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Abstract: Objective: The aim of this study was to investigate the effects of different preprocessing
parameters on the amplitude of median nerve somatosensory evoked potentials (SEPs). Methods:
Different combinations of two classes of filters (Finite Impulse Response (FIR) and Infinite Impulse
Response (IIR)), three cutoff frequency bands (0.5–1000 Hz, 3–1000 Hz, and 30–1000 Hz), and
independent component analysis (ICA) were used to preprocess SEPs recorded from 17 healthy
volunteers who participated in two sessions of 1000 stimulations of the right median nerve. N30
amplitude was calculated from frontally placed electrode (F3). Results: The epochs classified as
artifacts from SEPs filtered with FIR compared to those filtered with IIR were 1% more using automatic
and 140% more using semi-automatic methods (both p < 0.001). There were no differences in N30
amplitudes between FIR and IIR filtered SEPs. The N30 amplitude was significantly lower for SEPs
filtered with 30–1000 Hz compared to the bandpass frequencies 0.5–1000 Hz and 3–1000 Hz. The N30
amplitude was significantly reduced when SEPs were cleaned with ICA compared to the SEPs
from which non-brain components were not removed using ICA. Conclusion: This study suggests
that the preprocessing of SEPs should be done carefully and the neuroscience community should
come to a consensus regarding SEP preprocessing guidelines, as the preprocessing parameters can
affect the outcomes that may influence the interpretations of results, replicability, and comparison of
different studies.

Keywords: EEG; preprocessing; SEPs; filtering; ICA

1. Introduction

Somatosensory evoked potentials (SEPs) are elicited by stimulating the peripheral nerve at a
distal site, e.g., the median nerve at the wrist [1]. SEPs are widely-utilized and have been used as an
intraoperative monitoring method for more than 30 years [2]. SEPs are also used to understand the
effect of different treatments and drugs on the central nervous system (CNS), and the level of the CNS
where the changes occur [3].
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To effectively and efficiently analyze SEPs, an improvement of the signal-to-noise ratio of the EEG
signals is required. This is achieved by using filters. Filtering is the most basic and major part of the
preprocessing of electroencephalography (EEG) data. There are two classes of digital filters, Finite
Impulse Response (FIR) and Infinite Impulse Response (IIR). The difference between the two is that
IIR uses some of the filter’s output as input, making it recursive in nature. IIR is computationally
faster but less stable compared to its counterpart, FIR. The output signal is dependent on different
parameters, such as the filter type, filter order, and cutoff frequencies. Filter type (low-pass, high-pass,
band-pass, and band-stop) along with cutoff frequencies define which parts of the signal spectrum
are to be kept and which are to be removed. The order of the filter defines the roll-off or transition
bandwidth, with a higher order making ‘sharper’ filters with steeper roll-offs. For more details about
signal processing, filter theory and design, we would like to recommend the freely available book
found in [4] and paper [5]. Due to the nature of the process itself, filtering may seriously modify
the appearance of signals, and thereby affect the results obtained. Filtering can introduce artificial
components [6] and distortions in the onset latency [7] and amplitude of the brain processes [5].

Various guidelines have been published to standardize the recording, processing, utilization, and
interpretation of SEPs [1,8–11]. However, in spite of different guidelines on preprocessing SEPs, and
the literature [5,6,12,13] with suggestions on filtering EEG, especially evoked–related potential (ERP)
data, there are inconsistencies in the use and reporting of filtering in the studies. We searched PubMed
for articles, published between 2000 and 2017, which used SEPs and found that there is no consensus
on the class and order of filters used, their cutoff frequencies, and their reporting. Even the articles that
used median nerve stimulation to evoke somatosensory potentials published by the co-authors of this
paper used filters with different properties, e.g., [14] used 1–70 Hz, 24 dB/octave, [15] used 1–1000 Hz
with no mention of the filter’s roll-off, whereas [16–18] used 3–1000 Hz, 6 dB/octave. None of these
mentioned the class of the filter used. This shows the variation in the use and reporting of filters in
the literature.

Therefore, the objective of this study was to investigate the effects of the class of filter used, the cutoff

frequencies, and the use of independent component analysis (ICA) on the amplitudes of SEPs evoked
by stimulating the median nerve. For this purpose, we used two classes of filters, Kaiser-windowed
(FIR) and Butterworth (IIR), with three bandpass frequencies: 0.5–1000 Hz, 3–1000 Hz, and 30–1000 Hz,
processed with or without ICA, which was used to remove non-brain components from the data.
The choice of filters and cutoff frequencies is based on the previous usage and recommendations of
analyzing ERP and SEP data obtained from the literature search.

2. Methods

The study was conducted according to the Declaration of Helsinki. The Northern A Health and
Disability Ethics Committee of Auckland (approval number: 14NTA232) approved the study. The data
were recorded at the Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland,
New Zealand.

2.1. Experimental Protocol

The subjects participated in two sessions, separated by at least a week. Each session consisted
of median nerve stimulation and EEG recording. During each session, the subjects were seated
comfortably in the supine position and were asked to keep their eyes open. A secondary person blinded
the data analyst by assigning random numbers to each dataset making it impossible to identify and
associate data with particular sessions and subjects during analysis. The data analyst was unblinded
when statistics was to be performed.

2.2. Subjects

Seventeen healthy subjects (9 males, 27.3 ± 5.6 years) participated in the study. The subjects gave
their written informed consent to participate in the study.
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2.3. Median Nerve Stimulation

The median nerve was stimulated by applying electrical pulses at the right wrist through the
stimulation electrodes (Neuroline 700, AMBU A/S, Denmark) connected to the electrical stimulator
(Digitimer DS7AH, UK) to evoke somatosensory potentials (SEPs). The stimulation pulse was
monophasic, with a width of 0.2 ms and a frequency of 2.3 Hz. A total of 1000 pulses were given at the
motor threshold of each subject, which was defined as the lowest intensity that elicited a visible twitch
of the thumb.

2.4. EEG

The EEG was recorded from 62 channels according to the international 10–20 electrode system
(Klem et al., 1999) using the REFA amplifier (TMSi, Twente, The Netherlands) at a sampling rate of
2048 Hz. The ground electrode was placed at AFz. The impedance was kept below 10 kΩ. The subjects
were asked to keep eye blinks, eye movements, and facial movements to the minimum.

The EEG preprocessing was performed offline using EEGLAB version 14.1.1 [19] and ERPLAB
version 6.1.4 [20] running on MATLAB 2015b (The MathWorks, Inc., Natick, MA, USA.). Custom
scripts were developed in MATLAB utilizing EEGLAB, ERPLAB and MATLAB functions to perform
the analysis.

The raw EEG was imported into MATLAB using EEGLAB. The EEG was truncated to contain
data from the 30 s preceding the first stimulation to 30 s following the last stimulation. The PREP
pipeline version 0.55.1 [21] was used to identify noisy channels, remove the line noise, and average
reference the data.

In the following sections, the finite impulse response (FIR) was performed using EEGLAB’s
function pop_firws, whereas infinite impulse response (IIR) filtering was done using MATLAB’s
functions butter and filtfilt. The order of FIR was either 4948 which corresponded to the transition
bandwidth of 1.5 Hz or 7420 which corresponded to the transition bandwidth of 1 Hz. The FIR window
used in both cases was Kaiser, with a β of 5.653. The IIR filter used was the 2nd order Butterworth filter.
The epochs were always extracted from −100 to 150 ms with respect to stimulus and baseline corrected
using the pre-stimulus time period. Figure 1 shows the overview of the EEG processing pipeline.

2.4.1. Artifact Identification

For identifying and marking the epochs contaminated with artifacts, the continuous PREPed EEG
was high-pass filtered with a cutoff frequency of 1 Hz, with either a FIR (order = 4948) or an IIR filter.
The filtered data was segmented into epochs.

An epoch was marked as artifact epoch using ERPLAB if any of the EEG channels in that epoch
possessed one or more of the following properties: (i) absolute voltage above 100 µV, (ii) peak-to-peak
voltage of more than 150 µV in a sliding window of size 200 ms with a step size of 100 ms, (iii) voltage
greater than 100 µV resulting from step-function with a sliding window of size 200 ms and a step size
of 50 ms, (iv) sample-to-sample difference of more than 50 µV, or (v) absolute voltage less than 2 µV
for more than 125 ms. The time corresponding to the stimulus artifact (−2 to 2 ms) was excluded in
all checks. Afterward, all the epochs were manually checked for correctness of automatic detection
of artifacts. If any epoch was incorrectly marked, or was not marked but was an artifact, it was
unmarked or marked, respectively. The epochs that had step-like artifacts in the frontal channels were
not removed as they corresponded to eye-blinks and eye-movements [12]. It is to be noted that the bad
epochs were not rejected but only marked as artifacts at this stage.
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Figure 1. Methodology overview. The colors group similar processes or sub-processes. Blue is
filter properties, yellow corresponds to artifact detection and rejection, salmon pink represents
steps related to independent component analysis (ICA), dark green are cleaned datasets, and red
are related to somatosensory evoked potential (SEP) averaging and amplitude. Abbreviations:
FIR = Finite Impulse Response; IIR = Infinite Impulse Response; AMICA = adaptive mixture ICA;
IC = Independent Component.

2.4.2. ICA

Independent component analysis (ICA) decomposes EEG data into components that are maximally
independent temporally (i.e., spatially fixed and temporally distinct) [22]. In this study, the adaptive
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mixture ICA (AMICA) algorithm was used to decompose EEG data into independent components (ICs),
since it has been shown that the performance of AMICA is superior to that of other ICA algorithms [23].

The continuous 1 Hz high-pass filtered EEG (from Section 2.4.1) was downsampled to 512 Hz,
epoched, and the epochs previously identified as artifacts were rejected. The EEG channels identified
as noisy channels by the PREP pipeline were removed. The resulting EEG was decomposed into ICs
using AMICA.

The ICA weights obtained were applied to the band-pass filtered with bad epochs removed
PREPed data. The cutoff frequency of band-pass filter was 0.5–1000 Hz and the filter class was same
as the high-pass filter class used in artifact identification. The FIR filter order was 7420. All the ICs
from these datasets were manually classified either as a brain component or a non-brain component,
corresponding to muscle, channel or line noise, or eye activity. The ICs were categorized using their
spatial distributions (scalp topographies), time courses, spectrograms, event-related potential (ERP)
images, and equivalent current dipole models using the guidelines from [24,25] and the website,
https://labeling.ucsd.edu/.

2.4.3. Cleaned Datasets

The zero-phase band-pass filtering was performed on PREPed data using one of the two classes
of filters: FIR (order = 7420) or IIR, with one of the three cutoff frequencies: 0.5–1000 Hz; 3–1000 Hz;
or 30–1000 Hz.

The band-pass filtered data were segmented into epochs. These six datasets are referred to
‘filtered and no ICA’ in the following text. Afterward, the ICA weights obtained in Section 2.4.2 from
the analogous filter class were applied to each of these datasets, and the ICs marked as non-brain
components were removed, resulting in six datasets, which are referred to as ‘filtered and ICA’ in the
subsequent text.

2.5. N30 Amplitude

The good epochs were averaged and the amplitude of the N30 peak was calculated from channel
F3 [15], contralateral to the stimulated nerve. The most positive and the most negative peaks were
identified automatically in the windows from 15–25 ms and 25–35 ms, respectively. The identified
peaks were manually verified and modified by an expert if (i) they were out of this time period or
(ii) there was more than one peak in a window, which lead to the wrong identification of the peak.
The N30 amplitude was taken as the absolute difference of the amplitudes of these two peaks.

2.6. Statistics

The data are presented as a mean ± SD unless otherwise indicated. The statistical significance
threshold was set at p < 0.05. R version 3.5.1 [26] was used for all statistical procedures.

Dependent t-tests were performed to find the difference in the number of epochs rejected
automatically and semi-automatically from FIR and IIR filtered data.

The linear mixed effect model (LMM) was used to identify the effects of filter class, cutoff

frequencies and use of ICA, and their interactions on the N30 amplitude. The between-subject variance
was estimated using random intercept in the model. The model used was:

N30_Amplitudei, j
= β0 + β1 ∗ FILTERi, j + β2 ∗ ICAi, j + β3 ∗ FREQUENCY1i, j + β4

∗ FREQUENCY2i, j + β5 ∗ FILTERi, j ∗ ICAi, j + β6 ∗ FILTERi, j
∗ FREQUENCY1i, j1 + β7 ∗ FILTERi, j ∗ FREQUENCY2i, j + β8 ∗ ICAi, j
∗ FREQUENCY1i, j + β9 ∗ ICAi, j ∗ FREQUENCY2i, j + β10 ∗ FILTERi, j
∗ ICAi, j ∗ FREQUENCY1i, j + β11 ∗ FILTERi, j ∗ ICAi, j
∗ FREQUENCY2i, j + zi + εi, j

(1)

https://labeling.ucsd.edu/
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where i is the subject number, j is the measurement number, filter is FIR when FILTER = 0 and
IIR when FILTER = 1, ICA is used when ICA = 1 and not used when ICA = 0, cutoff frequency is
3–1000 Hz when FREQUENCY1 = 1 and FREQUENCY2 = 0, 30–1000 Hz when FREQUENCY1 = 0
and FREQUENCY2 = 1, and 0.5–1000 Hz when FREQUENCY1 = FREQUENCY2 = 0. The model
was implemented using lme4 package version 1.1.18.1 [27] in R using the syntax:

N30_Amplitude ∼ f ilter ∗ isICA ∗ f requency + (1
∣∣∣subject) (2)

Since the data were not normally distributed and had unequal variances, we used gamma
distribution to model the data. The choice of the link function (identity or log) was evaluated using
Akaike information criterion corrected for small samples (AICc). The AICc penalizes both under
fitting and over fitting. We used the log link. The contrasts were obtained using the emmeans package
version 1.2.4 [28], adjusted for multiple comparisons using Tukey’s HSD.

3. Results

All subjects successfully completed the experiments. Data from all of them were included
for analysis.

3.1. Number of Artifacts

Using the automated settings for identifying epochs contaminated with artifacts, there were
more epochs marked for rejection when data were filtered with FIR (229.59 ± 257.83) compared to IIR
(227.29 ± 258.39), t(33) = 7.23, p < 0.0001, r = 0.99, 95% CI = [1.65, 2.94]. Similarly, with semi-automated
marking of artifacts, on average there were more artifacts rejected from FIR filtered data (54.50 ± 56.37)
compared to IIR filtered data (22.71 ± 22.43), t(33) = 3.91, p = 0.0004, r = 0.57, 95% CI = [15.24, 48.35].

3.2. N30 Amplitude

The LMM showed no significant interactions between the filter class, cutoff frequencies, and use
of ICA. The main effects of cutoff frequencies (p < 0.001) and use of ICA (p < 0.001) were significant.
Table 1 presents the mean N30 amplitude, and Figure 2 shows the distribution of the N30 amplitude in
the 12 groups. Figure 3 shows the grand average N30 amplitude and the mean of epochs preprocessed
with FIR and IIR with different cutoff frequencies and ICA from a representative subject. The intercept
and slopes from the model are given in Table 2. The estimated N30 amplitude obtained using the
emmeans function in R is given in Table 3.

Table 1. N30 amplitude.

Filter Frequency (Hz) ICA N30 Amplitude (µV)
(Mean ± SD)

FIR

0.5–1000
Yes 2.85 ± 1.87
No 3.38 ± 1.84

3–1000
Yes 2.89 ± 1.89
No 3.42 ± 1.85

30–1000
Yes 2.03 ± 1.01
No 2.31 ± 1.17

IIR

0.5–1000
Yes 2.96 ± 1.83
No 3.39 ± 1.81

3–1000
Yes 2.96 ± 1.84
No 3.38 ± 1.82

30–1000
Yes 2.00 ± 0.96
No 2.24 ± 1.04
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Figure 2. N30 amplitude. Dots represent N30 amplitude of each dataset. Boxplots show the median,
25th and 75th percentiles. The error bars represent mean ± 95% CI. The distribution plots show the
density distribution estimated by a Gaussian kernel with SD of 1.5. The figure was made using the
code provided by [29].

Table 2. Estimated coefficients from the statistical model. Significant effects (p < 0.05) are in bold text.

Model Coefficients Estimate Standard Error t Value p Value

β0 Intercept 1.11 0.14 8.00 <0.0001
β1 Filter = IIR 0.01 0.04 0.13 0.8930
β2 ICA = Yes −0.21 0.04 −4.59 <0.0001
β3 Frequency = 3–1000 0.01 0.04 0.28 0.7800
β4 Frequency = 30–1000 −0.35 0.04 −7.82 <0.0001
β5 Filter = IIR: ICA = Yes 0.04 0.06 0.64 0.5210
β6 Filter = IIR: Frequency = 3–1000 0.02 0.06 −0.24 0.8120
β7 Filter = IIR: Frequency = 30–1000 0.03 0.06 −0.46 0.6480
β8 ICA = Yes: Frequency = 3–1000 0.00 0.06 0.03 0.9800
β9 ICA = Yes: Frequency = 30–1000 0.07 0.06 1.14 0.2540
β10 Filter = IIR: ICA = Yes: Frequency = 3–1000 −0.00 0.09 −0.01 0.9910
β11 Filter = IIR: ICA = Yes: Frequency = 30–1000 −0.04 0.09 −0.41 0.6830

Table 3. Estimated N30 amplitude from the statistical model. Abbreviations: LCL = Lower Confidence
Level; UCL = Upper Confidence Level.

Filter Frequency
(Hz) ICA N30 Amplitude

(µV)
Standard

Error (µV) 95% CI LCL 95% CI UCL

FIR

0.5–1000
Yes 2.46 0.34 1.88 3.23
No 3.02 0.42 2.30 3.96

3–1000
Yes 2.50 0.35 1.90 3.27
No 3.06 0.42 2.33 4.01

30–1000
Yes 1.87 0.26 1.42 2.45
No 2.13 0.29 1.63 2.80

IIR

0.5–1000
Yes 2.58 0.36 1.97 3.38
No 3.04 0.42 2.32 3.98

3–1000
Yes 2.57 0.36 1.96 3.37
No 3.03 0.42 2.31 3.97

30–1000
Yes 1.83 0.25 1.40 2.40
No 2.08 0.29 1.59 2.73
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3.2.1. Effect of Filter Class

There were statistically no significant differences between N30 amplitudes filtered with FIR or IIR,
irrespective of the cutoff frequencies and use of ICA. Figure 4 shows the effect of filter class on N30
amplitude, and contrasts are given in Table 4.Sensors 2019, 19, x FOR PEER REVIEW 9 of 19 
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Figure 4. The effect of filter class. The error bar shows estimated mean N30 amplitude ± 95% CI.
The class of filter (FIR or IIR) had no effect on the N30 amplitude.
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Table 4. Estimated contrasts of filter class (FIR/IIR).

ICA Frequency
(Hz)

Ratio
(FIR/IIR)

Standard
Error (µV)

95% CI
LCL

95% CI
UCL z Ratio p Value

Yes
0.5–1000 0.95 0.04 0.87 1.04 −1.04 0.2972
3–1000 0.97 0.04 0.89 1.06 −0.68 0.4943
30–1000 1.02 0.05 0.93 1.11 0.42 0.6755

No
0.5–1000 0.99 0.04 0.91 1.08 −0.13 0.8932
3–1000 1.01 0.04 0.92 1.10 0.20 0.8396
30–1000 1.02 0.05 0.94 1.12 0.51 0.6095

3.2.2. Effect of Cutoff Frequency

The N30 amplitudes filtered with frequency bands 0.5–1000 Hz and 3–1000 Hz were similar.
However, filtering with the 30–1000 Hz band significantly lowered the N30 amplitude compared to the
0.5–1000 Hz (p < 0.0001) and 3–1000 Hz (p < 0.0001) filtered data. Figure 5 shows the effect of cutoff

frequencies on N30 amplitude. The contrasts obtained using the emmeans function in R are given in
Table 5.
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Figure 5. The effect of cutoff frequency and the use of ICA. The error bar shows estimated mean N30
amplitude ± 95% CI. The 30–1000 Hz band showed significantly lower N30 amplitude compared to the
0.5–1000 Hz and 3–1000 Hz bands. The use of ICA significantly reduced the N30 amplitude.
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Table 5. Estimated contrasts of frequency bands (Hz) (0.5–1000/3–1000, 0.5–1000/30–1000 and 3–1000/

30–1000). Significant effects (p < 0.05) are in bold text.

Filter ICA Contrast Ratio Standard
Error (µV)

95% CI
LCL

95% CI
UCL z Ratio p Value

FIR

Yes
0.5–1000/3–1000 0.99 0.04 0.89 1.09 −0.32 0.9467

0.5–1000/30–1000 1.32 0.06 1.19 1.46 6.20 <0.0001
3–1000/30–1000 1.34 0.06 1.20 1.48 6.52 <0.0001

No
0.5–1000/3–1000 0.99 0.04 0.89 1.10 −0.28 0.9579

0.5–1000/30–1000 1.42 0.06 1.28 1.57 7.82 <0.0001
3–1000/30–1000 1.43 0.06 1.29 1.59 8.09 <0.0001

IIR

Yes
0.5–1000/3–1000 1.00 0.04 0.90 1.11 0.04 0.9989

0.5–1000/30–1000 1.41 0.06 1.27 1.56 7.66 <0.0001
3–1000/30–1000 1.40 0.06 1.27 1.56 7.62 <0.0001

No
0.5–1000/3–1000 1.00 0.04 0.90 1.11 0.06 0.9982

0.5–1000/30–1000 1.46 0.06 1.31 1.62 8.46 <0.0001
3–1000/30–1000 1.45 0.06 1.31 1.61 8.41 <0.0001

3.2.3. Effect of ICA

The use of ICA reduced the N30 amplitude significantly for all combinations of filter class and
frequency bands (30–1000 Hz: p < 0.004, rest: p < 0.001). Figure 5 shows the effect of ICA on N30
amplitude. The contrasts obtained using the emmeans function in R are given in Table 6.

Table 6. Estimated contrasts of ICA (ICA/No ICA). Significant effects (p < 0.05) are in bold text.

Filter Frequency
(Hz)

Ratio
(NoICA/ICA)

Standard
Error (µV)

95% CI
LCL

95% CI
UCL z Ratio p Value

FIR
0.5–1000 1.23 0.05 1.12 1.34 4.59 <0.0001
3–1000 1.23 0.05 1.12 1.34 4.56 <0.0001
30–1000 1.14 0.05 1.05 1.25 2.98 0.0029

IIR
0.5–1000 1.18 0.05 1.08 1.29 3.69 0.0002
3–1000 1.18 0.05 1.08 1.29 3.67 0.0002
30–1000 1.14 0.05 1.04 1.24 2.89 0.0039

4. Discussion

In this study, we investigated the effects of filter class, cutoff frequencies, and the use of ICA on the
amplitudes of somatosensory potentials evoked by stimulating the median nerve. We found that there
were more epochs classified as artifacts from EEG filtered with FIR compared to those filtered with IIR
using automatic and semi-automatic methods. We found a reduced N30 amplitude when EEG was
cleaned with ICA compared to the EEG from which non-brain components were not removed using
ICA. Compared to the bandpass frequencies 0.5–1000 Hz and 3–1000 Hz, we found lower amplitude for
N30 when the EEG was filtered with the bandpass frequency of 30–1000 Hz. There were no substantial
differences in N30 amplitudes between FIR and IIR filtered EEG.

4.1. Selection of Preprocessing Parameters

We found inconsistencies in the usage and reporting of the filter cutoff frequency bands in
the literature. Therefore, we selected three frequency bands to evaluate the effects on the N30
amplitude when EEG is preprocessed with them. We selected the 0.5–1000 Hz based on the guidelines
recommended for processing EEG and ERP [5,12], whereas the 3–1000 Hz band was selected, as it was
one of the most reported. The 30–1000 Hz band was selected, as it is the recommended frequency band
for SEP analysis [1,8–10]. Table A1 contains a brief literature review.
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The filter class IIR (Butterworth) was chosen, as it was the most commonly used, whereas FIR was
selected, as it is recommended for EEG preprocessing [5,30].

ICA was used, as it can be utilized to remove artifacts and non-brain components from the EEG
data, which can be beneficial for patients’ data or data recorded in noisy environments.

4.2. Number of Artifacts

The parameters used to classify epochs contaminated with artifacts were obtained by randomly
selecting eight datasets and adjusting the parameters by visual inspection of the results of the automatic
classification of epochs as artifacts. There were significant differences in the number of epochs classified
as artifacts between FIR and IIR filtered data. However, since there can be significant variability in the
size and shape of the artifacts across subjects, this one-size-fits-all approach may not be optimal. It was
observed that the automated settings marked all epochs as artifacts in a few datasets.

The semi-automated validation of epochs as artifacts, which was done by the person blind to the
dataset and filter class, showed significant effects of the filter class on the N30 amplitude, likely due to
the difference in the number of epochs identified as artifacts.

Keeping the filter class constant, the number of epochs stays same and shouldn’t affect the results
of the effects of the cutoff frequencies and the use of ICA, as it can be treated as a within-subject
manipulation. However, comparison of N30 amplitude filtered with FIR and that filtered with IIR in
combination with either the bandpass frequency or the use of ICA can be biased, since the number of
epochs used for averaging was different and quantifying the N30 amplitude using the peak amplitudes
is affected by the number of trials used for averaging [12].

The effect of manual classification can be reduced by using artifact rejection parameters set for
each individual subject, as suggested by [12].

4.3. Filter Class

The IIR (Butterworth) filtered EEG showed a similar N30 amplitude compared to FIR (Kaiser
window) filtered EEG, irrespective of the cutoff frequencies and the use of ICA to remove non-brain
components from the data.

IIR filtering is the most commonly used in the electrophysiological studies. The likely reason for
this is the that it has been used since older times, when computers were not as fast as today, and the
practice continues. However, with modern computers, the computational cost of using FIR is slightly
higher compared to the IIR filters. FIR filtering is recommended for offline analysis by [5,30], as FIR
filters are more stable and less likely to produce phase distortions. Keeping the phase information
correct is important in phase-connectivity analysis.

We found it easier to design the FIR filter compared to the IIR filter by specifying the cutoff

frequencies and the transition bandwidths in Hz and getting the order of the filter as a result, which
was used for filtering the data. For the IIR, the filter coefficients are obtained by specifying the cutoff

frequency and the filter order. The transition bandwidth is not a straightforward result and needs the
interpretation of the impulse response. In this way, we felt we had more control over the design of the
FIR filter.

4.4. Frequency Band

The recommendation for recording and analyzing SEPs by [1,8–10] suggested using the 30–1000 Hz
band. However, we found inconsistencies in the following of these guidelines in the literature. Therefore,
we used three different passbands, 0.5–1000 Hz, 3–1000 Hz and 30–1000 Hz to assess the effect of filter’s
cutoff frequencies on the N30 amplitude.

The 30–1000 Hz band always showed a lower N30 amplitude. The possible reason is that all the
lower frequency spectra from EEG are removed, whereas the EEG follows the 1/f function, which
means that the power at lower frequencies has a larger magnitude compared to the power at higher
frequencies [30]. The distribution of the N30 amplitude data showed more outliers compared to the



Sensors 2019, 19, 2610 12 of 18

other two frequency bands when ICA was not used to remove the non-brain components from the
EEG. The likely reason is that the muscle activity, which has a high frequency, was still present in
the data, and since average referencing was used, the muscle activity might also have affected the
N30 amplitude.

The N30 amplitude with the 3–1000 Hz band was similar to that of the 0.5–1000 Hz band. However,
using a high-pass cutoff of 0.5 Hz removes the DC offset and slow drifts, but keeps the lower spectrum
of the EEG.

A sharper transition is suggested for the high-pass filter (to get the intended lower spectrum),
and a shallower transition for the low-pass filter (to avoid distortion and spread of the signal in
time-domain), which makes filtering EEG using the successive application of a high-pass filter and a
low-pass filter, instead of a single bandpass filter with a similar transition at both ends [5].

4.5. ICA

The N30 amplitude was found to be lower when ICA was used and non-brain components were
removed. Since the EEG components corresponding to the muscle, channel or line noise, or eye activity
were removed, the overall amplitude of the N30 was reduced.

Use of ICA helps to keep more trials in the data, as the trials contaminated with eye blinks and
eye movements can be corrected instead of being rejected. The channels contaminated with muscle
activity or environmental noise can be fixed by removing the corresponding component, reducing
the need for interpolation of the channel. Lastly, the line noise and its harmonics are removed more
efficiently with ICA without distorting the signals, as the notch filter usually used to remove the mains
noise, produce strong artifacts [12].

4.6. Limitations

Due to the small sample size, it is possible that the results from the LMM are biased. We, therefore,
also analyzed the data using a three-way repeated measures ANOVA. The detailed procedure and
results are given in the Supplementary Materials. A brief summary of the differences of results obtained
from LMM and ANOVA is given here.

With respect to the model, the difference between the LMM and ANOVA was that the two-way
interactions of filter and frequency, and the use of ICA and frequency in ANOVA were significant.

The Tukey-Kramer test revealed that for FIR and ICA, the N30 amplitudes filtered with frequency
bands 0.5–1000 Hz and 3–1000 Hz were significantly different, but this was not the case for LMM
contrasts. The other difference was that according to Tukey-Kramer test, the N30 amplitude was not
affected by the use of ICA (either with FIR or IIR) when the cutoff frequency of 30–1000 Hz was used
for filtering, whereas LMM contrasts showed that use of ICA significantly reduced N30 amplitude for
all combinations of filter class and frequency bands.

One limitation of the current study is that the significant differences in amplitudes under varying
techniques does not show which method is statistically more efficient, i.e., which technique is best able
to differentiate between the different treatments or populations. This result should be incorporated in
future work.

4.7. Toolboxes

Currently, there are many toolboxes for analyzing the neural data, e.g., EEGLAB [19], Fieldtrip [31],
and ERPLAB [20]. These toolboxes have made analyzing EEG easier. However, they act as a black box
if their functionalities and the default functions and parameters are not carefully understood before
utilizing them for the analysis of EEG data. There are considerable differences among them regarding
how filtering is performed. The default filter class of EEGLAB is FIR, whereas Fieldtrip and ERPLAB
use the Butterworth filter. In Fieldtrip, the default order of the Butterworth high-pass and low-pass
filters is, 6 whereas it is 4 for the bandpass and bandstop. The transition bandwidth for the FIR filter
cannot be specified with ERPLAB, but it is possible to do that with EEGLAB. Additionally, EEGLAB,
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by default, keeps the data in single precision, but filtering should always be performed on the double
precision data (EEGLAB converts the data to double precision when filtering but returns the result in
single precision if EEGLAB’s default memory options are used). [5] showed how different toolboxes
returned different outputs despite having the same filter parameters as inputs. Therefore, we would
like to recommend that it is important to understand how different analysis are implemented in the
toolboxes and what the default parameters are. Manually setting the filter parameters is recommended.

4.8. Recommendations

Based on the results of this study, and recommendations from other studies (e.g., [5,12,30]), for
replication and comparison of different studies, we would like to recommend that

1. In the preprocessing section of the methodology, filter class (FIR, IIR, high-pass, low-pass,
band-pass), order, slope/transition bandwidth, cutoff frequencies should be reported.

2. Filtering should always be performed on continuous data in double precision.
3. Use FIR, as it is more stable and less likely to introduce phase distortions. Additionally, we found

it easier to design and understand the FIR response giving the cutoff frequencies and transition
bandwidth in Hz, instead of roll-off in octaves or decades.

4. Use 0.5 Hz (or lower) as the cutoff frequency for the high-pass filter to remove DC and slow drifts
but keeps the rest of the EEG spectra.

5. Use ICA to remove non-brain/noisy components from the EEG, as this may improve the statistical
power by keeping a higher number of trials in the data and maintaining the brain activity for
the analysis.

5. Conclusions

We found a reduced N30 amplitude when the EEG was cleaned with ICA compared to the
EEG from which non-brain components were not removed using ICA. Compared to the bandpass
frequencies, 0.5–1000 Hz and 3–1000 Hz, we found a lower amplitude of N30 when the EEG was filtered
with the bandpass frequency of 30–1000 Hz. We found no substantial differences in N30 amplitudes
between FIR and IIR filtered EEG. Considering the effects of the class of filter, the cutoff frequencies
and the use of ICA, it is recommended to be careful when selecting the preprocessing parameters,
as they can affect the outcomes, which may be relevant not only to studies based on SEPs but also to
laser-evoked potentials and other ERPs, which are being used in clinical research and applications,
as they may affect the interpretations of results, replicability, and comparison of studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/11/2610/s1,
Table S1. ANOVA table. Significant effects (p < 0.05) are in bold text, Table S2. Pairwise comparisons by filter
class. Significant effects (p < 0.05) are in bold text, Table S3. Pairwise comparisons by frequency. Significant effects
(p < 0.05) are in bold text, Table S4. Pairwise comparisons by use of ICA. Significant effects (p < 0.05) are in bold
text, Figure S1. The effect of filter class. The error bar shows mean N30 amplitude ± 95% CI. The class of filter (FIR
or IIR) had no effect on the N30 amplitude, Figure S2. The effect of cutoff frequency and the use of ICA. The error
bar shows mean N30 amplitude ± 95% CI. The 30–1000 Hz band showed significantly lower N30 amplitude
compared to the 0.5–1000 Hz and 3–1000 Hz bands. The use of ICA significantly reduced the N30 amplitude
except when filtered with 30–1000 Hz.
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Appendix A

The literature search was conducted using PubMed. The search terms used were one or
a combination of several terms from the following: electroencephalography, EEG, event-related
potentials, ERP, somatosensory-evoked potentials, SEPs, SSEPs, preprocessing, data analysis, artifact
rejection, and noise. Furthermore, the inclusion criteria included that the studies were conducted on
adult individuals and published in English during the period between 2000 and 2017. A brief literature
review, which involved median nerve stimulation, is given in Table A1.

Table A1. Brief literature review.

Study Electrodes 1 SEP Components Filter Class Filter Order
Filter Roll

Off/Transition
Bandwidth

Filter Cutoff
Frequency (Hz)

(Di Lorenzo et al.,
2016) [32] Skin N9, N13, N20, P25, N33 − − − 0–450

(Puta et al., 2016)
[33] Skin N9, N20 − − −12 dB/octave 3–750

(Haavik-Taylor and
Murphy, 2007) [34] Skin

N9, N11, N13, P14-N18
complex, N20 (P14-N20,

N20-P27 complexes), N30
(P22-N30 complex)

− − −6 dB/octave 3–1000

(Fedele et al., 2017)
[35] ECoG N20, HFO Butterworth 2 −12 dB/octave N20 (30–1000),

HFO (400–1000)

(Roser et al., 2016)
[36] ECoG N20, P40 − − − 10–1000

(Baars and von
Klitzing, 2017) [37] Skin N20 − − − 3–800

(Ares et al., 2018)
[38]

Scalp needle
and Skin − − − −

Scalp needle
(3–300), Skin

(30–1000)

(Burnos et al., 2016)
[39]

Skin and
ECoG N20, HFO Butterworth 2 −12 dB/octave N20 (30–1000),

HFO (500–1000)

(Sakuma et al., 2004)
[40] Skin N9, N13, N20, P25, HFO − − −

HFO (400–800),
rest (0.3–3000)

(Bailey et al., 2016)
[41] Skin N20-P25 complex − − − 2–2500

(Maegaki et al.,
2000) [42] ECoG N20, P20, P25, N30 − − − 30–2000

(Endisch et al., 2016)
[43] Skin N20, N20-P25 complex,

HFO HFO (FIR) − −
HFO (450–750),

rest (5–1500)

(Murakami et al.,
2008) [44] Skin

P14–N20, N20–P25,
P25–N33, baseline-N13,

N13onset-N13peak
complexes

− − − 0.3–3000

(Andrew et al., 2015)
[45] Skin

N9, N13, N18 (P14–N18
complex), N20 (P14–N20
complex), N24 (P22–N24
complex), N30 (P22–N30

complex)

− − − 0.2–1000

(Mideksa et al.,
2012) [46] Skin N20 − − − 0.01–200

(Han et al., 2014)
[47] Skin N20, P37 − − − 20–3000

(Boostani et al.,
2016) [48] Skin N9, N11, N13, N20 − − − 5–2000

(Lelic et al., 2016)
[15] Skin N30 − − − 1–1000

(Haavik et al., 2017)
[16] Skin N9, N11, N13, P14, N18,

N20, N30 − − −6 dB/octave 3–1000

(Taylor and Murphy,
2010) [18] Skin N9, N11, N13, P14, N18,

N20, N30 − − −6 dB/octave 3–1000

(Tinazzi et al., 2000)
[49] Skin N9, N13, P14, N20, P27,

N30 − − −6 dB/octave 5–1500
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Table A1. Cont.

Study Electrodes 1 SEP Components Filter Class Filter Order
Filter Roll

Off/Transition
Bandwidth

Filter Cutoff
Frequency (Hz)

(Haavik Taylor and
Murphy, 2007) [17] Skin N9, N11, N13, P14, N18,

N20, N30 − − −6 dB/octave 3–1000

(Adhikari et al.,
2016) [50] Skin N20, P24, P40, N48 − − − 10–250

(Balzamo et al.,
2004) [51] ECoG N20-P30, P20-N30 − − − 1–1000

(Hoshiyama and
Kakigi, 2000) [52] Skin N20, P25, N33, P20, N30 − − − 1–500

(Kaňovský et al.,
2003) [53] ECoG N30 − − − 10–1000

(Tinazzi et al., 2000)
[54] Skin N13, P14, N20, P27, N30 − − −6 dB/octave 5–1500

(Taylor and Murphy,
2010) [55] Skin N9, N11 N13, P14, N18,

N20 N30 − − − 3–1000

(Van Rijn et al., 2009)
[56] Skin N9, N14, N20, N35 − − − 30–1000

(Costa et al., 2007)
[57] Scalp needle − − − − 30–1000

(Jin et al., 2014) [58] Scalp needle N20, P25 − − − 30–1000
1 Skin electrodes include scalp EEG electrodes and any other electrodes placed on skin, e.g., at Erb’s point.
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