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bQuantitative Analytics, Neas Energy, Skelagervej 1, 9000 Aalborg, Denmark

Abstract

The recently introduced German wind power futures have brought the opportunity to address the problem
of volume risk in wind power generation directly. In this paper, we study the hedging benefits of these
instruments in the context of peak gas-fired power plants, by employing a strategy that allows trading in
the day-ahead clean spark spread and wind power futures. To facilitate hedging decisions, we propose a
seasonal copula mixture for the joint behavior of the day-ahead clean spark spread and the daily wind
index. The model describes the data surprisingly well, both in terms of the marginals and the dependence
structure, while being straightforward and easy to implement. Based on Monte Carlo simulations from the
proposed model, the results indicate that significant benefits can be achieved by using wind power futures.
Moreover, a comparison study shows that accounting for asymmetry, tail dependence, and seasonality in
the dependence structure is especially important in the context of risk management.

Keywords: Clean spark spread, Wind power futures, Copula models, Time-varying dependence, Hedging
JEL: C22, C58, G11, G17, Q40

1. Introduction

The sudden change in German energy policy that followed the Fukushima nuclear accident marked a new
era for the German power market. Since the nuclear shutdown and the shift to renewables, Germany has
experienced an impressive growth in both wind and solar power, and has reached a level that far exceeds the
Kyōto climate obligations. This change has undoubtedly brought benefits on several fronts, however, the
non-programmable nature of wind and solar electricity production has resulted in a large share of weather-
dependent supply of electricity. From a financial point of view, the cash-flows from such non-programmable
power plants can be incredibly volatile, not only due to price uncertainty, but also due to the uncertainty
associated with the volume produced. While renewable generators are clearly affected by the uncertain
volume, they are not the only ones; by market design and economics principle, the presence of renewables
in the bid stack will always force conventional generators to produce less. In Germany, where the share of
renewable energy is especially high, the conventional producers’ competitiveness on e.g. the spot and forward
markets has deteriorated, which has in turn invoked the need for far more intricate operation patterns and
strategies.

In light of the advancements concerning renewables in Germany and the challenges imposed by volume
risks for many different market players, the European Energy Exchange (EEX) recently introduced a financial
instrument to mitigate the volume uncertainty associated with wind power generation. This instrument is
referred to as a wind power futures, and its underlying is the German wind index. Representative agents
for the sell and buy sides of wind power futures are the wind electricity producers and the conventional
electricity producers, respectively. On one hand, low wind scenarios are unfavorable for wind electricity
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producers, since they have a lowering effect on cash-flows; on the other hand, conventional generators are
exposed to high wind scenarios, since a large share of wind power in the electrical grid displaces the costlier
sources.

In this paper, we study the risk-reducing benefits of wind power futures in the context of conventional
generators that operate in the day-ahead market whenever profitable. As a representative agent for the
conventional generator, we consider the case of a peak gas-fired power plant whose profit per unit of electricity
produced is measured in terms of the day-ahead clean spark spread. Since the dependence between the day-
ahead clean spark spread and the wind index is essential for assessing the benefits of wind power futures,
the contribution of this paper is twofold.

First, we propose a seasonal copula mixture to model the joint behavior of the day-ahead clean spark
spread and the daily wind index. The model is fitted to four years of German data, and captures the marginal
behavior of the individual variables and also the seasonality in the dependence between the variables very
well. Second, we employ the proposed seasonal copula mixture to facilitate hedging decisions and showcase
the effectiveness of wind power futures. To highlight the benefits of the seasonal copula mixture, we perform
a study where the proposed model is compared against alternative models.

Owing to the recent introduction of the German wind power futures, the related literature is very scarce.
The first related study is that of Gersema and Wozabal (2017), where the authors focus mainly on the pricing
of wind power futures and explaining risk premia, for which an equilibrium pricing model is proposed. Also
concentrating on the pricing aspect is the work of Benth and Pircalabu (2018), who apply a no-arbitrage
approach to the pricing of wind power futures, and obtain results concerning the sign of risk premia that
support the conclusions drawn in Gersema and Wozabal (2017). In contrast to the two existing studies,
which focus mainly on pricing and less on hedging and risk management, we take a simplistic approach to
pricing but study in detail aspects related to the risk-reducing ability of wind power futures. Nevertheless,
we acknowledge that some of the results in Gersema and Wozabal (2017) and Benth and Pircalabu (2018)
are very relevant in the context of the present study, and they shall thus be included in our discussion.

Turning to applications of copulas in energy markets, we mention that these models have gained substan-
tial interest over the past years and have become a popular tool to model the non-linear dependence between
different commodities. Some examples concerning applications of bivariate copulas are Börger et al. (2009),
Benth and Kettler (2011), Grothe and Schneiders (2011), Avdulaj and Barunikl (2015), and Elberg and Hagspiel
(2015). For applications beyond bivariate copulas, we mention the study of Pircalabu and Jung (2017), and
that of Aepli et al. (2017). The present paper contributes to this stream of literature in terms of the ap-
plication, which to the best of our knowledge has not yet been considered, and also in terms of modeling
approach, by proposing an extension that deals with seasonality in the dependence structure.

The remaining of this paper is structured as follows: In Section 2, we introduce the data and elaborate on
the construction of the variables. In Section 3, we describe the modeling framework and report estimation
results. Section 4 introduces the seasonal copula mixture model and provides evidence for its quality of
fit. In Section 5, we employ the proposed model to study the benefits of wind power futures, and perform
various comparison studies. Section 6 concludes.

2. Background and data

To investigate the benefits of wind power futures for a gas-fired power plant (GFPP), two data com-
ponents are of interest in the analysis performed in this paper: The day-ahead clean spark spread and the
daily wind index. In this section, we address each of these in turn, commenting on their construction.

2.1. Clean spark spread

As an indicator for the profit per unit of electricity generated by a GFPP, we consider the day-ahead
clean spark spread (CSS). This measure depends on electricity, gas, and emission prices, and also on the
heat rate and the emission factor. The heat rate represents the required number of natural gas MWhs to
produce one MWh electricity, i.e., the efficiency at which the GFPP transforms gas to electricity. Further,
the emission factor represents the number of tons of CO2 emitted by producing one MWh electricity.
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With GFPPs being mainly peak-operated power plants—that is, power plants dispatching during the
peak hours between 8 AM to 8 PM on weekdays and non-holidays—we consider the peak electricity price.
Specifically, let SE

t denote the day-ahead peak load electricity price, SG
t the day-ahead gas price, and SC

t

the day-ahead emission price, with the subscript t indicating time measured in days. Further, let h be the
heat rate and e the emission factor. We define the day-ahead CSS on day t as

CSSt = SE
t − hSG

t − eSC
t , (1)

where SE
t and SG

t are measured in EUR/MWh, and SC
t is measured in EUR/tCO2.

2.1.1. Data preparation for the clean spark spread

To construct a time series for the day-ahead CSS, we consider the following time series:

• SE
t : The German electricity price, which is computed as the average of all hourly electricity prices

between 8 AM to 8 PM on weekdays and non-holidays. The source of this data is EEX.

• SG
t : The day-ahead gas price for NetConnect Germany (NCG), which corresponds to the closing price.

The source of this data is EEX.

• SC
t : The EU Allowance unit of one tonne of CO2 (EUA) phase 3 daily futures price. This data is

collected from the Intercontinental Exchange, and represents the closing price. For more information
regarding the EU emissions trading system, we refer the interested reader to European Commission
(2017).

All time series above span 1030 observations in the period from 3 January 2013 to 30 December 2016, and
cover weekdays that are non-holidays. To provide a sense of the data, we plot in Fig. 1 the time series
corresponding to each of the three data sources described above. Moreover, we plot the CSS obtained by
applying Eq. (1), and using the values for h and e reported in Table 1. These numbers are based on ICIS
(2016), and shall be used in the remaining of this paper unless explicitly stated otherwise.

Heat rate h Emission factor e

2.035 0.375

Table 1: Heat rate (MWhs natural gas per MWh electricity) and emission factor (tCO2 per MWh electricity) based on ICIS
(2016). The chosen heat rate corresponds to an efficiency of 49.13%.

2.2. Wind index

Since the German wind power futures (WPF) were introduced only recently, we find it relevant to provide
a brief description of these products and to clarify their payoff structure. WPF contracts are written on the
average wind index in Germany, and can be traded at the European Energy Exchange (EEX) and Nasdaq
OMX. In this paper, we shall restrict our attention to the WPF traded at EEX.

The German wind index is obtained as the ratio between the total wind power generation and the total
available installed wind power capacity. Hence, the index is bounded between zero and one, and provides a
measure of the German wind utilization. Currently, delivery periods for WPF correspond to weeks, months,
quarters and years, and only trading the base load profile is possible. Compared to the definition of the
day-ahead CSS data in Eq. (1), there is clearly a mismatch between delivery periods, with wind power
futures hedging all hours of every day, and gas turbines generating output during peak hours. However, this
reflects the present market conditions, where the volume risk of a GFPP can only be imperfectly hedged.

3
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(a) CSSt: Daily day-ahead CSS (peak load)
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(c) SG
t : NCG gas day-ahead closing
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(d) SC
t : EUA day-ahead closing price

Figure 1: Historical evolution of the daily day-ahead CSS (peak load), the German day-ahead electricity price (peak load),
the NCG day-ahead gas closing price, and the EUA day-ahead closing price, from 3 January 2013 to 30 December 2016. The
applied heat rate and emission factor to construct the day-ahead CSS are given in Table 1.
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Assuming a delivery period [T1, T2] consisting of H hours, the payoff corresponding to a long position in
one WPF contract is given by

RWPF = H









1

T2 − T1 + 1

T2∑

t=T1

Wt

︸ ︷︷ ︸
=W̄

−Wt0









X, (2)

where Wt ∈ [0, 1] is the daily wind index, W̄ ∈ [0, 1] is the realized average wind index over the delivery
period, and Wt0 ∈ [0, 1] can be thought of as the “futures price”, i.e., the index set at t0 when entering
the contract. Further, X is a pre-specified constant tick size which is used to convert the index differences
into monetary measures. According to EEX, X = 100 EUR. We see from Eq. (2) that a short position in
WPF will generate a profit in low-wind scenarios, making it a useful hedging instrument for the wind power
producer. Conversely, a long position will generate a profit in the high-wind scenarios, to which the GFPPs
are exposed.

2.2.1. Data preparation for the wind index

The index that a WPF contract is settled against is externally provided by EuroWind. Since trading in
WPF started only recently, the amount of data available on the spot wind index provided by EuroWind is
limited. To obtain a longer time series, we consider instead a proxy wind index constructed using the wind
power production in Germany on a daily basis, and monthly recordings of the German installed wind power
capacity, which are updated at the start of each month. The wind power production data is collected from
the four different transmission system operators in Germany, and the source of the installed capacity data
is PointConnect.

Specifically, the daily German wind index is constructed as

Wt = Daily wind index =
Daily wind power generation (MWh)

Ht ∙ Installed capacity (MW)
,

where Ht denotes the number of hours in day t, and the installed capacity on a daily basis is obtained
by linear interpolation. In order to unify the length of the day-ahead CSS and the wind index, we omit
weekends and holidays for the wind index data. Hence, the constructed index spans the period from 3
January 2013 to 30 December 2016, a total of 1030 observations, and is plotted in Fig. 2(a).

To provide some evidence for how the constructed wind index matches the true settlement data, we plot
in Fig. 2(b) our proxy together with the one year of actual data from EuroWind that we have available. The
time series plot reveals an acceptable resemblance, and to provide a quantitative indication, we compute the
mean absolute error to 0.020.

3. Model construction and fit

To model the joint behavior of the day-ahead CSS and the daily wind index (henceforth referred to
as simply CSS and wind index, respectively), we consider copula models. Restricting our presentation
to the two-dimensional case, a copula is the joint distribution of the random variables U1 and U2, where
each variable is marginally uniformly distributed as Unif(0,1). Since our data exhibits seasonality and
autocorrelation, we wish to filter out these effects before applying the copula. Therefore, we are here
considering the conditional copula.

Let F (∙|Ft−1) denote the conditional joint distribution function of the random vector Yt = (Y1t, Y2t),
and let F1(∙|Ft−1) and F2(∙|Ft−1) denote the conditional continuous marginal distribution functions of Y1t

and Y2t, respectively. Then, according to Sklar’s theorem [Sklar (1959)] for conditional distributions, there
exists a unique copula C such that F can be decomposed as

F (y1t, y2t|Ft−1) = C(F1(y1t|Ft−1), F2(y2t|Ft−1)|Ft−1). (3)

5
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Figure 2: Historical evolution of the German wind index (Wt) on a daily basis from 3 January 2013 to 30 December 2016, and
a comparison of Wt with the actual wind index provided by EuroWind for the year 2016.

The converse also holds, meaning that given two univariate distributions F1, F2 and a copula C, F as defined
in Eq. (3) is the joint distribution with margins F1, F2. Thus, Sklar’s theorem not only provides a way of
decomposing a joint distribution function, but also a way of composing it given marginal distributions and
a copula, both of which are very useful in practical applications. For the proof of Sklar’s theorem for
conditional distributions, we refer to Patton (2006(a)).

Recalling the probability integral transform, we note that Uit := Fi(Yit|Ft−1) ∼ Unif(0, 1), for i = 1, 2.
Differentiating both sides of Eq. (3) with respect to (y1t, y2t) thus yields

f(y1t, y2t|Ft−1) = c (u1t, u1t|Ft−1) ∙ f1(y1t|Ft−1) ∙ f2(y2t|Ft−1), (4)

where f denotes the joint density function, c is the copula density, and f1, f2 denote marginal density
functions.

In our context, copula models are advantageous for various reasons: First, being able to capture depen-
dence beyond the linear correlation can be of utmost importance when illustrating the hedging benefits of
WPF, and this can be achieved with copulas. Second, we can separate the treatment of the dependence
structure from that of the marginal behavior of the individual variables (cf. Eq. (4)), since the dependence
structure is fully contained in the copula. Third, selecting one type of marginal distribution for the first
variable does not restrict our choice of marginal distribution for the second variable.

Turning to the estimation of the model parameters, we let T denote the sample size, θc the copula
parameters, and θ1 and θ2 the parameters of the marginal models. From Eq. (4) it follows that the log-
likelihood function is

logL =

T∑

t=1

log c (u1t, u1t|Ft−1, θc) +

T∑

t=1

log f1(y1t|Ft−1, θ1)

+

T∑

t=1

log f2(y2t|Ft−1, θ2).

Here, we consider multi-stage maximum likelihood (MSML) estimation. This provides a far less complicated
estimation procedure relative to one-stage MLE. Moreover, the studies of Joe (2005) and Patton (2006(b))
suggest that the efficiency loss is not substantial.

In the following two sections, we present in detail the marginal models and the constant copulas consid-
ered in this paper, and provide empirical evidence for the fit of these models to our data.

6
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3.1. Marginal models

Since both the CSS and the wind index exhibit seasonality, we start the marginal treatment of the
individual variables by applying suitable seasonal functions to remove the deterministic seasonal component.

For the CSS, we consider the seasonal function

ft = a1 + b1t + c1 sin (2πt/K) + c2 cos (2πt/K) ,

where a1 is a constant, b1 is the trend coefficient, and c1 and c2 are coefficients for the annual cycle. We
have on average approximately K = 258 observations per year.

Not surprisingly, the seasonality function for the CSS resembles a seasonality function that would typi-
cally be considered for the day-ahead electricity price (see e.g. Haldrup and Nielsen (2006), Benth and Šaltytė Benth
(2011), and Härdle and López Cabrera (2012)). This resemblance is caused by the magnitude of the elec-
tricity price compared to the gas and emission price, cf. Fig. 1, causing the former to have the dominant
effect. Aside from electricity prices usually exhibiting a yearly seasonality, a strong within-week seasonality
is also often observed. However, with the exclusion of weekends from our data, adding a term that addresses
the weekly seasonality (e.g. day-of-week dummies) is unnecessary. Furthermore, adding more trigonometric
terms (based on the periodogram) does not improve the fit of the seasonal function substantially.

Turning to the wind index, recall that this series is bounded between 0 and 1, cf. Fig. 2. Following
Pircalabu and Jung (2017), we apply the logit-transform to the wind index1, and consider the following
seasonal function for the logit wind index (LWI):

ft = a1 + c1 sin (2πt/K) + c2 cos (2πt/K) ,

which is motivated by the prominent annual cycles we observe in the sample autocorrelation of the LWI.
Also here, different meaningful extensions of the seasonal function were experimented with, without yielding
a significant improvement.

The seasonality functions are fitted to the data by ordinary least squares, and Table 2 summarizes the
results obtained for the CSS and the LWI.

â1 b̂1 ĉ1 ĉ2

CSS -10.131 0.014 -3.611 2.990
(0.579) (0.001) (0.411) (0.404)

LWI -1.828 - 0.066 0.472
(0.030) - (0.042) (0.043)

Table 2: OLS estimates for parameters of the seasonal functions for the CSS and the LWI. Standard errors are reported in
parenthesis, and are based on a naive OLS calculation.

Next, we apply ARMA-GARCH filters to the deseasonalized data. Given a time series of data yt, an
ARMA(p,q)–GARCH(h,k) model is defined by

yt =

p∑

i=1

φiyt−i +

q∑

j=1

θjεt−j + εt,

εt = σtηt,

σ2
t = ω +

h∑

i=1

αiε
2
t−i +

k∑

j=1

βjσ
2
t−j ,

where ηt ∼ iid N(0, 1). It was Engle (1982) who introduced the ARCH model, and later Bollerslev (1986)
who extended the variance equation to include lagged values of σ2

t . For a review of ARMA and GARCH

1The logit function is given by logit(x) = log(x) − log(1 − x).
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models, see for example Shumway and Stoffer (2007). In the following, we denote by ηCSS
t and ηLWI

t

the standardized residuals resulting from applying the ARMA–GARCH models to the CSS and the LWI,
respectively.

Model selection is based on the Bayesian Information Criterion (BIC), and we consider ARMA(p, q)–
GARCH(h, k) models for all possible combinations of p, q, h and k, for p = 0, . . . , 7, q = 0, . . . , 7, h = 0, 1, 2,
and k = 0, 1, 2. The optimal order of the models and the corresponding estimated parameters are reported
in Table 3.

CSS LWI

Model ARMA(2,1) – GARCH(1,1) ARMA(1,1)

Conditional mean

AR1 φ̂1 1.313 (0.077) 0.360 (0.055)

AR2 φ̂2 -0.360 (0.058) -

MA1 θ̂1 -0.818 (0.064) 0.208 (0.055)

Variance σ̂2 - 0.677 (0.030)

Conditional variance
Constant ω̂ 3.611 (0.636) -
ARCH α̂1 0.110 (0.022) -

GARCH β̂1 0.827 (0.027) -

Table 3: Type and order of marginal models, parameter estimates and corresponding standard errors in parenthesis.

Considering the goodness-of-fit of the normal distribution, we find a satisfactory fit in the case of η̂LWI
t , cf.

Figs. 3(e) and 3(f). This is however not the case for η̂CSS
t . Consequently, we relax the normality assumption

for the CSS, and consider instead the normal-inverse Gaussian (NIG) distribution. The probability density
function of the NIG distribution is given by

g(x|α, β, μ, δ) =
αδG1

(
α
√

δ2 + (x − μ)2
)

π
√

δ2 + (x − μ)2
eδ
√

α2−β2+β(x−μ),

where

G1(x) =
1

2

∫ ∞

0

e−
1
2 x(t+t−1)dt

is the modified Bessel function of third kind and index 1. The NIG distribution is a popular choice in the
financial literature (for some examples, see Barndorff-Nielsen (1997a), Rydberg (1997), Barndorff-Nielsen
(1997b), and Jensen and Lunde (2001)), and is also often able to provide a good description of commodity
data, see e.g. Benth and Šaltytė Benth (2004) and Benth and Kettler (2011). The NIG distribution is fitted
to the residuals from the ARMA(2,1)–GARCH(1,1) model cf. Table 3 by maximum likelihood, and the
parameter estimates are reported in Table 4. As it appears from the histogram and quantile plots displayed
in Figs. 3(a) and 3(b), the NIG distribution provides a satisfactory fit to the CSS data.

α̂ β̂ μ̂ δ̂

1.584 (0.307) -0.189 (0.144) 0.189 (0.126) 1.534 (0.281)

Table 4: Maximum likelihood estimates obtained by fitting the NIG distribution to η̂CSS
t . Corresponding standard errors are

given in parenthesis.

To provide further evidence for the appropriateness of the chosen marginal distributions, we perform
the Kolmogorov-Smirnov (K-S) and the Cramer-von Mises (CvM) goodness-of-fit tests. To obtain critical
values for the tests, we employ the simulation-based method described in detail in Patton (2013). In the
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Figure 3: Diagnostics for the standardized residuals η̂CSS
t (first row) and η̂LWI

t (second row).

CSS case we obtain p-values of 0.627 and 0.785 for the K-S and CvM test, respectively, and can thus not
reject the null that the NIG distribution is well-specified. This is also the conclusion in the LWI case, where
we test the goodness-of-fit of the normal distribution. Here, the resulting p-values are 0.746 and 0.915 for
the K-S and CvM test, respectively.

Aside from providing evidence for the goodness-of-fit of the marginal distributions, the sample autocor-
relations provided in Fig. 3 suggest that no considerable serial dependence is left in the conditional mean
and variance, for either variable. Having verified that the models proposed here are suitable for describing
the marginal behavior of the CSS and the LWI, we proceed in the next section to the modeling of the
dependence structure.

3.2. Constant copula models

Let FNIG and FN denote the cumulative distribution functions for the NIG and standard normal
distribution, respectively. To obtain the approximately uniforms that are the input variables to the copula
function, we apply the probability integral transform, i.e.,

ûCSS
t = FNIG(η̂CSS

t |Ft−1, α̂, β̂, μ̂, δ̂),

ûLWI
t = FN (η̂LWI

t |Ft−1),

for t = 1, . . . , T . In Fig. 4 we plot the resulting probability integral transforms against each other, revealing
that the variables are negatively related. This finding is not surprising considering the negative dependence
between electricity prices and the wind index. A high wind penetration in the electricity grid puts a
downward pressure on day-ahead electricity prices owing to the process of day-ahead price formation, which
prioritizes cheap electricity producers. With everything else being equal, this lowering effect on the electricity
price is then reflected in the CSS, which is also lowered, cf. Eq. (1). Similar arguments apply to the case of
a low wind scenario, where electricity prices are typically pushed upwards.

The dependence structure seems to be slightly asymmetric, with the north west corner of Fig. 4 exhibiting
more concentration and being sharper in shape compared to the south east corner. That is, there seems
to be more probability of observing the combination of extremely high wind / extremely low CSS than the
reverse. Since non-zero dependence in extreme events could have notable implications for the benefits of
WPF, being able to capture such behavior in a model for the dependence structure must be considered.
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Figure 4: Empirical copula density.

Luckily in the context of copulas, such extreme events can be easily captured by considering certain copula
families that allow for non-zero tail dependence. More specifically, the lower and upper tail dependence can
be defined as

Λl = lim
q→0+

P (uCSS
t ≤ q|uLWI

t ≤ q)

Λu = lim
q→1−

P (uCSS
t > q|uLWI

t > q),

where q denotes the quantile. Clearly, since our data is characterized by negative dependence, computing Λ l

and Λu as defined above is not meaningful. This can however be resolved by performing suitable rotations
of the data, which shall be discussed in more detail shortly.

To investigate which copula best describes the dependence structure illustrated in Fig. 4, we consider
first the following standard copulas, which are often employed in the related literature: Gaussian, Gumbel,
rotated Gumbel (RGumbel), Clayton, rotated Clayton (RClayton), Frank, symmetrized Joe-Clayton, and
Student t.2 These copula models cover a wide range of dependency structures, with some models being able
to capture asymmetric dependence, and also upper and lower tail dependence, i.e., a non-zero probability
of extreme events happening simultaneously. In the interest of brevity, we shall not go into detail with the
properties of each copula model here, and refer instead to McNeil et al. (2005), Nelsen (1999), and Patton
(2006(a)) for a comprehensive description.

To allow for further flexibility compared to the standard copulas enumerated above, we also consider
copula mixtures. As in e.g. Rodriguez (2007) and Dias and Embrechts (2009), for a given t we mix copula a,
having copula density ca(∙|Ft−1, θθθ

a), with copula b, having copula density cb(∙|Ft−1, θθθ
b), by using a mixing

parameter 0 < λ < 1 and the following form:

cm(∙|Ft−1, θθθ
a, θθθb, λ) = λca(∙|Ft−1, θθθ

a) + (1 − λ)cb(∙|Ft−1, θθθ
b). (5)

As expected, a mixture copula inherits characteristics from its mixing components. In the following propo-
sition, we present an especially useful result relating to the tail dependence of a mixture copula, which we
shall use shortly. Notice that we omit the conditioning to ease the notation.

2By rotated, we mean a 180 degree rotation of the data.
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Proposition 1. Let Ui ∼ Unif(0, 1) for i = 1, 2, and let Cm denote the bivariate copula of (U1, U2).
Further assume Cm is given as the mixture

Cm(u1, u2) = λCa(u1, u2) + (1 − λ)Cb(u1, u2),

where Ca and Cb are two bivariate copulas, and 0 < λ < 1. Then, the lower tail dependence Λl and the
upper tail dependence Λu for the mixture Cm are given as

Λl = λΛl,a + (1 − λ)Λl,b,

and

Λu = λΛu,a + (1 − λ)Λu,b,

where Λl,a, Λl,b, Λu,a, and Λu,b are the respective tail dependence measures for Ca and Cb.

Proof. See Appendix A.1.

Moving on to the estimation aspect, we let c(∙|Ft−1, θθθ) denote the conditional copula density with pa-
rameter vector θθθ ∈ Rl, where l ∈ N is the number of parameters in the copula. For each copula model, we
obtain an estimate for θθθ by maximizing the copula log-likelihood, i.e.,

θ̂θθ = argmax
θθθ

T∑

t=1

log c(ûCSS
t , ûLWI

t |Ft−1, θθθ). (6)

We note that it is only the Gaussian and Student t copulas that allow for negative dependence. To fit the
remaining copulas to our data, we perform suitable rotations of the data. Specifically, we rotate around
the LWI variable for the case of the Gumbel, Clayton, Frank, and symmetrized Joe-Clayton copulas, and
consider thus the pair (ûCSS

t , 1− ûLWI
t ) as input to Eq. (6) for these models. Regarding tail dependence, the

rotation of data implies that lower tail dependence for the estimated copulas corresponds to high wind index
/ low CSS scenarios (north west corner of Fig. 4), whereas upper tail dependence for the estimated copulas
corresponds to low wind index / high CSS scenarios (south east corner of Fig. 4). To fit the RGumbel and
the RClayton, we note that a further 180 degree rotation of the pair (ûCSS

t , 1 − ûLWI
t ) is performed.

In Table 5, we report the estimation results for all standard copula models and three selected mixtures.
Other copula mixtures aside from those reported in Table 5 were considered, but we found no increase in
performance. As a model selection criterion, we employ the Akaike Information Criterion (AIC). Accord-
ing to the AIC, the preferred model is the mix of Frank and RGumbel (hereafter denoted FRG copula),
confirming the presence of slight asymmetry in the dependence structure illustrated in Fig. 4.

Considering the FRG copula in more detail, its first mixing component, the Frank copula, imposes
symmetric dependence and a zero tail dependence. Its second mixing component, the RGumbel, imposes
an asymmetric dependence structure, with zero upper tail dependence and lower tail dependence given by

Λl,RG = 2 − 21/θRG

,

where θRG is the parameter for the RGumbel copula. Recalling Prop. 1, we thus have that the upper and
lower tail dependence for the FRG copula are

Λu,FRG = 0,

Λl,FRG = (1 − λ)Λl,RG. (7)

The fit produced by the FRG translates into a tail dependence coefficient of approximately 0.359 when
considering the north west corner of Fig. 4, and hence a rather high probability of extremely high wind
index / low CSS happening simultaneously. To illustrate the shape of the FRG copula and how it deviates
from the shapes of the individual copulas in the mixture, we plot in Fig. 5 simulations from the fitted Frank,
RGumbel and FRG copulas. The simulations reveal that while the fitted Frank copula is too symmetric
and the fitted RGumbel is too asymmetric compared to the observed dependence in Fig. 4, the fitted FRG
mixture is able to dampen the individual effects, hence providing a better resemblance to the observed
dependence structure.
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Copula model Param. (s.e.) log Lc AIC

Gaussian ρ̂ -0.636 (0.019) 266.503 -531.006

Gumbel* θ̂ 1.675 (0.049) 226.083 -450.165

RGumbel* θ̂ 1.773 (0.053) 277.829 -553.657

Clayton* θ̂ 1.233 (0.083) 245.947 -489.894

RClayton* θ̂ 0.911 (0.071) 167.862 -333.724

Frank* θ̂ 5.029 (0.247) 267.805 -533.611

Sym. Joe-Clayton* Λ̂u 0.274 (0.048) 265.777 -527.553

Λ̂l 0.539 (0.026)

Student t ρ̂ -0.646 (0.020) 274.596 -545.192
ν̂ 9.873 (15.008)

Mix of Gumbel and θ̂1 1.964 (0.500) 285.060 -564.120

RGumbel* θ̂2 1.797 (0.101)

λ̂ 0.219 (0.081)

Mix of Frank and θ̂1 4.552 (1.309) 286.419 -566.837

RGumbel* θ̂2 1.920 (0.169)

λ̂ 0.365 (0.104)

Mix of Gaussian and ρ̂ -0.494 (0.092) 285.152 -564.304

RGumbel* θ̂ 2.095 (0.234)

λ̂ 0.357 (0.130)

Table 5: Estimation results for 11 selected copula models. The maximized value of the copula log-likelihood is denoted log Lc.
For the functional forms of the considered copulas and other characteristics, we refer to McNeil et al. (2005), Nelsen (1999)
and Patton (2006(a)). A copula marked by an asterisk has been estimated using a suitable rotation of the data. Standard
errors are based on 999 simulations.
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Figure 5: T simulations from the fitted Frank, RGumbel and FRG copulas, cf. Table 5.
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4. Time-Varying Dependence

Up until this point, we have assumed a static model for the dependence structure, which is seldom a
realistic representation. Natural follow-up questions are therefore related to the presence and type of time
variation in the dependence. In this section, we consider these questions in more detail.

To investigate the time-varying aspect we consider Spearman’s ρ, which is a measure of concordance. In
terms of a bivariate copula C, Spearman’s ρ can be expressed as (see e.g. McNeil et al. (2005))

ρ = 12

∫ 1

0

∫ 1

0

C(u1, u2)du1du2 − 3. (8)

We compute Spearman’s ρ between ûCSS
t and ûLWI

t based on a rolling window of 60 days. Fig. 6 displays
the results, and reveals a strong seasonal pattern in the dependence structure. According to Fig. 6, the
dependence is strongest around winter and weakest around summer. A possible explanation for this be-
haviour relates to the power generation mix in Germany and the import/export conditions. During winter,
the increased wind power production has a direct lowering effect on the daily electricity price due to the
mechanism of day-ahead electricity price formation. As argued in Section 3.2, this lowers the CSS. During
summer, the lower wind power production does not have the same direct effect on the daily electricity price.
If that were the case, prices should increase. The high photovoltaic production during peak periods com-
bined with the high likelihood of being able to import cheap nuclear power from France prevents however
prices from increasing. Consequently, this weakens the dependence between the wind power production and
the CSS during the summer months.
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Figure 6: Spearman’s ρ between ûCSS
t and ûLWI

t based on a 60-days rolling window. The confidence interval is based on 999
bootstraps. Note that the date corresponding to each estimate refers to the last day in the 60-days period.

In light of these findings we consider next extending the static copula mixture, such that the yearly
seasonality in the dependence measured by Spearman’s ρ in Fig. 6 can be accounted for.

4.1. A seasonal copula mixture

Since the FRG copula is the best performing static copula cf. Table 5, we shall restrict our attention to
this particular model in order to fix ideas. First, let us state a general result concerning Spearman’s ρ for
copula mixtures, which is particularly useful in our modeling context. Again here, we omit the conditioning
for notational convenience.
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Proposition 2. Let Ui ∼ Unif(0,1) for i = 1, 2, and let Cm denote the bivariate copula of (U1, U2). Further,
suppose Cm is given as

Cm(u1, u2) = λCa(u1, u2) + (1 − λ)Cb(u1, u2)

for two copulas Ca and Cb, and mixing parameter 0 < λ < 1. Then Spearman’s ρ implied by Cm can be
expressed as

ρm = λρa + (1 − λ)ρb, (9)

where ρa is Spearman’s ρ corresponding to copula Ca, and ρb is Spearman’s ρ corresponding to copula Cb.

Proof. See Appendix A.2.

It follows from Prop. 2 that Spearman’s ρ for the copula mixture is simply a linear combination of
the individual Spearman’s ρ’s corresponding to the copulas comprised in the mixture. Thus, introducing
time variation in ρa and ρb translates into time variation in ρm. Further, it is relatively easy to compute
Spearman’s ρ, even for copulas where no explicit relation between Spearman’s ρ and the copula parameter
is available. Considering the FRG copula, the relationship between the copula parameter and Spearman’s ρ
for both the Frank and RGumbel copula is shown in Fig. 7. By letting the superscripts F and RG indicate
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Figure 7: Spearman’s ρ as a function of parameter value for both the Frank and RGumbel copula.

their link to the particular copula, we note that Spearman’s ρ is monotonically increasing as a function of
the corresponding copula parameter, θF and θRG. Therefore, specifying time variation for ρF and/or ρRG

will also uniquely determine values of θF and θRG. If we instead were to introduce time variation directly
in Spearman’s ρ for the FRG copula, we would not be able to identify θF and θRG.

Based on the discussion above and motivated by the pronounced yearly cycle in Fig. 6, we propose the
following extension to the static FRG model. Specifically, we introduce a yearly cycle in Spearman’s ρ
corresponding to the RGumbel copula, i.e.,

ρRG
t = aRG + bRG sin (2πt/K) + cRG cos (2πt/K) , (10)

where aRG, bRG, and cRG are constant coefficients, and K = 258 as was the case with the seasonal functions
in Section 3.1. Regarding the Frank contribution in the FRG copula, we keep the corresponding Spearman’s
ρ static. Consequently, the evolution equation for the overall Spearman’s ρ implied by the seasonal FRG
copula is

ρSFRG
t = λSFRGρF + (1 − λSFRG)ρRG

t . (11)
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Given the seasonal specification in Eqs. (10)-(11), the model is estimated by maximizing the FRG copula
loglikelihood. The estimation results are given in Table 6, revealing a clear improvement in AIC compared
to the static FRG copula.

ρ̂F âRG b̂RG ĉRG λSFRG logLc AIC

0.742 0.566 -0.132 0.208 0.316 309.894 -609.788
(0.072) (0.041) (0.040) (0.043) (0.092)

Table 6: Maximum likelihood estimation results for the seasonal FRG copula described in Eqs. (10)–(11). The maximized
value of the copula log-likelihood is denoted log Lc. Standard errors are reported in parenthesis and are computed following
the simulation-based procedure described in detail in Patton (2013), where we note that the estimation error from the marginal
models is taken into account. The seasonal FRG copula was fitted to a suitable rotation of the data, cf. Section 3.2.

Since the FRG copula has three parameters, there are of course different ways of incorporating yearly
seasonality in the model. Some alternatives in terms of the FRG copula are discussed in Appendix B, where
we also provide detailed estimation results to support the model specification stated above. On a different
note, we stress that selecting the static FRG copula as the optimal model amongst static alternatives does
not guarantee that the seasonal FRG copula will be preferred to time-varying extensions of other copula
models. As a result, similar extensions as those proposed in Eqs. (10)–(11) were implemented for most of
the copulas in Table 5 to ensure that the seasonal FRG is superior in terms of AIC.

To illustrate the fit of the proposed seasonal FRG model, we plot in Fig. 8(a) the empirical Spearman’s
ρ together with ρ̂SFRG

t implied by the seasonal FRG, using a 60-days moving window, as in Fig. 6. As a
standard of comparison, we include the Spearman’s ρ implied by the static FRG. The results indicate that
the dependence implied by the seasonal FRG follows the yearly cycle observed in the actual Spearman’s ρ
rather well. Moreover, it appears from Fig. 8(a) that we would underestimate the strength of the dependence
between the CSS and the LWI during autumn and winter with the static FRG. The reverse is observed during
spring and summer, with the strength of the dependence being overestimated by the static FRG. To provide
further support for the proposed seasonal FRG, we display in Fig. 8(b) a simulated path over a four-year
horizon, which resembles the actual data nicely.
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(a) Actual and implied Spearman’s ρ
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Figure 8: (left) Actual Spearman’s ρ and Spearman’s ρ implied by the static and seasonal FRG copula, based on a 60-days
rolling window. The date corresponding to each estimate refers to the last day in the 60-days period. (right) A simulated path
of Spearman’s ρ from the seasonal FRG copula, aggregated using a 60-days rolling window.

To complement Fig. 8(a), a clearer picture of the yearly shape of Spearman’s ρ implied by the seasonal
FRG is given in Fig. 9(a), where we illustrate the fit at each time point during a year (i.e., no averaging
of Spearman’s ρ is performed). Equally interesting to consider is the lower tail dependence implied by
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the fitted seasonal FRG copula, which follows directly from applying Eq. (7). The results are plotted in
Fig. 9(b), revealing that the lower tail dependence coefficient reaches its lowest value of approximately 0.2
during summer and its maximum value of approximately 0.50 during winter. This entails that there is a
rather large difference between the probability of observing the event of extreme high wind index / low CSS
during winter compared to summer. In Fig. 9(b), we again provide as benchmark the corresponding static
estimate.
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(a) Implied Spearman’s ρ between CSS and LWI
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(b) Implied lower tail dependence between CSS and LWI

Figure 9: Spearman’s ρ and lower tail dependence implied by the static and seasonal FRG copulas throughout the year. A
90% confidence interval is provided for the seasonal parts.

4.1.1. Dynamic copula models

Before proceeding to quantifying the hedging benefits of wind power futures, we comment briefly on an-
other class of models that have become popular in the related literature because of their broad applicability:
The Generalized Autoregressive Score (GAS) models proposed by Creal et al. (2013). Extending the sea-
sonal copula mixture proposed in Eqs. (10)–(11) as to allow for one or more parameters to evolve according
to the GAS equation is possible. In the context of our study however, where we shall base hedging decisions
on simulations over a long time horizon, we argue against such extensions. With the GAS model, we would
introduce much complexity compared to the present straightforwardness of the seasonal copula, but not
add that much value. Moreover, we stress that compared to the static dependence model, the addition of
the simple seasonal extension not only provides a significant improvement, but is very easily interpretable,
making it very appealing from a practical perspective.

For applications such as forecasting or short-term simulation, we acknowledge the added value of including
a GAS dynamic to the seasonal copula mixture. Therefore, we include in Appendix B a description of the
GAS model together with estimation results obtained by fitting two dynamic copula models to our data.

5. Application results

Having established a model for the joint behavior of the CSS and the wind index, we consider next the
quantification of the benefits that WPF can offer GFPPs. A GFPP acting in the day-ahead market can
decide from day to day whether to run or not, and thereby take advantage of the daily variation in the
CSS. By the construction of the day-ahead wholesale electricity market, a GFPP will not run in times of a
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negative CSS; its profit RCSS for a period t ∈ [T1, T2] can thus be represented as

RCSS =

T2∑

t=T1

12max(CSSt, 0)s, (12)

where s is the size of the GFPP measured in MW, and 12 is the number of peak load hours during a day.
Recalling the payoff in Eq. (2), taking a position γ ∈ Z in WPF contracts yields the hedged profit of the
GFPP, which we denote by R:

R = RCSS + γRWPF . (13)

We note that by excluding weekends and holidays from our analysis, these are not captured in RWPF . We
argue however that this does not alter the overall conclusions drawn below. To facilitate hedging decisions,
we perform Monte Carlo simulations from the proposed model. Specifically, the marginal models fitted in
Section 3.1 and the seasonal FRG copula fitted in Section 4.1 are employed to produce simulations of the
joint behavior of the CSS and the wind index, i.e., the pair (CSSt,Wt). The “price” Wt0 affecting RWPF

in Eq. (13) is computed by averaging across all Monte Carlo simulations of Wt for the delivery [T1, T2].
3

While we recognize that this pricing approach is simplistic in that it assumes a zero market price of risk,
it simplifies our hedging exercise somewhat, since the mean of the hedged profit R will not be affected
by varying the quantity γ. Consequently, instead of the classical mean-variance objective, we can restrict
ourselves to the variance minimization criterion in order to determine optimal positions in WPF contracts.
Hence, we consider the following objective:

min
γ∈Z

Var[R]. (14)

5.1. Effectiveness of wind power futures

To illustrate the results obtained by applying the hedging approach described above, we fix s = 200 MW,
t0 = 30 December 2016 (the last date in our sample), and perform 20,000 Monte Carlo simulations of the
pair (CSSt,Wt) one year ahead. The resulting simulated paths are split into monthly periods, and WPF
prices corresponding to monthly deliveries are computed as explained earlier. Then, monthly quantities for
RCSS and RWPF are constructed for each simulated path, and the minimization in Eq. (14) is applied to
each month in turn. The subdivision to monthly profits is motivated by the seasonal pattern observed in
the dependence structure cf. Fig. 8(a), and allows us to investigate the effect of the yearly seasonality on
hedging-related aspects.

In Fig. 10, we illustrate the simulated unhedged profit distribution RCSS and the hedged profit distri-
bution R obtained by solving Eq. (14) for the months July and October. We observe a compression of the
profit distribution in both cases when applying the hedge, which entails that WPF have variance reducing
effects. In fact, this finding applies to all 12 months, as will be illustrated shortly.

Perhaps unsettling is the fact that losses can occur when considering the hedged profit distribution
in Fig. 10(a), whereas the unhedged profits cannot attain negative values by construction (see Eq. (12)).
Nevertheless, we find that the probability of a loss when hedging with WPF is approximately 0.4% on
average. The downside of performing the hedge is therefore quite small. In the pursuit to impair this

3When constructing the wind index data used in this paper, we considered the historical evolution of its two underlying
data components, namely the wind power production and the installed capacity, as discussed in Section 2. This implicitly
means that we have captured 1) the variations due to changes in wind speeds and 2) the variations caused by the increase
in installed capacity and changes in the geographical distribution of wind turbines. While the latter aspect is important to
capture in the modeling part of this paper, we argue that a different wind index series should be used in a pricing context.
This is because today’s WPF price is not affected by the historical evolution of the installed capacity and the changes in the
geographical distribution of turbines, but by the present conditions. We argue that this issue does not affect the conclusions
drawn in this paper, but can have serious implications in other contexts. For more details, we refer the interested reader to
Benth and Pircalabu (2018).
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Figure 10: Examples of profit distributions before and after hedging with WPF, based on Monte Carlo simulations from the
proposed seasonal FRG copula model.

concern even further, recall that the price of WPF is computed under the assumption of a zero market
price of risk. In reality, the studies of Gersema and Wozabal (2017) and Benth and Pircalabu (2018) find
evidence of a negative market price of risk in the German market for WPF, implying that a GFPP buys
WPF at a discounted price compared to the one computed here. Accounting for this would shift the hedged
profit distributions to the right, potentially excluding losses altogether.

Next, we consider in more detail the reduction in the variance of profit distributions attained by per-
forming the hedge. The results are stated in Fig. 11 for all months of the year, and reveal considerable
reductions; even for May and June, where we observe the lowest values, the variance reductions are above
10 %. Further, notice the connection between the yearly pattern of the reductions in Fig. 11 and the implied
Spearman’s ρ in Fig. 9(a): Not surprisingly, the stronger the dependence, the higher the variance reduction.
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Figure 11: Variance reduction achieved by hedging with WPF, for each month of 2017. The results are based on Monte Carlo
simulations from the proposed seasonal FRG copula model.

Also relevant to consider in this context is the impact on hedging effectiveness from changing the GFPP
efficiency. To assess this, we allow the efficiency to vary from 43.13% to 55.13% with a step size of 2%, and
let the emission factor vary according to

e = 0.184h,

which is based on ICIS (2016). Fig. 12 illustrates the variance reductions obtained with the different
efficiencies, across all months of the year. It appears that increasing the efficiency (i.e., lowering the heat
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rate) leads to an increase in the variance reductions for all months. The effect seems to be more pronounced
during autumn and winter compared to spring and summer. From Eq. (1), it was already apparent that
increasing the efficiency of a GFPP produces a higher CSS and hence increases profitability. The findings
presented in Fig. 12 incentivize such action even further: Aside from the higher CSS, an increased hedging
effectiveness of WPF can be achieved.
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Figure 12: Variance reduction implied by hedging with WPF, for GFPP efficiencies spanning from 43.13% to 55.13% with a
step size of 2%.

5.2. Comparison with alternative models

So far in the hedging application, we have focused on the results obtained with the preferred copula
model, that is, the seasonal FRG. In this section, we wish to highlight the benefits of this copula compared
to other less optimal alternatives. We consider the following natural progression in comparisons:

1. Frank copula versus FRG copula: In this comparison, we focus on the effect of asymmetry and tail
dependence on the benefits of WPF. These features are captured by the FRG copula, as discussed in
Section 3.2, but not by the Frank copula, which imposes symmetry and no tail dependence.

2. FRG copula versus seasonal FRG copula: Here, we concentrate on the effect of seasonal dependence
on the hedging benefits.

To perform comparisons, we keep the marginal models proposed in Section 3.1 fixed, and repeat the simula-
tions performed in Section 5.1 with the Frank, FRG, and seasonal FRG copulas, instead of only the seasonal
FRG. We note that the same random seed was used to produce Monte Carlo simulations from the three
models. Then, we compute optimal hedge quantities γ and associated variance reductions with each model,
on a monthly basis.

5.2.1. The effects of asymmetry and tail dependence in the copula

Recalling Figs. 5(a) and 5(c), it is apparent that by employing the FRG copula instead of the Frank
copula, we introduce a slight asymmetry and assign more probability to the extreme events where high wind
and low CSS happen simultaneously. The resulting effects on hedging are depicted in Fig. 13, where we
present the optimal hedge quantities and variance reductions produced by the two copulas. Regarding the
former, we notice that the Frank copula generally suggests less WPF in the hedging portfolio. Further, the
optimal hedge quantities vary across the year, which is a consequence of the seasonality captured in the
marginal models.

Turning to the variance reductions, which are depicted in Fig. 13(b), we observe that the values implied
by the Frank copula are generally lower compared to those implied by the FRG copula. This finding is
expected, since GFPPs seek to cover their exposure to high wind / low CSS scenarios. By assigning more
probability mass to precisely these events happening simultaneously, which is done by shifting from the
Frank to the FRG copula, we increase the benefits of WPF. At the same time, due to the asymmetric
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behavior of the FRG copula, we are not increasing the probability of observing the reverse combination of
low wind / high CSS, and thus not counteracting the increased benefits of WPF. Briefly put, by believing in
a dependence structure described by the Frank copula compared to the FRG copula, we would underestimate
the risk-reducing power of WPF.
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(a) Optimal hedge quantity for each month of 2017
implied by the Frank and FRG copulas

Ja
n

Feb M
ar Apr

M
ay Ju

n Ju
l

Aug Sep Oct
Nov Dec

Month

18

20

22

24

26

28

30

32

V
ar

ia
nc

e 
re

du
ct

io
n 

(%
)

Static Frank
Static FRG

(b) Reduction in the variance of the profit distri-
bution for each month of 2017, when applying the
hedges implied by the Frank and FRG copulas

Figure 13: Comparison of hedging results implied by the Frank and FRG copulas.

5.2.2. The effects of seasonal time variation in the copula

Proceeding to the comparison of the FRG copula with its seasonal version, we present in Fig. 14 results
that are similar to those in Fig. 13. Regarding the optimal hedge quantities in Fig. 14(a), the FRG copula
yields higher values than the seasonal FRG copula during spring and summer, while the situation reverses
during autumn and winter. This alternating behavior is connected to that of the differences in Spearman’s
ρ implied by the FRG and the seasonal FRG, cf. Fig. 9(a). That is, the hedge quantities decrease (increase)
with a decrease (increase) in absolute values of Spearman’s ρ.

Considering Fig. 14(b), the results reveal a fairly constant level in the variance reduction produced by
the FRG copula, compared to the variance reduction levels implied by the seasonal model. Hence, believing
in static dependence can lead to very misleading conclusions when managing risks. Again in this context, we
mention the link between the difference in percentage reductions and the difference between the Spearman’s
ρ implied by the two models (cf. Fig. 9(a)): The difference in reductions is largest in May/June and
November/December, reflecting the fact that the dependence implied by the seasonal FRG model is weakest
during May/June and strongest during November/December.

Having found clear evidence of seasonal dependence between the CSS and the wind index, we conclude
this section by briefly addressing the error we would get by applying a hedge based on the static FRG model
in a seasonal time-varying reality. To perform this analysis, we asses the optimal hedge quantities implied
by the static FRG copula in a seasonal setting by using the simulated CSS and wind index from the seasonal
model. The variance reductions obtained with this approach are then compared with the reductions implied
by the seasonal model shown in Fig. 14(b). The results, presented in Fig. 15, reveal very small errors. The
smallest and largest errors occur in February and June, respectively, which is connected to the findings
presented in Fig. 14(a); the absolute difference in the optimal number of WPF in the static and seasonal
case generates the pattern seen in Fig. 15.

With the small errors in mind, the real error one commits by believing in static dependence, is the belief
in a wrong resulting variance reduction. Thus, while the static model creates a misleading picture in a risk
management context, our results suggest that it could be employed to determine optimal hedging quantities.
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Figure 14: Comparison of hedging results implied by the FRG and seasonal FRG copulas.
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Figure 15: The effects of using the “wrong” hedge quantity: Difference in variance reduction of the profit distribution when
using hedge quantities obtained from 1) the FRG, and 2) the seasonal FRG, both evaluated using simulations from the seasonal
FRG copula model.
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5.3. Discussion of the proposed hedging strategy

To conclude this section, we turn briefly to the standard hedging principle often employed to hedge
the day-ahead CSS. Usually, conventional generators remove their exposure to day-ahead price risk either
completely or partially by entering a short position in standard power forwards, and a long position in fuel
forwards and carbon credit forwards. In this paper, we have considered a different hedging approach with
the purpose of determining the potential of the newly introduced wind power futures, but we stress that our
strategy is not incompatible with the industry standard. In fact, our hedging portfolio consisting of wind
power futures could be extended to include the additional forwards mentioned above. However, this would
require us to switch from our bivariate modeling problem to a multivariate one, since the joint behavior of
the wind index, the day-ahead CSS, and the different forward clean spark spreads should be considered.
While this is outside the scope of the present paper, it is nevertheless an interesting perspective that has not
been studied yet, and could possibly be approached with vine copulas. In the context of the effectiveness
of the standard hedging principle that conventional generators usually employ, we mention the study of
Charalampous and Madlener (2016).

6. Conclusion

In this paper, we propose a joint model for the day-ahead clean spark spread and the daily wind index
that can facilitate hedging decisions for a gas-fired power plant. The modeling procedure is based on
two steps: First, the marginal behavior of the variables is considered, where we apply seasonal functions
and ARMA–GARCH filters to remove the seasonality and the serial dependence in the conditional mean
and variance. While the usual Gaussian assumption for the innovation process works in the case of the
daily wind index, the normal-inverse Gaussian distribution provides a better fit for the day-ahead clean
spark spread. Second, the standardized residuals from the ARMA–GARCH models are connected through
copulas. The data reveals a dependence structure that is slightly asymmetric, and also varying according
to an annual cycle. To capture these empirical findings, we propose a seasonal copula mixture, where the
mixing components are the rotated Gumbel and the Frank copulas.

Based on Monte Carlo simulations from the proposed model, we show that wind power futures have con-
siderable risk-reducing benefits in the context of a gas-fired power plant operating in the day-ahead market.
Further, their hedging effectiveness increases as a function of the efficiency of the gas-fired power plant.
To highlight the importance of capturing asymmetry, tail dependence, and seasonality in the dependence
structure, we perform comparison studies where the optimal model is compared to less optimal alternatives.
Accounting for asymmetry and tail dependence (as opposed to imposing symmetry and zero tail dependence)
leads to an increase in the effectiveness of wind power futures. Moreover, we find that the conclusions drawn
with a static dependence model deviate to a large extent from those obtained with a seasonal dependence
model. With static dependence, the variance reductions of the profit distributions attained by the hedge
vary between 20% and 31%; in the seasonal case the corresponding reductions vary between 10% and 45%.

Although we have concentrated on the German market and the case of gas-fired power plants, the results
are relevant for other markets, and are also transferable to other conventional electricity producers. Since
the amount of electricity generated by wind turbines is expected to grow globally, the dependence between
the day-ahead clean spark spread and the daily wind index in other market places will most likely be
strengthened in the future. Hence, it is reasonable to assume that more weather-based instruments similar
to the German wind power futures will be introduced, enabling similar analyses to be performed on other
than the German market.
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Appendix A. Theoretical results for copula mixtures

Appendix A.1. Proof of Proposition 1

For positive dependent variables, the upper tail dependence for copula C can be written as (see e.g.
(McNeil et al., 2005, p. 209))

Λu = lim
u↑1

Ĉ(1 − u, 1 − u)

1 − u
= lim

u↑1

1 − 2u + C(u, u)

1 − u
, (A.1)

where Ĉ(u, v) := P (U > u, V > v) = C(1 − u, 1 − v) + u + v − 1 is the survival copula. Applying Eq. (A.1)
to the copula mixture, we get that the upper tail dependence is

Λu = lim
u↑1

[
1 − 2u + λCa(u, u) + (1 − λ)Cb(u, u)

1 − u

]

= lim
u↑1

[
1 − 2u

1 − u
+ λ

1 − 2u + Ca(u, u)

1 − u
+ (1 − λ)

1 − 2u + Cb(u, u)

1 − u
− λ

1 − 2u

1 − u
− (1 − λ)

1 − 2u

1 − u

]

= λΛu,a + (1 − λ)Λu,b.

Similarly, the lower tail dependence can be written in terms of copula C as (again for positive dependent
variables)

Λl = lim
u↓0

C(u, u)

u
,

resulting in the following lower tail dependence for the copula mixture:

Λl = lim
u↓0

[
λCa(u, u) + (1 − λ)Cb(u, u)

u

]

= λΛl,a + (1 − λ)Λl,b.

Appendix A.2. Proof of Proposition 2

From Eq. (8) we have that Spearman’s ρ implied by copula Cm is

ρm = 12

∫ 1

0

∫ 1

0

Cm(u1, u2)du1du2 − 3

= 12

∫ 1

0

∫ 1

0

(
λCa(u1, u2) + (1 − λ)Cb(u1, u2)

)
du1du2 − 3(1 − λ + λ)

= λ

(

12

∫ 1

0

∫ 1

0

Ca(u1, u2)du1du2 − 3

)

+ (1 − λ)

(

12

∫ 1

0

∫ 1

0

Cb(u1, u2)du1du2 − 3

)

= λρa + (1 − λ)ρb.

Appendix B. Alternative models

As mentioned in Section 4.1, there are many ways of extending the FRG copula. Here, we present some
alternatives to the model proposed in Eqs. (10)–(11), and the corresponding estimation results.
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Appendix B.1. Seasonal copula alternatives

Instead of introducing a yearly cycle in the evolution equation for Spearman’s ρ corresponding to the
RGumbel copula cf. Eq. (10), one could consider this for Frank, i.e.,

ρF
t = aF + bF sin (2πt/K) + cF cos (2πt/K) . (B.1)

Alternatively, yearly seasonality could be introduced in both Spearman’s ρ implied by the Frank and the
RGumbel copula. These alternative models are stated in Table B.7, and corresponding estimation results
are reported in Table B.8.

Seasonal FRG Alternative 1

ρSFRG
t = λSFRGρF + (1 − λSFRG)ρRG

t ρSFRG
t = λSFRGρF

t + (1 − λSFRG)ρRG

ρRG
t = aRG + bRG sin

(
2πt
K

)
+ cRG cos

(
2πt
K

)
ρF

t = aF + bF sin
(

2πt
K

)
+ cF cos

(
2πt
K

)

Alternative 2

ρSFRG
t = λSFRGρF

t + (1 − λSFRG)ρRG
t

ρRG
t = aRG + bRG sin

(
2πt
K

)
+ cRG cos

(
2πt
K

)

ρF
t = aF + bF sin

(
2πt
K

)
+ cF cos

(
2πt
K

)

Table B.7: Model specifications for the seasonal FRG proposed in Section 4.1 and two seasonal alternatives.

âF b̂F ĉF âRG b̂RG ĉRG λSFRG logLc AIC

Seasonal FRG 0.742 - - 0.566 -0.132 0.208 0.316 309.894 -609.788
(0.072) (-) (-) (0.041) (0.040) (0.043) (0.092)

Alternative 1 0.573 -0.122 0.280 0.689 - - 0.532 309.657 -609.314
(0.048) (0.048) (0.056) (0.054) (-) (-) (0.097)

Alternative 2 0.693 0.050 0.156 0.580 -0.162 0.150 0.374 312.454 -610.908
(0.080) (0.120) (0.099) (0.055) (0.081) (0.071) (0.109)

Table B.8: Maximum likelihood estimation results for the models stated in Table B.7. The maximized value of the copula
log-likelihood is denoted log Lc. Standard errors are reported in parenthesis and are computed following the simulation-based
procedure in Patton (2013).

The results in Table B.8 reveal that the seasonal FRG model proposed in Section 4.1 is slightly better
than Alternative 1 in terms of AIC. Considering Alternative 2, although its AIC is slightly lower than that
of the other seasonal models, notice the large standard errors, which imply that the seasonal parameters
corresponding to the Frank part are not statistically significant at a 5% level.

Appendix B.2. Dynamic copula alternatives

In terms of dynamic copula alternatives, we consider the Generalized Autoregressive Score (GAS) model
proposed by Creal et al. (2013). Assuming a copula having one governing parameter which we denote by θ,
the evolution equation for the GAS(1,1) is given by

zt+1 = ω + Ψzt + ςI
−1/2
t st, (B.2)

where

zt = f(θt)

st =
∂

∂θt
log c(u1,t, u2,t|θt)

It = E[s2
t ],
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and ω, Ψ, and ς are constant coefficients.
Recalling Eq. (5) and restricting this analysis to the FRG copula, we let the (transformed) parameter of

the RGumbel copula evolve according to the GAS(1,1) model. Specifically,

cFRG
t (∙|Ft−1, θ

F , θRG
t , λFRG) = λFRGcF (∙|Ft−1, θ

F ) + (1 − λFRG)cRG
t (∙|Ft−1, θ

RG
t ),

where zt = log(θRG
t − 1) follows a GAS(1,1). Aside from this, we consider two other alternatives which are

stated in Table B.9; one where we only allow the transformed RGumbel copula parameter to vary according
to a yearly cycle, and one where we combine the GAS dynamics with the yearly seasonality.

Alternative 3 (GAS) Alternative 4 (Season)

zt+1 = ωRG + ΨRGzt + ςRGI
−1/2
t st zt+1 = ωRG + bRG sin

(
2πt
K

)
+ cRG cos

(
2πt
K

)

Alternative 5 (Season GAS)

zt+1 = ωRG + ΨRGzt + ςRGI
−1/2
t st + bRG sin

(
2πt
K

)
+ cRG cos

(
2πt
K

)

Table B.9: Model specifications for three alternative models.

Parameter estimates for the models stated in Table B.9 are obtained by maximum likelihood, and
are reported in Table B.10. Comparing Alternative 3 to Alternative 4, AIC decreases quite a bit when
considering a deterministic yearly cycle instead of the GAS(1,1) specification. Further, combining the two
effects (Alternative 5) yields the lowest AIC value across all models; notice however that two out of seven
parameters are not significant at a 5% level.

Regarding Alternative 4, we stress that this model is very similar to the seasonal FRG: in Alternative 4,
we let the transformed copula parameter vary according to a yearly cycle, whereas in the seasonal FRG, we
introduce yearly seasonality in Spearman’s ρ. Although the AIC corresponding to the former specification
is slightly lower, we find the seasonal FRG to be more appealing, given that the yearly cycle is detected in
the rolling Spearman’s ρ cf. Fig. 6.

θ̂F ω̂RG Ψ̂RG ς̂RG b̂RG ĉRG λ̂FRG logLc AIC

Alternative 3 (GAS) 6.132 0.001 0.993 0.092 - - 0.315 300.349 -590.697
(2.393) (0.648) (0.378) (0.314) (-) (-) (0.262)

Alternative 4 (Season) 6.605 -0.391 - - -0.451 0.758 0.312 310.376 -610.752
(1.776) (0.148) (-) (-) (0.144) (0.152) (0.090)

Alternative 5 (Season GAS) 6.725 -0.421 -0.231 0.235 -0.503 0.842 0.270 315.832 -617.663
(2.831) (0.379) (0.567) (0.107) (0.208) (0.303) (0.121)

Table B.10: Maximum likelihood estimation results for the models stated in Table B.9. The maximized value of the copula
log-likelihood is denoted log Lc. Standard errors are reported in parenthesis and are computed following the simulation-based
procedure in Patton (2013).
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Highlights 
- The hedging potential of wind power futures for gas-fired power plants is studied. 

- We consider the joint behavior of the clean spark spread and wind index. 

- A seasonal copula mixture model is proposed to facilitate hedging decisions. 

- We find that wind power futures are suitable for hedging the clean spark spread. 

- Comparison studies are performed to highlight the benefits of the proposed model. 
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