optimization. In
order to enable this behavior for the new formulation a dummy layer can be added
in the top of the laminate (layer 1’ + 1). This layer has zero or close to zero stiffness
similar to a layer with p;; = 0 in the original DMTO. The thickness of the dummy
layer corresponds to the full density thickness of the laminate minus the sum of the
current pseudo-thicknesses such that:

nl
Py = 2 (= Fat) (B.19)
=1

The dummy layer offset method is illustrated in Figure B.3.

83



Paper B. A new thickness parameterization for DMTO

Z
A New formulation with dummy layer

Y tz,dummy '2.'24
|H t23

Fig. B.3: Visualization of the dummy offset layer combined with the new formulation.

B.2.4 Solid-shell approach

Another approach that can deal with offset modelling is solid-shell elements. With
solid-shell elements the top and bottom surfaces are explicitly represented by nodes.
Furthermore, due to the explicitly defined top and bottom surfaces, the laminate
thickness is also explicitly given at each node as the distance between the top and
bottom surface nodes. If the solid shell element has varying thickness (described by
the 3D volume description), then the layer thicknesses given by the lay-up definition
are scaled according to the actual geometric thickness. This is also the usual approach
in commercial finite element packages, see e.g. the SOLSH190 element in ANSYS
Inc. (2017). With regard to node positions, if two neighboring elements have different
lay-ups, then the coordinates of shared nodes are here taken as the average thickness
of the lay-ups. As an example consider a ply-drop across two elements, such that
element 1 has a lay-up of (0°,0°,0°,0°) while element 2 has a lay-up of (0°,0°,0°). A
visualization of the resulting thicknesses can be seen in Figure B.4. When the average
thickness is used layers on one side of a shared element edge are stretched and layers
on the other side are compressed.

B.2.5 Manufacturing constraints

Manufacturing constraints on thickness variation, maximum consecutive layers and
avoiding intermediate voids are given in Serensen and Lund (2013) but will be re-
peated here for convenience. The constraint regarding avoiding intermediate voids is
particularly interesting as with the new formulation it is not required for the same
reasons as in the original DMTO method.

Y Solid-shell elements 1W
X
41
ayers .

Shared element edge

Fig. B.4: Visualization of a thickness change using the new formulation combined with solid-
shell elements. In this approach intermediate nodes are given the average thickness of neighbor-
ing elements. Due to this the layers are stretched/compressed at the interface between elements
with different number of layers.
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Thickness constraints (avoiding intermediate voids)

With the original DMTO formulation, material must always be removed from the top
in order to prevent intermediate voids. In theory this can simply be formulated by a
series of constraints

pd(l+1) S Pdl Vd/ l - 1/2/' . '/nl - 1 (B.ZO)

However, Sarensen and Lund (2013) identified that these constraints are not sufficient,
and so-called density bands will form through-the-thickness where density variables
settle on intermediate values no-matter the penalization. To circumvent this, the limits
of the density variables are instead controlled by a series of non-linear constraints.
Depending on the density in layer (I), the maximum allowable density in the layer
above (I +1) is:

if <(1-T)
< 1—Tpdl 1 pdl B.21
Pa(1+1) < { Lo+ 201 e (B.21)

vd, 1=12,...,m—1, 0<T<05

Hence the maximum value of p,(; 1) is a function of p and T, where T controls the
slope of the linear functions and their intervals. This constraint is visualized in Figure
B.5 for different values of the T parameter. For a value of T = 0.5 this corresponds to
the simple thickness constraint in (B.20). The essence is that a difference in densities
is enforced through thickness. For example for T = 0.1 and a density in the first layer
of pyj1 = 0.9, the next layer is limited to ps, < 0.1. Note that this effect propagates
through-the-thickness, i.e. if the density in the second layer has its maximum value
of pgp = 0.1, then the third layer is confined to p;3 < 0.0111 etc.

Thickness constraint

o
©
T

o
[e]
T

©c o o o @
w S a (o2} ~
T T T T T

Max. density of layer above I + 1, peg.1
1=}
)

0.1

0 Il Il Il Il Il Il Il I}
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Current density of layer [, p.;

Fig. B.5: Plot of the thickness constraint, (B.21), for multiple values of the T parameter. The
maximum allowable density of layer / + 1 depends on the density of layer / and the T parameter.

With the new formulation intermediate voids can not appear, and therefore the
thickness constraints are in theory not needed. However, it is still an efficient method
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to avoid density bands, and will therefore still be used. The major difference is that
with the new formulation it is possible to terminate the thickness constraint between
e.g. the second last and the last layer, and thereby covering the ply-drops, without
introducing intermediate voids.

Thickness variation

The variation in thickness is the allowed change in thickness from one domain to an-
other. Physically it corresponds to the maximum number of plies that can be dropped
at a given position. The thickness variation between two elements can be expressed
as the difference in the sum of densities. If S is the maximum allowable thickness
variation then the thickness variation constraint between element e and element ¢ 4 1
can be formulated as:

7’!1
-5 <Y (par = Preriy) <8 (B.22)
=1

Maximum consecutive layers

Another common manufacturing constraint limits the number of consecutive layers
of the same fiber angle. If CL denotes the number of maximum consecutive layers,
then this constraint can be written for candidate c patch p as:

k+CL
Y xpe <CL, Y(pc) k=12,...,n—CL (B.23)
1=k

B.3 Optimization approach

B.3.1 Optimization problem

The optimization problem can be formulated as:

min. objective
X,0

s.t. 8 < Smax

C

n
szlxplc =1 VY(p,I) (B.24)

Manufacturing constraints

Pel € [0;1] V(@,l)

X € [01] ¥ (pl0)
where x is the material design variable vector and p is the density design variable
vector. The objective function and structural constraint g are in this work taken to be

compliance and mass respectively (Example 1) or mass and compliance (Example 2
and 3). Manufacturing constraints refer to (B.21), (B.22), and (B.23).
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B.3. Optimization approach

B.3.2 Sequential linear programming approach

A sequential linear programming (SLP) approach is used to solve the problem. In
this approach, in each iteration, the linearized problem is solved based on linear
programming. The SLP approach is very robust and has been demonstrated to work
well compared to other methods in Serensen and Lund (2013). Furthermore, the
large number of linear constraints resulting from the manufacturing constraints can
efficiently be taken into account using modern optimizers. In this work the Sparse
Nonlinear OPtimizer (SNOPT) by Gill et al. (2005) has been used for all examples.

In this work constant move-limits of 20% are used in all examples. To have a
feasible problem at all times a merit function approach is used, see Serensen and
Lund (2015) for more details. Convergence is defined as a relative change of the merit
objective function of less than 1073. This can be written as:

q)k _ q)k—l

= <1073 (B.25)

where ® denotes the merit function objective and k is the iteration number. Pseudo
code for the convergence requirements can be found in Serensen et al. (2014).

B.3.3 Continuation approach

Penalization is needed to enforce a 0-1 design. Gradually increasing the penalization
during the optimization is used to obtain a strong local optimum. In this work the pe-
nalization factor is increased whenever a design converges with current penalization.
In all examples the generalized RAMP scheme is used with a penalization sequence
of:

p = {1,4,20} (B.26)
q = {0,4,20} (B.27)

where p is the multi-material penalization and g is the density penalization. For four
candidate materials the RAMP powers 0, 4, 20 correspond to equivalent SIMP powers
of 1, 2, 3 respectively, see Hvejsel and Lund (2011).

B.3.4 Non-discreteness measures

Even though penalization is used, completely discrete results can not be expected.
To quantify non-discrete results, measures of non-discreteness for both densities and
candidate materials are introduced. The density measure of non-discreteness is in-
spired by the one used in Sigmund (2007). The basic idea is that if design variables
solely consist of 0 or 1, the non-discreteness measure is 0%. If instead all design vari-
ables are 0.5 then the measure is 100%. Density non-discreteness (index dnd) is given
as:

4 V. 1-—

Ze,l Vel

87



Paper B. A new thickness parameterization for DMTO

A measure for candidate non-discreteness is given in Serensen et al. (2014). Here
the basic idea is similar: if all xp;, = % and all p,; = 1, then the measure is 100%.
The reason that candidate non-discreteness depends on densities, is that zero density
layers should not impact the measure. The candidate non-discreteness (index cnd) is
given as:

c 1—x,c
Yot Vaoy ITE ( = )
Mg = 2 100% (B.29)

Y1 VeiPel

B.3.5 Finite element analysis

Finite element analysis is performed using an in-house research code written in For-
tran 95. The code is referred to as the MUltidiciplinary Synthesis Tool, see MUST
(2018). Results are obtained using both layered standard shell elements and layered
solid-shell elements. The used standard shell elements are degenerated 9-node shell
elements, see e.g. Panda and Natarajan (1981). The solid-shell elements are 8-node
elements with 3 degrees of freedom per node. The solid-shell elements utilize en-
hanced assumed strain (EAS) and assumed natural strain (ANS) to avoid locking
phenomena. Details on the solid-shell element formulation is described by Johansen
and Lund (2009).

B.3.6 Design sensitivity analysis

Design sensitivity analysis (DSA) is performed using direct differentiation. The di-
rect differentiation approach is explained in e.g. Haftka and Giirdal (1992). This is
combined with a semi-analytical approach where partial derivatives of the element
stiffness matrices are found using central finite-differences. An exception is when de-
sign variables are very close to either 0 or 1, then respectively a forward or backward
finite difference is used instead. In general perturbations of z - 1073 is used, where z
is a generic design variable.

The semi-analytical approach is in general very convenient since the same imple-
mentation can be used for multiple elements, however there is a difference between
shell and solid-shell elements. With the new formulation, and for standard shell ele-
ments, a perturbation of p; corresponds to a perturbation of the thickness of layer /.
For solid-shell elements a change in layer thickness also involves shape optimization
since node coordinates must also be changed. This is also shown with examples in
Sjolund and Lund (2018).

In this work the relation between layer thicknesses and node coordinates for solid-
shell elements is explicitly coded, such that node coordinates are calculated based on
current densities p;; whenever the element routine is called. Here solid-shell elements
are only used in an bottom offset manner, meaning that the bottom nodes are always
fixed, and a thickness change hence only moves the top nodes. Recalling that the
‘node-thickness’ (distance between nodes belonging to bottom and top surface) is
taken as the average thickness of the lay-ups of neighboring elements as shown in
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Figure B.4, then the coordinate X; of a top node j can be calculated as:

u
n9

j n
(&
Xj=X;+i—— =L (B.30)

n;‘d]
where X; is the coordinate of the fixed bottom node i, i is the unit vector pointing
from X; to X;, and n°Y is the number of adjacent elements to node j. Hence when
perturbing a density design variable, the node coordinates are also perturbed.

B.4 Numerical examples and results

The following three examples will demonstrate the new thickness formulation. The
original DMTO method is compared to the new formulation with dummy offset,
"New (offset)", the new formulation without dummy offset, "New (center)", and the
new formulation using solid-shell elements, "New (sol-sh)". Solid-shell models have
one element through-the-thickness.

The used material is a glass-fiber reinforced plastic (GFRP) with material prop-
erties given in Table B.1. These material properties are used in all examples. Four
candidate materials corresponding to [45°, —45°,0°,90°] are used. Initial candidate
design variables are equally distributed such that for four materials the initial mate-
rial weights for each candidate will be [0.25,0.25,0.25,0.25].

Property Value Units
Young’s modulus Eq; 34 GPa
Young’s modulus Ej, 8.2 GPa
Young’s modulusEs;z 8.2 GPa
Shear modulus Gqp 4.5 GPa
Shear modulus Gi3 4.5 GPa
Shear modulus Gj3 4.0 GPa
Density o 1910 kg/m?
Poisson’s ratio vqp 0.29 -
Poisson’s ratio vq3 0.26 -
Poisson’s ratio 1,3 0.26 -

Table B.1: GFRP material properties used in all examples.

B.4.1 Example1

In the first example the compliance of a cantilever beam is minimized while the mass
is constrained to be less than or equal to 3/5 of the full density mass. This benchmark
example was also studied in Serensen and Lund (2013). The cantilever beam consists
of five elements, each with five layers, and is shown in Figure B.6a. All elements
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(a) Cantilever beam model with five 9-node ESL shell elements. Solid-shell
model (not shown) consist of five 8-node elements.

7
45°
-45°
OO

(b) Original DMTO formulation, shown for T = 0.1.

/.
45°
-45°
00

(c) New formulation (with dummy offset), shown for T = 0.1.

-

(d) New formulation (centered), shown for T = 0.1.

/.
45°
-45°
00

(e) New formulation using solid-shell model visualized in same manner as
shell models, shown for T = 0.1.

45°
-45°

(f) New formulation using solid-shell model, visualized as solid-shell model,
shown for T = 0.1.

Fig. B.6: Example 1 results for minimization of compliance of a cantilever beam. Results are
visualized with layer thicknesses scaled by 20.
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are linked together in material patches such that a material choice in a given layer is
the same across all elements. With regard to the initial density distribution the first
three layers have a density of 1, while the last two layers have a density of 0 such that
the starting point is feasible with regard to the mass constraint. The bottom layer is
constrained to have full density at all times. Manufacturing constraints include a max-
imum of one consecutive layer (i.e. no two layers with the same fiber orientation next
to each other), and an allowed thickness variation of one. The thickness constraint
given by (B.21) is included with different values of the T parameter. Results are listed
in Table B.2, and 3D visualizations are shown in Figure B.6 with layer thicknesses
scaled by a factor of 20. Note that the target mass of 3/5 of the full density mass is
reached in all cases and hence left out of the table. Candidate non-discreteness, M_,,4,
reach 0% in all cases and is also left out.

DMTO and New (offset)

The original DMTO formulation and the new formulation (with dummy offset)
achieve the same optimum for T = 0.1, as can be seen from Table B.2 and Figures
B.6b-B.6c. The main difference is that the new formulation also finds this optimum
for T = 0.2 and T = 0.3 using less iterations while DMTO results are increasingly
non-discrete.

The reason that the original DMTO formulation yields non-discrete results for in-
termediate T values can partly be explained through the sensitivities as visualized in
Figure B.7. For a cantilever beam problem a change in constitutive properties will
have a larger influence on compliance in the top/bottom layers than in the middle
layer due to the area moment of inertia. This is also shown in Figure B.7a. Hence the
sensitivities favor adding material to the top and bottom layers, and removing mate-
rial from the middle. However, at the same time the thickness constraints enforce that
densities of top layers must be less than center layers. These conflicting requirements
make the original DMTO method more prone to non-discrete results in this particular
example.

With the new formulation a change in thickness yields the same sensitivity for
all layers, as long as each layer has the same material. This is shown in Figure B.7b.
This is not initially conflicting with the thickness constraints which in turn helps
achieve a discrete optimum. The observation on sensitivities can also explain why
T = 0.4 in general provides non-discrete results. For example in some cases, in the
first element at the constraint, the fourth layer has a density of pj4 = 0.6 and the fifth
layer p15 = 0.4. The relatively small difference in density, allowed due to T = 0.4,
makes it such that even though penalization is applied, it does not make up for the
fact that the fifth layer is 0° while the fourth is either £45°.

New (center)

The result for the new formulation (centered) can be seen in Figure B.6d. Since it is
true mid-plane reference, the results are not directly comparable with other results.
However, for this particular example, the results are very similar to offset results. The
found optimum is slightly different than the other results in that both the second and
the fourth layer have a fiber angle of —45°.
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H N
Big decrease in compliance

(a) Sensitivities dC/dp,; using original DMTO formulation.
- - E I
Big decrease in compliance
Fig. B.7: Comparison of compliance sensitivities with regard to density design variables in 1st

(b) Sensitivities dC/dp,; using new formulation.
iteration where material weights are equal in all layers.

Solid-shell

The solid-shell optimized design is visualized as the other shell models in Figure B.6e,
while the actual computational model with a continuous upper surface is shown in
Figure B.6f. The optimum is identical to the one found in the original DMTO and
the new formulation (offset). Due to differences between the used standard shell

T = DMTO New New New

(offset) (center) (sol-sh)

o 0.10 4.638e-1 4.638e-1 4.620e-1 4.614e-1
E 0.20 4.832e-1 4.638e-1 4.639%-1 4.614e-1
% 0.30 5.414e-1 4.638e-1 4.639%-1 4.614e-1
3 0.40 8.315e-1 5.485e-1 5.486e-1 6.380e-1
” 0.10 27 17 17 29
é 0.20 25 17 17 31
§ 0.30 30 22 22 29
0.40 25 28 26 28

0.10 0.00 % 0.00 % 0.00 % 0.00 %

kS 0.20 6.32 % 0.00 % 0.00 % 0.00 %
= 0.30 15.87 % 0.00 % 0.00 % 0.00 %
0.40 36.39 % 7.68 % 7.68 % 15.36 %

Table B.2: Example 1 results for minimization of compliance of a cantilever beam with mass
constrained to be less or equal to 3/5 of the full density mass. T refers to the thickness constraint
parameter in (B.21).
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elements and solid-shell elements, results can not be directly compared. However,
the compliances found are very similar to shell model results for the fully converged
solutions.

Comparison of models

Comparing the original DMTO formulation to the new formulation with dummy off-
set, it is clear that the two methods are equivalent modelling wise when comparing
the same fully discrete optimum. This can also be seen in Table B.2 where the same
compliance is obtained for T = 0.1. The main difference is in the sensitivities as
demonstrated in Figure B.7. The difference in sensitivities is reflected in the different
amount of iterations and density non-discreteness at convergence, and in this partic-
ular example the new formulation with dummy offset is favorable.

The new formulation (centered) is the same new formulation but without the
dummy offset, meaning that thickness changes during optimization is relative to the
mid plane. Hence when compared to the offset shell models even the same optimum
will not yield the same compliance. However, as expected the number of iterations
and the measure of non-discreteness is very similar to the new formulation with
dummy offset.

Results from the new formulation using solid-shell elements are different both due
to an entirely different element formulation, but also due to the required continuous
geometry across ply-drops. The number of iterations and measure of non-discreteness
is also different from the shell models. This difference can be expected since thickness
changes here induce skewed element shapes and also involve moving nodes.

B.4.2 Example 2

In the second example the mass of a corner-hinged 8 layered plate is minimized while
the compliance is constrained to C < 0.9 J corresponding to approximately 5 full
density quasi-isotropic layers. The plate consists of 48x48 elements and is loaded
with a nodal force of 40 N in the center. Dimensions are given in Figure B.8a. Density
variables are grouped together in 2x2 element domains. Material patches for each
layer span all elements, such that in a given layer the same candidate must be chosen
for all elements. The initial density distribution is such that the first four layers have
full density and the last four layers zero density. The bottom layer is constrained
to have full density at all times. Manufacturing constraints include a maximum of
one consecutive layer (i.e. no two layers with the same fiber orientation next to each
other), and an allowed thickness variation of one. Again, the problem is solved for
various T values. Results are listed in Table B.3, and in Figure B.8 the best results are
visualized with layer thicknesses scaled by a factor of 20. Candidate non-discreteness
is 0% in all cases and is not listed in the table.

DMTO and New (offset)

The best results for respectively DMTO and New (offset) are shown in Figures B.8b
and B.8c. For both the original DMTO and the new formulation (offset), the full
density bottom ply is chosen to be 0°. This ply directs load in the x-direction to the
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edges, and the next 90° ply helps redirect the load to the corners, i.e. it balances the
0° ply at the bottom. The remaining layers are dominated by £45° which in turn lead
load to opposing corners. A similar design is reached in the new formulation (offset),
although the ordering of the £45° plies has changed, causing the design to rotate 90°.

For the original DMTO an increasing non-discreteness can be seen for increasing
values of the T parameter. This is not as pronounced for the new formulation (offset).
This is similar to what is seen in example 1 and can again be explained from the
sensitivities. The number of iterations used show different tendencies. In general,
fewer iterations are expected for higher T values since effectively more layers can be
changed at once. This is the tendency for the new formulation (offset). However,
if the T parameter is too high convergence issues appear which in turn increase the
number of iterations. This is the case for the original DMTO method.

T = DMTO New New New

(offset) (center) (sol-sh)

0.1 30.45 30.32 38.82 32.71

@ 0.2 30.41 30.33 38.64 30.91
= 0.3 30.68 30.36 38.58 31.11
0.4 32.74 30.94 38.83 31.50

o 0.1 0.900 0.901 0.899 0.901
E 0.2 0.900 0.900 0.900 0.900
E* 0.3 0.900 0.900 0.900 0.900
3 0.4 0.900 0.901 0.895 0.900
" 0.1 43 52 88 69
-_,% 0.2 51 50 53 42
2 0.3 53 45 54 47
0.4 60 41 52 50

0.1 0.20 % 0.09 % 0.06 % 0.52 %

E 0.2 0.47 % 0.14 % 0.29 % 1.22 %
= 0.3 5.62 % 0.43 % 0.21 % 3.01 %
0.4 21.73 % 6.71 % 1.49 % 4.96 %

Table B.3: Example 2 results for minimization of mass of a corner-hinged plate with a con-
strained compliance, C < 0.9.
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New (center)

Results from the new formulation (center) are visibly different from the offset results,
as seen in Figure B.8d. Here the first four layers of 0° and 90° plies create a nearly
symmetrical base. The upper four plies use £45° which induce some asymmetry.
The main change compared to the other designs is that much more material is placed
along two of the edges. When compared to offset results, the centered formulation
particularly impacts areas with one or few layers since these layers will be close to the
bending neutral axis and thereby they provide relatively little bending stiffness. This
means that a more compliant design can be expected which in turn is reflected on the
mass required to obtain a certain stiffness as seen in Table B.3. With regard to density
non-discreteness and number of iterations, similar tendencies to the new formulation
(offset) can be seen, i.e. higher T values yield higher non-discreteness. One exception
is seen for T = 0.3 which has a lower non-discreness measure than for T = 0.2. Here
it can also be seen that the best found optimum with respect to mass is not always the
result with the lowest non-discreteness.

Solid-shell

As in example 1 solid-shell results are visualized both in the manner of the other
shell results, see Figure B.8e, and also as an actual solid-shell model with a contin-
uous upper surface, see Figure B.8f. The solid-shell results generally look similar to
DMTO/New formulation (offset) results. Non-discreteness is better for low T values,
though the lowest T value also yields the highest number of iterations. In this case
the best results are obtained for T = 0.2.

Comparison of models

Similar results with density placed in a corner-to-corner cross shape are obtained for
the methods that are offset during optimization: the original DMTO method, the new
formulation with dummy offset, and the new formulation with solid-shell elements.
Again, as in example 1, the original DMTO formulation yields more non-discrete
results for higher values of the T parameter. This tendency can also be seen for the
new formulation in all cases, but is much less pronounced.

Solid-shell convergence is again not directly comparable to shell implementations
due to being a different element type, and also here results may be impacted by the
induced skewness from thickness changes.

The new formulation centered yields a very different optimum, with density
placed in an "H’ shape. The different shape is likely due to the modelling difference
in which areas with few layers only provide little bending stiffness as they are located
near the bending neutral axis. Again low non-discreteness measures are obtained for
all T parameters.

B.4.3 Example 3

The third example demonstrates the capability of the new formulation to have a con-
stant top layer and thereby covering ply-drops. This is demonstrated on a cantilever
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beam where mass is minimized while the compliance is constrained to C < 5-10° ]
corresponding approximately to 15 full density layers of 0° plies. The cantilever beam
consist of 20 elements with 20 layers and a nodal force of 8000 N is applied at the free
end.

In laminated composite structures it is common to cover the inner and outer sur-
faces with biaxial £45° plies. This is both in order to improve the damage tolerance,
and to cover ply-drops with a number of continuous plies. Covering ply-drops is
needed to avoid delaminations. In this example both the top and bottom layers are
fixed during the optimization, meaning that ply-drops are covered. The fixed lay-
ers are achieved by setting the design variable move-limit to 0% for these particular
layers. Furthermore, instead of fixing multiple plies in the top and bottom, a ply-
thickness of 2 mm is used with equivalent constitutive properties corresponding to a
+45° laminate. The remaining layers 2-19 are 1 mm thick, and can choose between
0°, +45°, —45°, and 90° as in the other examples. In order to make the thickness
constraint (B.21) feasible, the top layer is not included in this constraint, i.e. (B.21) is
only defined for I = 1,2,...,n; — 2. Material patches for each layer span all elements,
such that in a given layer the same candidate must be chosen for all elements. The
initial density distribution is such that the first 10 layers have full density, the next 9
layers zero density while the last layer also has full density. Manufacturing constraints
include a maximum of four consecutive layers, and an allowed thickness variation of
one. Again the problem is solved for various T values. Results are listed in Table
B.4, and in Figure B.9 the best results are visualized with layer thicknesses scaled by
a factor of 20. Candidate non-discreteness is 0% in all cases and left out of the table.
Original DMTO results are not included in this example as a constant top layer is not
possible for a tapered laminate without having intermediate voids.

New (offset)

The best result from the new formulation with dummy offset can be seen in Figure
B.9b. All results are dominated by 0° plies as can be expected. Plies of other fiber
angles are added due to the rule of a maximum of four consecutive plies and generally
+45° are preferred in these cases. These plies are generally placed as far towards the
middle as can be allowed from the maximum consecutive layer constraint.

When studying the convergence behavior high values of the T parameter are
clearly beneficial with respect to the number of iterations. This makes sense since
there are 20 layers and high T values allow density changes in many layers at once,
while low values, e.g. T = 0.1 effectively limits density change to one layer at a time.
With regard to density non-discreteness, apart from relative high non-discreteness
measures for T = 0.4, no clear tendency can be seen from Table B.4. It is found from
inspection that often the non-discrete layers are placed in the free-end of the beam
where the impact of non-discreteness is generally small.

New (center)

The best result obtained for the new formulation (center) can be seen in Figure B.9c.
The results are very similar to those obtained in the offset case, and as previously
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noted, 0° plies are favored with +45° being placed as far towards the middle as
possible.

New (solid-shell)

The best result obtained for the new formulation (solid-shell) is visualized in the
same manner as the shell models in Figure B.9d, and as a solid-shell model with a
continuous upper surface in Figure B.9e. Solid-shell results are also very similar to
shell results. However, it can be noted that in this case with 20 layers, the solid-shell
representation with stretching/compression of layers at a ply-drop boundary looks
more realistic than in previous examples. Another observation is that the best result
with regard to mass is also the result with the highest non-discreteness measure.

T = New New New

(offset) (center) (sol-sh)

0.1 9.33 9.49 9.52

2 0.2 9.20 9.25 9.45
= 0.3 9.20 9.19 9.21
0.4 9.22 9.28 9.20

o 0.1 499.983 499.92¢3 499.86€3
é 0.2 499.98e3 499.97¢3 494.90e3
& 0.3 499.87¢3 499.64¢3 500.08¢3
3 0.4 499.70e3 499.86€3 499.93e3
- 0.1 70 69 52
-é 0.2 58 56 57
g 0.3 49 47 44
0.4 34 30 30

0.1 0.51 % 1.25 % 0.77 %

g 0.2 0.77 % 1.16 % 1.05 %
= 0.3 0.57 % 0.91 % 1.22 %
0.4 2.16 % 3.07 % 1.62 %

Table B.4: Example 3 results for minimization of mass of a cantilever beam with constant top

layer with compliance constrained C < 500¢3.
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Layer 1, 2mm

Layer2-18, 1mm 8000 N
Layer 20, 2 mm

TZY/%"
X/ 0°

6.5 m

(a) Cantilever beam model with 20 9-node ESL shell elements. Solid-shell
model (not shown) consist of 20 8-node elements.

+45°
OO
-45°
45°

+450
OO
-45°
45°

+45°
00
450
45°

(d) New formulation using solid-shell model visualized in same manner as
shell models, shown for T = 0.4.

(e) New formulation using solid-shell model, visualized as solid-shell model,
shown for T = 0.4.

Fig. B.9: Example 3 results for minimization of mass of a cantilever beam with constant top layer.
Results are visualized with layer thicknesses scaled by 20.

Comparison of models

In this example a continuous biax layer is enforced as the top layer, and hence ply-
drops are covered. With the original DMTO method this would cause intermediate
voids, and hence only the new formulation is used. Similar results are obtained for
New (offset), New (center), and New (sol-sh). The results are similar both in terms
of the obtained mass, and the density/candidate choices. The density/candidate dis-
tribution is intuitive in that 0° plies are favored, and most material is placed towards
the constrained end.
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B.5 Conclusion

In this paper the Discrete Material and Thickness Optimization (DMTO) method has
been extended with a new thickness parameterization. The new thickness formulation
relates density design variables to layer thicknesses instead of layer constitutive prop-
erties. This extension allows internal ply-drops without causing intermediate voids.
This is essential since ply-drops should always be covered to avoid delaminations.

The new thickness formulation is compared to the original DMTO method in two
examples, and new capabilities are demonstrated in a third example. The DMTO
method combined with the new formulation is furthermore demonstrated on solid-
shell elements. In many cases the new thickness formulation shows better conver-
gence properties with more discrete results. Finally, the new formulation is also
shown to be more robust with regard to parameters controlling through-the-thickness
density variations.
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