Deformation and fracture behavior of Na2O-Al2O3-B2O3-SiO2 glasses

Januchta, Kacper; To, Theany; Rouxel, Tanguy; Smedskjær, Morten Mattrup

Publication date:
2019

Link to publication from Aalborg University

Citation for published version (APA):
Deformation and fracture behavior of Na$_2$O-Al$_2$O$_3$-B$_2$O$_3$-SiO$_2$ glasses

K. Januchta*1; T. To2; T. Rouxel2; M. M. Smedskjaer1

1. Aalborg University, Department of Chemistry and Bioscience, Denmark 2. Université de Rennes 1, Glass and Mechanics Department, France

Understanding the link between the chemical composition of oxide glasses and their mechanical properties is the key to designing novel materials for current and emerging applications. Much insight into this correlation can be gathered from studying glasses in the Na$_2$O-Al$_2$O$_3$-B$_2$O$_3$-SiO$_2$ system, as they exhibit widely different structures, packing efficiencies, and a large span of hardness and modulus values. Using Vickers indentation, we here present a study of the deformation mechanism and resistance to cracking in twenty Na$_2$O-Al$_2$O$_3$-B$_2$O$_3$-SiO$_2$ glasses with fixed soda content. The observed compositional trends in mechanical behavior are discussed in light of the structural characteristics of the investigated glasses, as well as their atomic packing density and fracture toughness values. The latter is measured by the single-edge-precracked-beam method. Our results suggest that network topology considerations are crucial in the design of new crack-resistant and tough silicate glass compositions.