Sequence-Impedance-Based Stability Comparison between VSGs and Traditional Grid-Connected Inverters

Wu, Wenhua; Zhou, Leming; Chen, Yandong; Luo, An; Dong, Yanting; Zhou, Xiaoping; Xu, Qianming; Yang, Ling; Guerrero, Josep M.

Published in:
IEEE Transactions on Power Electronics

DOI (link to publication from Publisher):
10.1109/TPEL.2018.2841371

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Abstract—Traditional grid-connected inverters (TGCI) could suffer from small-signal instability owing to the dynamic interactions among inverters and a weak grid. In this letter, the small-signal sequence impedance model of the virtual synchronous generator (VSG) is built, and the sequence impedance characteristics of the VSG and the TGCI are compared and analyzed. The sequence impedance of the TGCI is mainly capacitive in the middle-frequency area, and the impedance amplitude is quite high. By contrast, the sequence impedance of the VSG, being consistent with the grid impedance characteristics, is generally inductive, and the impedance amplitude is quite low. Based on the sequence impedance model and the Nyquist stability criterion, the influence of the grid stiffness, number of paralleled inverters, and phase-locked loop (PLL) bandwidth on the stability of the VSG and the TGCI grid-connected system is analyzed. The stability analysis results show that the TGCI loses stability easily whereas the VSG still works well without PLL restrictions under an ultra-weak grid or with a large number of inverters connected to the grid. Therefore, the VSG is more suitable than the TGCI for achieving high penetration of renewable energy generation in an ultra-weak grid from a system stability viewpoint. Finally, experimental results validate the sequence impedance model and the stability analysis.

Index Terms—Virtual synchronous generator; harmonic oscillation; sequence impedance modeling; ultra-weak grid.

I. INTRODUCTION

In recent years, renewable energy generation has developed rapidly owing to increasing fossil fuel shortage and environmental pollution. At present, renewable energy generation is mainly located in remote areas such as deserts, mountainous regions, and islands. Therefore, it is weakly connected to the grid with high impedance [1]. A traditional grid-connected inverter (TGCI) often adopts output current feed-forward decoupling control [2] in which the inverter is controlled as a current source. TGCIs can cause small-signal instability problems owing to the dynamic interaction among inverters and the weak grid [2]. As the number of inverters increases, this problem becomes more serious, thus hindering the large-scale development and application of renewable energy generation.

The impedance-based approach is widely used to analyze the interaction stability of TGCIIs [2]-[3]. In [2], an output impedance model was built for a grid-connected inverter in synchronous rotating reference frames (SRRFs), and the influence of the phase-locked loop (PLL) on system stability was studied. The larger the PLL bandwidth, the faster is the system dynamic response but the worse is the system stability. In [3], a sequence impedance model was built for a grid-connected inverter in stationary reference frames (SRFs). The sequence impedance is capacitive in the middle-frequency area and tends to couple with the grid inductance, thus leading to instability. To mitigate the instability of the grid-connected inverter system, the PLL bandwidth should be lowered [4] or active damping control should be used to reshape the inverter impedance [5]. Other studies analyzed the stability of power synchronization control [6] and advanced vector control [7]. These were demonstrated to be excellent control methods for inverters connected to a weak grid.

The virtual synchronous generator (VSG) imitates the external characteristics of a synchronous generator and provides the necessary frequency and voltage support for a weak grid [8]-[13]. Its output characteristic is equivalent to that of the voltage source; this is essentially different from TGCI. A small-signal model for the power loop of a VSG was established, and a step-by-step parameter design method that considered the stability and dynamic performance of the VSG was proposed [10]-[11]. However, studies have not yet examined the interaction stability of the VSG and the weak grid. In [12]-[13], a small-signal time-domain state space model of the VSG was built in SRRFs. However, the VSG can be controlled either in SRRFs [12] or in SRFs [8]. When the VSG is controlled in SRFs, its output voltage and current are alternating time variables with no dc operation point. Therefore, it is difficult to apply the traditional time-domain linearization method to the VSG controlled in SRFs. If SRRFs are fabricated for traditional small-signal linearization modeling, the physical meaning of the impedance model will become confusing.

The premise that the VSG can actively support the grid is based on the fact that the VSG can operate steadily. In this letter, first, the sequence impedance model of the VSG in SRFs is built by using the harmonic linearization method, and the impedance characteristics of the VSG and TGCI are compared and analyzed. Then, the influence of different parameters on the stability of the VSG and TGCI is studied. From a system stability viewpoint, the VSG is shown to be more preferable than the TGCI in an ultra-weak grid or in high penetration of renewable energy generation. Finally, the experimental results validate the sequence impedance model and stability analysis.

II. TOPOLOGY AND CONTROL SCHEME OF THE VSG

Fig. 1 shows the topology and control scheme of the VSG [8]. V_{dc} is the dc-side voltage of the VSG, and it can be regarded as a.
constant value; \(e_r, e_b \), and \(e_c \) are the inner electric potentials of the VSG; \(i_a, i_b, \) and \(i_c \) are the output currents of the VSG; \(v_a, v_b, \) and \(v_c \) are the output terminal voltages of the VSG; \(L_a, C_a, \) and \(R_t \) are the filter inductance, filter capacitance, and damping resistance, respectively; \(L_g \) and \(R_g \) are the equivalent inductance and resistance of the grid, respectively; \(R_{\text{line}} \) and \(L_{\text{line}} \) are the resistance and inductance of line between the VSG and the point of common coupling (PCC), respectively; and \(Z_{g,p}(s) \) and \(Z_{g,n}(s) \) are the positive- and negative-sequence impedance of the grid, respectively. Because the filter capacitance is not included in the VSG control system, it can be considered to be a part of the VSG or a part of the grid for impedance-based stability analysis. For simplifying the analysis, we define \(Z_{g,p}(s) = Z_{g,n}(s) = (R_g + sL_g + R_{\text{line}} + sL_{\text{line}})/((R_t + 1/sC_f)) \) for a single VSG connected to the PCC. When multiple VSGs are connected to the PCC, \(Z_{g,p}(s) = Z_{g,n}(s) = (R_g + sL_g) \).

\[v_c(t) = V_i \cos(2\pi f_t t) + V_p \cos(2\pi f_p t + \phi_{r,p}) + V_n \cos(2\pi f_n t + \phi_{r,n}) \]

\[i_c(t) = I_i \cos(2\pi f_t t + \phi_{r,i}) + I_p \cos(2\pi f_p t + \phi_{r,p}) + I_n \cos(2\pi f_n t + \phi_{r,n}) \]

where \(V_1, V_p, \) and \(V_n \) are the amplitudes of the fundamental voltage, positive-sequence voltage perturbation, and negative-sequence voltage perturbation, respectively; \(I_i, I_p, \) and \(I_n \) are the amplitude of the fundamental current, positive-sequence current response, and negative-sequence current response, respectively; \(\phi_{r,p} \) and \(\phi_{r,n} \) are the initial phase angle of the positive-sequence and negative-sequence voltage perturbation, respectively; \(\phi_{i,1}, \phi_{p,1}, \) and \(\phi_{n,1} \) are the initial phase angle of the fundamental current, positive-sequence current response, and negative-sequence current response, respectively. In the frequency-domain, \(v_a \) and \(i_a \) can be described as follows:

\[v_a[f] = \begin{cases} V_i, & f = \pm f_1 \\ V_p, & f = \pm \pm f_p \\ V_n, & f = \pm \pm f_n \end{cases} \]

\[i_a[f] = \begin{cases} I_i, & f = \pm f_1 \\ I_p, & f = \pm \pm f_p \\ I_n, & f = \pm \pm f_n \end{cases} \]

where \(V_1 = V_i/2, V_p = (V_p/2)e^{j\phi_p}, V_n = (V_n/2)e^{j\phi_n}, I_i = (I_i/2)e^{j\phi_i}, I_p = (I_p/2)e^{j\phi_p}, I_n = (I_n/2)e^{j\phi_n} \). The bold capital letters in the formula represent the frequency-domain representation of the signal, including the frequency, amplitude, and phase information of the signal.

From Fig. 1, the relationship among the inner electric potential, output terminal voltage, and output current of the VSG is as follows:

\[L_d \frac{d}{dt}[i_a b] = [e_a b c] \cdot [v_a b c] \]

The frequency-domain expressions of the output terminal voltage and output current of the VSG in \(\alpha-\beta \) reference frames can be obtained as follows:

\[v_a[f] = \begin{cases} V_i, & f = \pm f_1 \\ V_p, & f = \pm \pm f_p \\ V_n, & f = \pm \pm f_n \end{cases} \]

\[i_a[f] = \begin{cases} I_i, & f = \pm f_1 \\ I_p, & f = \pm \pm f_p \\ I_n, & f = \pm \pm f_n \end{cases} \]

By substituting (7) and (8) into (1) and applying the frequency-domain convolution theorem, the expression of the active power in the frequency-domain can be obtained as follows:

\[P_a[f] = 3(V_i^*I_i + V_p^*I_p + V_n^*I_n + V_{i,n} + V_{i,n}^*) \]

where \(*\) denotes complex conjugation.

According to the active power controller of the VSG in Fig. 1, the expression of \(\theta \) can be obtained as follows:

\[\theta = M(s) \hat{\omega}_{\text{nom}} D_{\text{dam}} + P_{\text{act}} / \hat{\omega}_{\text{nom}} - P_{\text{act}} / \hat{\omega}_{\text{nom}} \]

where \(M(s) = 1/(J_s \omega^2 + D_{\text{dam}}) \), \(J \) is the virtual moment of inertia, \(\omega_{\text{nom}} \) is the rated angular frequency, \(D_{\text{dam}} \) is the damping coefficient, and \(P_{\text{act}} \) is the active power reference.

By substituting (9) into (10) and neglecting terms proportional to second-order perturbations, the expression of \(\theta \) in the frequency-domain is as follows:
The phase angle perturbation $\Delta \theta$ is introduced into the phrase angle θ of the three-phase modulation wave of the VSG, that is, $\theta = \theta_0 + \Delta \theta$. Our is the phase angle of the fundamental voltage. According to (11), the expression of $\Delta \theta$ in the frequency-domain is as follows:

$$
\Delta \theta[f] = \left\{ \begin{array}{ll}
-3M(s)(V_1^p + V_1^p)/\omega_{nom}, & f = \pm(f_p - f_1) \\
-3M(s)(V_1^n + V_1^n)/\omega_{nom}, & f = \pm(f_p + f_1)
\end{array} \right.
$$

(12)

Because $\Delta \theta$ is a small perturbation, costh can be obtained as

$$
cos(\theta_0 + \Delta \theta) \approx cos(\theta_0) - \Delta \theta \sin(\theta_0)
$$

(13)

Based on (12), (13), and the frequency-domain convolution theorem and ignoring the nonlinear coupling at $\pm(f_1 - 2f_2)$ and $\pm(f_1 + 2f_2)$, the relationship among the voltage perturbation, current perturbation, and $cos[\theta]$ can be expressed as

$$
cos[\theta] = \left\{ \begin{array}{ll}
-1.5e^{j\varphi_{inv}}M(s \pm j2\pi f_1)(V_1^p + V_1^p)/\omega_{nom}, & f = \pm f_1 \\
-1.5e^{j\varphi_{inv}}M(s \pm j2\pi f_1)(V_1^n + V_1^n)/\omega_{nom}, & f = \pm f_n
\end{array} \right.
$$

(14)

where $\varphi_{inv} = \arcsin(P_{out}\omega_{nom}/E_{inv}V_1)$ or $\arcsin(P_{out}\omega_{nom}/E_{inv}V_1)$ is the power-angle of the VSG.

The amplitude of the fundamental wave in cos$[\theta]$ is much smaller than the amplitude of the dc component in $\sqrt{2}E_{inv}$ (a difference of two orders of magnitude). Therefore, the output of the reactive power controller of the VSG can be assumed to be constant in the steady state for small-signal modeling. Based on (2) and (14) and considering the influence of the sampling delay, PWM delay, and low-pass filter, the frequency-domain expression of e_{inu} can be obtained as follows:

$$
e_{inu}[f] = \left\{ \begin{array}{ll}
-1.5K(s)e^{j\varphi_{inv}}M(s \pm j2\pi f_1)(V_1^p + V_1^p)/\omega_{nom}, & f = \pm f_1 \\
-1.5K(s)e^{j\varphi_{inv}}M(s \pm j2\pi f_1)(V_1^n + V_1^n)/\omega_{nom}, & f = \pm f_n
\end{array} \right.
$$

(15)

where $K(s) = \sqrt{2}E_{inv}e^{-1.5jT}[1 + s/(\omega_n)(1 + s/\omega_o)]; \omega_n$ and ω_o are the cut-off angular frequency of the low-pass filter for the voltage and current signal, respectively, and T is the switching period.

By substituting (15) into (6), the positive- and negative-sequence impedances of the VSG can be obtained as follows:

$$
Z_{vsg,p}(s) = \frac{V_p(s)}{I_p(s)} = 0.75l_M(s \pm j2\pi f_1)K(s)e^{j\varphi_{inv}}/\omega_{nom} + sL_f
$$

(16)

$$
Z_{vsg,n}(s) = \frac{V_n(s)}{I_n(s)} = 0.75l_M(s \pm j2\pi f_1)K(s)e^{j\varphi_{inv}}/\omega_{nom} + sL_f
$$

(17)

Table I shows the system parameters of the VSG; the control parameters of the VSG are designed with reference to [10]. Fig. 2 shows the frequency response characteristics of the positive- and negative-sequence impedances of the VSG and their simulation measurement results. This figure indicates that the impedance measurement results show good agreement with the built impedance model, thus validating the VSG sequence impedance modeling.

The TGCI usually adopts output current feed-forward decoupling control in SRFs [3]; the detailed control block diagram and control parameters are shown in Fig. 11 in the Appendix.

The sequence impedance model of the TGCI was reported in [3]. Fig. 3 shows the frequency response characteristics of the positive- and negative-sequence impedances of the TGCI and their simulation measurement results. In Fig. 3, $Z_{tgi,p}(s)$ and $Z_{tgi,n}(s)$ are the positive- and negative-sequence impedance of the TGCI, respectively.

From Fig. 2 and Fig. 3, the sequence impedance characteristics of the VSG and TGCI are compared as follows:

1. In the low- and middle-frequency areas, the impedance amplitude of the VSG is far lower than that of the TGCI. This is because the VSG is controlled as a voltage source, and the equivalent output impedance is small. By contrast, the TGCI is controlled as a current source, and the equivalent output impedance is large.

2. The sequence impedance of the VSG is basically inductive because the VSG has the external characteristics of a synchronous generator. In the low- and middle-frequency areas, the sequence impedance of the VSG is generally consistent with the impedance characteristic of the grid. By contrast, in the middle-frequency area, the sequence impedance of the TGCI is mainly capacitive, making it easy to couple with the grid inductance and thereby cause instability.

Fig. 2 Sequence impedances of the grid-connected inverter system and their simulation measurement results.

Fig. 3 Sequence impedances of the TGCI and their simulation measurement results.

IV. STABILITY COMPARISON BETWEEN THE VSG AND THE TGCI

Fig. 4 shows the small-signal description of the VSG and the TGCI grid-connected systems. The impedance ratio of the grid-connected inverter system is usually used for the Nyquist stability.
depends on $1/(1 + TGCIs$ and the PLL bandwidth, respectively. From Fig. 5(a), when the Nyquist plots encircle $(−1, j0)$ and the system is more unstable. When $SCR \leq 4$, the grid is weaker, the Nyquist plots more easily encircle the critical point $(−1, j0)$. From Fig. 5(c), when $SCR = 1$, the Nyquist plots encircle $(−1, j0)$ and the system is unstable. From Fig. 6, irrespective of whether the grid becomes weaker or the number of VSGs increases, the Nyquist plots of $IR_{vsg,s}(s)$ cross the negative real axis at the right side of $(−1, j0)$ once in the counterclockwise direction and those of $IR_{vsg,s}(s)$ cannot encircle $(−1, j0)$. From Fig. 6, the Nyquist plots of $IR_{vsg,s}(s)$ are no poles in the RHP. Therefore, when the system is stable, the Nyquist plots of $IR_{vsg,s}(s)$ should cross the negative real axis at the right side of $(−1, j0)$ once in the counterclockwise direction and those of $IR_{vsg,s}(s)$ do not encircle $(−1, j0)$. Therefore, VSG is more adaptable to a weak grid, and the system remains stable when the VSG penetration is high. In addition, the VSG, like a synchronous generator, does not need the PLL and consequently cannot be affected by the PLL. Therefore, the VSG can effectively solve stability issues, making it suitable for achieving high penetration of renewable energy generation in an ultra-weak grid (SCR ≤ 2) from a system stability viewpoint.

V. EXPERIMENTAL RESULTS

To validate the sequence impedance model of the VSG and the stability analysis, experimental platforms for an impedance measurement system and a grid-connected renewable energy generation system are built, as shown in Fig. 7. The impedance measurement system shown in Fig. 7(a) uses a programmable ac source (Chroma 61611) to inject the voltage perturbation. Because of the limit of the output ac voltage frequency and the difficulty in extracting the disturbance signal near the fundamental frequency, the range of impedance measurements in the experiment is 15–45 Hz and 55 Hz to 1.5 kHz. In Fig. 7(b), VSGs and traditional grid-connected inverters share the same hardware circuit. Their control schemes are implemented in TI DSP TMS320F2812. All inverters are connected to the PCC. The experimental parameters are the same as those in the previous analysis.
Fig. 7 Experimental platform. (a) Test system for ac impedance measurement; (b) Grid-connected renewable energy generation with three inverters.

Fig. 8 shows the experimental results of the sequence impedance measurement for the VSG. These results indicate that the experimental measurement results show good agreement with the built impedance model, thus validating the VSG sequence impedance modeling.

Fig. 9 and Fig. 10 respectively show the experimental results of TGCIs and VSGs with different parameters. When SCR is decreased from 1 to 4, the TGCIs oscillates; however, when SCR is further decreased to 1, the TGCIs still operates stably. When the number of TGCIs is increased from one to two, the system begins to oscillate; however, when the number of VSGs is increased to three, the VSG does not oscillate. When the PLL bandwidth of the TGCIs is increased to 400 Hz, the system oscillates. Therefore, the TGCIs shows better grid-connected stability than the TGCIs.

VI. CONCLUSIONS

In this letter, the small-signal sequence impedance model of the VSG is built. By using the impedance-based approach, the grid-connected stability of the VSG and the TGCIs is compared. The sequence impedance of the VSG is basically inductive; this is consistent with the impedance characteristics of the inductive grid. Under an ultra-weak grid or high penetration of renewable energy generation, the VSG grid-connected system can still run stably without PLL restrictions. From a system stability viewpoint, the VSG is more suitable than the TGCIs for achieving high penetration of renewable energy generation in an ultra-weak grid.

APPENDIX

The typical control method of the TGCIs is shown in Fig. 11. The control parameters of the TGCIs are shown in Table II.

![Fig. 11 Control scheme of the TGCIs. (a) The output current feed-forward decoupling control; (b) The PLL in SRFs.](image)

![Table II. Control Parameters of the TGCIs](table)

REFERENCES

