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Modelling of Path Arrival Rate for In-Room Radio
Channels with Directive Antennas

Troels Pedersen

Abstract—We analyze the path arrival rate for an inroom radio
channel with directive antennas. The impulse response of this
channel exhibits a transition from early separate components
followed by a diffuse reverberation tail. Under the assumption
that the transmitter’s (or receiver’s) position and orientation are
picked uniformly at random we derive an exact expression of
the mean arrival rate for a rectangular room predicted by the
mirror source theory. The rate is quadratic in delay, inversely
proportional to the room volume, and proportional to the product
of beam coverages of the transmitter and receiver antennas.
Making use of the exact formula, we characterize the onset
of the diffuse tail by defining a “mixing time” as the point in
time where the arrival rate exceeds one component per transmit
pulse duration. We also give an approximation for the power-
delay spectrum. It turns out that the power-delay spectrum is
unaffected by the antenna directivity. However, Monte Carlo
simulations show that antenna directivity does indeed play an
important role for the distribution of instantaneous mean delay
and rms delay spread.

Index Terms—Radio propagation, indoor environments, rever-
beration, room electromagnetics.

I. INTRODUCTION

Stochastic multipath models for the channel impulse re-
sponse are useful tools for the design, analysis and simulation
of systems for radio localization and communications. These
models allow for tests via Monte Carlo simulation and in many
cases provide analytical results useful for system design. Many
such models exist for the complex baseband representation of
the signal at the receiver antenna1

y(τ) =
∑
k

αks(τ − τk), (1)

term k has delay τk and complex gain αk corresponding to
path k and s(τ) is the complex baseband representation of the
transmitted signal [1]. The gains and delays form a marked
point process with points {τk} and marks {αk}. The arrival
process {τk} has an intensity function λ(τ) referred to as the
(path) arrival rate [2]. A particularly prominent example is
the model by Turin [2] where the delays are drawn from a
Poisson point process. Although Turin’s model was originally
intended for urban radio channels, it has since been taken
as basis for a wide range of models for outdoor and indoor
channels including the models by, Suzuki [3], Hashemi [4],

June 8, 2018, This work is supported by the Cooperative Research
Project VIRTUOSO, funded by Intel Mobile Communications, Keysight,
Telenor, Aalborg University, and the Danish National Advanced Technology
Foundation. This work was performed within the framework of the COST
Action CA15104 IRACON. T. Pedersen is with the Department of Electronic
Systems, Section Wireless Communication Networks, Aalborg University,
Aalborg, 9220, Denmark (e-mail: troels@es.aau.dk).

1Here we omit any additive terms due to noise or interference as our focus
is on characterizing the contribution related to the transmitted signal.

Saleh and Valenzuela [5], Spencer et al. [6] and Zwick et al.
[7], [8]. More recently, this type of statistical channel models
has been considered for the millimeter-wave applications [9],
[10].

For a model to be trustworthy its parameter settings should
be properly chosen. Empirical parameter estimation methods
are wide-spread in the literature. Indeed, Turin along with the
scientists elaborating this modeling approach [3]–[10] deter-
mined the parameters based on measurements. The empirical
approach, however, gives only limited insight into how model
parameters vary with the propagation environment or system
parameters such as frequency bands and antenna configura-
tions. Therefore, costly measurement campaigns performed for
one particular type of environment and radio system may have
to be redone in case the model should be adapted to a different
situation, e.g. if considering new frequency bands or different
antenna configurations. A further complications comes from
the fact that, the model in (1) is unidentifiable in the power-
delay spectrum. To see this, observe that for the most often
considered case of uncorrelated zero mean gains, the second
moment of the received signal reads

E[|y(τ)|2] =

∫ ∞
−∞

P (τ − t)|s(t)|2dt, (2)

where the power-delay spectrum, P (τ), is a product

P (τ) = σ2
α(τ)λ(τ), (3)

with σ2
α(τ) denoting the variance of a complex gain at a

given delay. According to (3), exactly the same delay-power
spectrum can be obtained by a continuum of combinations
of arrival rates and conditional mark variances. This effect is
clearly present for Turin’s model, but as noted in [11], also
holds true for the Saleh-Valenzuela model [5]: by interchang-
ing inter- and intra-cluster parameters for rates and complex
gains, and thereby completely altering the model’s behaviour,
the same power-delay spectrum is obtained. If two of the three
entities related through (3), are specified, the third can be
determined.

As a much less explored alternative to the empirical ap-
proach, model parameters can in some cases be obtained
by analysis of the propagation environment. Potentially, this
analytical approach allows us to predict how changes in the
propagation environment or in system parameters will affect
the channel model parameters. Unfortunately, most realistic
propagation environments are too complex to permit such anal-
ysis and therefore, we can at best hope to analyze simplistic,
but elemental, scenarios. Such elemental results may help us
to better understand more realistic scenarios.
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The elemental case where one transmitter and one receiver
sit in the same rectangular room has been studied in a number
of works [12]–[17] using the theory of room electromagnetics.
These investigations have focused on determining the rever-
beration time which characterizes the exponentially decaying
reverberation tail of the average power-delay profile, or power-
delay spectrum. Room electromagnetics has also been consid-
ered as a means to set the parameters of other models through
entities derived from the power-delay spectrum [18]–[20].

Models for the delay power spectrum have been stud-
ied intensively in the room electromagnetics literature, e.g.
[12]–[17]. Most attention has been devoted to modeling the
reverberation time which specifies the decay of the power
delay spectrum. The model by Sabine [21] appears to be the
most popular, see e.g. [13]–[17]. However, Eyring’s model
[22], first used for room electromagnetics in [12], predicts
the reverberation time more accurately [17]. Interestingly,
in the process of deriving the reverberation time using an
approximation based on mirror source theory, Eyring actually
derived an approximation for the arrival rate at large delays for
a rectangular room using mirror source theory. According to
Eyring’s approximation the arrival rate increases quadratically
with delay and is inversely proportional to the room volume.
Thereby this model captures a transition effect of the received
signal from early specular contributions to the late diffuse
reverberation tail, similar to the effect considered for in-room
radio propagation [23]–[27].

The contributions of the present paper is to adapt Eyring’s
analysis to radio channel modeling by including antenna
positions, orientations, and antenna directivity. The effect of
the antenna directivity on the “richness” of measured impulse
responses has been noticed qualitatively in early measurements
[28] and the impact of antenna directivity on small scale
fading parameters has been studied in several works [29]–
[31]. Our approach leads to an exact expression for the mean
arrival rate for the mirror source model; for special cases
our expression coincide with Eyring’s approximation. The
rate is quadratic in delay, inversely proportional to the room
volume, and proportional to the product of beam coverages
of the transmitter and receiver antennas. Making use of the
exact formula, we characterize the onset of the diffuse tail by
defining a “mixing time”. We also give an approximation for
the power-delay spectrum and study the mean delay and rms
delay spread via simulations. It turns out that the power-delay
spectrum is unaffected by the antenna directivity, while the
mean delay and rms delay spread vary.

We proceed in Section II by introducing the rectangular
room considering non-isotropic antennas for which Section III
details the mirror source theory. In Section IV, we develop an
approximation for the arrival rate of this model with determin-
istic antenna positions and orientations. In Section V, we ana-
lyze the mean arrival rate for random transmitter position and
antenna orientation. An expression for power delay spectrum
is developed in Section VI. In Section VII, we illustrate the
results of the analysis by Monte Carlo simulations. Discussion
and conclusions are given in Sections VIII and IX.
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Fig. 1. Three-dimensional rectangular room with transmitter and receiver
inside along with the coordinate system and wall naming convention.

II. RECTANGULAR ROOM WITH DIRECTIVE ANTENNAS

Consider a rectangular room illustrated in Fig. 1 with
directional transmitter and receiver antennas located inside.
Throughout the paper, entities related to the transmitter and
receiver have subscripts T and R respectively. The room is
of dimension Lx × Ly × Lz and has volume V = LxLyLz .
The room has six walls (including floor and ceiling). The
two walls parallel to the yz-plane are denoted by Wx−, for
the left-most wall (with x = 0) and Wx+ for the rightmost
wall (with x = Lx). Similarly, we refer to the remaining
walls as respectively Wy−,Wy+,Wz−, and Wz+. We assume
that the carrier wavelength lc is small compared to the room
dimensions, and that only specular reflections occur with
a gain independent of incidence direction. The power gain
(or reflectance) of wall i is denoted by gi. Positions are
given with reference to a Cartesian coordinate system with
origin at one corner and aligned such that the room spans
the set [0, Lx) × [0, Ly) × [0, Lz). Then the positions of the
transmitter and receiver are given as rT = [xT , yT , zT ]T and
rR = [xR, yR, zR]T .

The antennas are both assumed to be directive and their
radiation patterns can have strong back- and side-lobes. To
describe the antennas, we follow the IEEE standard termi-
nology as defined in [32]. For simplicity reason, we ignore
polarization, and thus describe the antennas only by their
gain. The antenna gain in the direction specified by the 3-
dimensional real unit vector Ω by G(Ω) (power per solid
angle). The forthcoming analysis does not change substantially
by considering lossy antennas, and we therefore consider
only lossless antennas. Then the integral of the antenna gain
over the sphere equals 4π. We remark that the equations can
be readily adapted by including the radiation efficiency in
equations where the antenna gain enters.

It is customary to describe a directive antenna by its
beamwidth or its maximum gain Gmax = maxΩG(Ω). How-
ever, these characteristics only describes the mainlobe and are
blind to the presence of side-lobes. Instead we use another
standardized characteristic, namely the footprint of the antenna
[32] on a unit sphere centered at the antenna. We may think of
the foot print as the portion of the sphere “illuminated by the
antenna”. The footprint denoted by O can be mathematically
defined as the set

O = {Ω : G(Ω) ≥ ε ·Gmax}, (4)



0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2846785, IEEE
Transactions on Antennas and Propagation

3

where ε ≥ 0 specifies a gain level below which, the gain of
the antenna is considered insignificant. The appropriate value
for ε may vary with application in mind. In the present work
we shall not be concerned with the particular value of ε, but
assume it small. The size of the footprint is the called the
beam coverage solid angle [32] measured in steradians as

|O| =
∫
S2
1(Ω ∈ O)dΩ. (5)

Here, S2 is the unit sphere and 1( · ) denotes an indicator
function with value one if the argument is true and zero
otherwise. The beam coverage can (upon specification of ε)
be computed for a given gain pattern according to (4) and (5).
It measures the total solid angle of the main- and sidelobes
of the gain pattern. With this definition, the beam coverage
solid angle ranges from zero to 4π steradians. Although the
beam coverage solid angle is a standardized term [32], it is
not a widely used antenna characteristic. We use it here, since
it appears naturally in the analysis presented in Sections IV
and V. The beam coverage is related to the beam width
of the antenna. As an example, the beam coverage of a
rectangular beam is the product of the beamwidths in azimuth
and elevation. It should be noticed that the beam coverage solid
angle differs from the related term “beam solid angle” [32],
[33] which is more commonly encountered. The two terms are
equal for antenna gains which are constant within the footprint
of the antenna; they otherwise differ. However, for antennas
with only small sidelobes, the beam solid angle may be used
as an approximation for the beam coverage.

To shorten our notation and terminology, we further define
the beam coverage (fraction) as

ω =
|O|
4π

. (6)

The beam coverage fraction ranges from zero to one and can
be interpreted as the probability that a wave impinging from a
uniformly random direction is within footprint of the antenna.
We mention here that ω = 1 for the isotropic antenna, and
ω = 1/2 for a hemisphere antenna. Further examples are
given in Section VII. We remark that the relation between
beam coverage fraction and beamwidth is not one-to-one. Two
antennas with the same beamwidth may have different beam
coverages and vice versa due to the shape of main-lobes and
presence of sidelobes. In fact, is easy to construct examples
where such a situation occur; see e.g. the simulation setups in
Section VII where both the beam coverage fractions and the
beam widths are reported.

III. MIRROR SOURCES AND MULTIPATH PARAMETERS

For the defined setup, mirror source theory predicts that
the received signal is an infinite sum of attenuated, phase-
shifted and delayed signal components as in (1). Unlike Turin’s
model, in this case the pairs of delay and complex amplitudes
{(τk, αk)} do not form a marked Poisson process but are given
by the geometry of the propagation environment. The complex
gains and delays are readily described using the theory of
mirror sources as follows.

To construct the path from transmitter T to receiver R via
a single reflection at wall W we determine the position of
mirror source T ′ by mirroring T in W . Thereby, the interaction
point can be determined as the wall’s intersection with the
straight line segment from T ′ to R. The two-bounce path T −
Wx−−Wx+−R may be constructed by mirroring wall Wx−
in wall Wx+ to construct W ′x− and then mirroring T ′ in W ′x−.
Repeating this procedure ad infinitum gives an infinite set of
mirror sources and mirror rooms as illustrated in Figure 2.

The position of mirror source k can be computed as

rT (kx,ky,kz) =


⌈
kx
2

⌉
· 2Lx + (−1)kx ·xT⌈ky

2

⌉
· 2Ly + (−1)ky · yT⌈

kz
2

⌉
· 2Lz + (−1)kz · zT

 , (7)

where kx is the number of reflections on the two walls parallel
to the yz-plane, i.e. Wx− and Wx+. Path k interacts with wall
Wx− in total

∣∣bkx2 c∣∣ times and with wall Wx+ in total
∣∣dkx2 e∣∣

times. The indices ky and kz are defined analogously. Hence,
the path index k corresponds to a triplet k = (kx, ky, kz).
Alternatively, the same path can be constructed by introducing
a mirror receiver at position rRk determined by replacing
subscript T by subscript R in (7). Notice the direct (or line-
of-sight) path is also included for k = (0, 0, 0), since for this
case rT (0,0,0) = rT and rR(0,0,0) = rR. For notational brevity,
we use subscript k = 0 instead of k = (0, 0, 0) for entities
related to the direct path throughout the paper.

The signal emitted by mirror source k arrives at the receiver
with delay τk. Analogously, the signal emitted by the trans-
mitter observed by mirror receiver k has the same delay τk.
The delay of path k be computed from the positions of mirror
source k or mirror receiver k as

τk = ‖rTk − rR‖/c = ‖rRk − rT ‖/c, (8)

where c is the speed of light.
The directions of departure and arrival for each path can

also be computed. The direction of arrival of the signal from
mirror source k is given by the unit vector

ΩRk =
rTk − rR
‖rTk − rR‖

. (9)

Similarly, the direction of departure of path k denoted by ΩTk
and can be computed from (9) by interchanging subscripts T
and R. It follows that directions of departure and arrival of a
specific path are related as

ΩTk = −

(−1)ky+kz

(−1)kx+kz

(−1)kx+ky

ΩRk.

(10)

In particular, for the direct path ΩT0 = −ΩR0.
Finally, the gain of path k can be specified. We shall not

be concerned with the phase of the complex gain αk, but only
its squared magnitude, i.e. the corresponding power gain. The
power gain of path k reads

|αk|2 = gk ·
GT (ΩTk)GR(ΩRk)

(4πcτk/lc)2
, (11)
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T

R

c=

Fig. 2. The rectangular room seen from above with transmitter T and a
receiver R and a number of mirror rooms. The pattern continues similarly in
the direction perpendicular to the drawing plane. Contributions from mirror
sources inside the sphere of radius cτ arrive at the receiver at delays smaller
than τ .

where the factor gk denotes the gain due to reflections on the
walls, the numerator accounts for the transmitter and receiver
antennas, and the denominator is due to the attenuation of a
spherical wave with lc denoting the wavelength. Consequently,

gk = g

∣∣bkx2 c∣∣
x− g

∣∣dkx2 e∣∣
x+ g

∣∣bky2 c∣∣
y− g

∣∣dky2 e∣∣
y+ g

∣∣bkz2 c∣∣
z− g

∣∣dkz2 e∣∣
z+ . (12)

We remark that for the direct path the expression (11) reduces
to the Friis equation [34] for propagation in free space.

IV. ANALYSIS OF DETERMINISTIC MIRROR SOURCE
MODEL

The equations (7)–(12) specify the mirror source model
well enough for simulations purposes, but are difficult to
interpret directly. To better understand the behavior of the
model we next consider approximations for the arrival count
and rate. In this section the antenna positions and orientations
are deterministic. Later, in Section V, we randomize these
variables.

A. Arrival Count

The arrival count N(τ) is defined as the number of paths
contributing to the received signal components up to and
including a certain time τ . For a path to contribute, the
corresponding mirror source should be within a radius cτ
of the receiver, see Fig. 2, and within the footprints of both
antennas. Thus the arrival count can be expressed as

N(τ) =
∑
k

1(τk ≤ τ) ·1(ΩTk ∈ OT ) ·1(ΩRk ∈ OR).

(13)

The exact count depends on the antenna positions, orienta-
tions and on the specific antennas. Considering the case with
isotropic antennas, the two rightmost indicators are unity and
we can approximate the arrival count as the volume of a sphere
of radius cτ divided by the room volume. This argument leads
to the cubic approximation for the arrival count proposed by
Eyring’s approximation [22]:

N(τ) ≈ 4πc3τ3

3V
, τ � 0. (14)

We now develop an approximation for the arrival count by
adapting Eyring’s analysis to the case with directive antennas
and assume a certain fixed line-of-sight delay. Consider first
the term due to the direct component, i.e.

1(τ0 ≤ τ)1(ΩT0 ∈ ΩT )1(ΩR0 ∈ ΩR). (15)

Notice that the factor 1(ΩT0 ∈ ΩT )1(ΩR0 ∈ ΩR) is an
indicator of line-of-sight propagation. This factor is unity if
line-of-sight propagation occurs, and zero otherwise. Thus if
information about the presence of line-of-sight propagation
is available, this term is known. If this is not the case, we
chose as a compromise to approximate this term as the product
ωTωR. As a shorthand, we introduce the line-of-sight indicator
as

ILOS =


1, line-sight-sight state,

0, non-line-sight-sight state,

ωTωR, unknown state.

(16)

Secondly, the number of mirror sources with delay less than
τ equals the number of mirror sources inside the sphere with
radius cτ centered at the receiver. For cτ large compared to the
diagonal of the room, i.e. cτ �

√
L2
x + L2

y + L2
z , the number

of such mirror sources is approximately

4πc3(τ3 − τ3
0 )

3V
, (17)

where we include one mirror source per room volume and
subtract the contribution due to the volume closer than cτ0
to the receiver. Thirdly, only a fraction, ωR, of these mirror
sources are picked up by the receiver. Ignoring the dependency
between the direction of departure and arrival for indirect
components, we account for the transmit antenna by a factor
ωT . By this line of reasoning

N(τ) ≈ 1(τ ≥ τ0)

[
ILOS +

4πc3(τ3 − τ3
0 )ωTωR

3V

]
. (18)

In the special case of isotropic and colocated antennas expres-
sion (18) equals Eyring’s approximation (14) plus a one due
to the line-of-sight component.

B. Arrival Rate

The arrival rate, denoted by λ(τ), is expected number of
signal components arriving at the receiver per unit time at
delay τ which can be defined in terms of the arrival count
such that the expression

E[N(τ)] =

∫ τ

0

λ(t)dt (19)
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holds true. Essentially, λ(τ) can be thought of as a “derivative”
of E[N(τ)] with respect to τ . However, since the count N(t)
is deterministic, we see that E[N(τ)] equals N(τ). The count
is a step function and therefore λ(τ) should be interpreted in
the distribution sense as a Radon-Nikodym derivative (with
respect to Lebesque measure) which leads to:

λ(τ) =
∑
k

δ(τ − τk) ·1(ΩTk ∈ OT ) ·1(ΩRk ∈ OR), (20)

where δ( · ) is Dirac’s delta function. Again, the exact count
yields no valuable interpretation. Instead by inserting the ap-
proximation (18) for the arrival count into (19) we approximate
the arrival rate as

λ(τ) ≈ δ(τ − τ0)ILOS + 1(τ > τ0)
4πc3τ2

V
ωTωR. (21)

The approximation (21) is clearly not valid point-wise, but
should be seen as the average number of arrivals per time unit
in a small time interval centered at τ .

The expression (21) gives rise to a number of observa-
tions. First, the arrival rate is quadratic in delay which is
in sharp contrast to the widespread Saleh-Valenzuela model
[5] where the delays of each “cluster” of components has
constant arrival rate. 2 Moreover, considering that clusters also
arrive at constant rate, the overall arrival rate is only linearly
increasing in delay [11]. Secondly, the arrival rate in (21) is
inversely proportional to the room volume for τ > τ0. Thus,
larger rooms lead to smaller arrival rates. This implies that
attempts to empirically characterize arrival rates for inroom
channels should pay attention to the room size. Finally, we
observe that the antennas affect the arrival rate by a delay-
independent scaling. Thus very directive antennas lead to a
sparser channel in the early part of the channel response,
in agreement with experimental results presented in [28]–
[31]. However, the arrival rate still grows quadratically and
eventually the components in the response merge into a diffuse
tail.

V. ANALYSIS OF RANDOMIZED MIRROR SOURCE MODEL

In the previous section, antenna positions and orientations
were held fixed. In the sequel, we let the position and
orientation of the transmitter be random. Thus we consider
the case where the line-of-sight state is unknown. These as-
sumptions are made here to obtain exact mathematical results
and relate thise to the approximation presented Section IV.
The considered situation is, however, directly relevant in
some applications, e.g. in the initial steps of so-called “beam
training algorithms” considered for future millimeter wave
systems [36] where the line-of-sight state and direction are
yet unknown.

2As noted in [35], the constant rate model is justified by several authors as
a “convenient compromise” between increasing number of posible multipath
components and the increasing shadowing probability. Nevertheless, as also
noted in [35], there seems to be no principal reason that the effects should
balance each other out to produce exactly a constant rate. Here, we give a
clear physical argumentation based mirror source theory for a quadratic rate
model.

A. Mean Arrival Count and Arrival Rate

Suppose that the position and orientation of the receiver
antenna is fixed. In contrast hereto, the transmitter’s position is
random with a uniform distribution on the room, i.e. that rT ∼
U([0, Lx]× [0, Ly]× [0, Lz]). Furthermore, let the transmitter’s
orientation be random according to a uniform distribution on
the sphere. The counting variable N(τ) is random with mean

E[N(τ)] = E
[∑

k

1(τk < τ) ·1(ΩTk ∈ OT ) ·1(ΩRk ∈ OR)].

(22)

Since the orientation of the transmitter antenna is uniformly
random, the probability for any particular fixed direction, to
reside in the random footprint OT , equals the beam coverage
ωT . Thus, we have the conditional mean,

E[1(ΩTk ∈ ΩT )|ΩTk] = ωT (23)

irrespective of the particular value of ΩTk. Each mirror source
is uniformly distributed within its mirror room, and therefore
mirror source positions constitue a homogeneous (but not
Poissonian) random spatial point process with intensity 1/V .
Then, inserting (23) and using Campbell’s theorem [37], we
can rewrite the expectation as an integral over mirror source
positions

E[N(τ)] =
ωT
V

∫
1
(
‖r−rR‖

c < τ
)
1
(

r−rR
‖r−rR‖ ∈ OR

)
dr

=
4πc3τ3

3V
ωTωR1(τ > 0). (24)

Taking the derivative of the expected arrival count, we obtain
the corresponding arrival rate

λ(τ) =
4πc3τ2

V
ωTωR1(τ > 0). (25)

It follows by simple modifications of the above argument that
the same results hold true for a number of different cases:

1) Transmitter with fixed orientation and uniform position;
receiver with uniform orientation and fixed location.

2) Either of the antennas are isotropic and either of the
antenna locations are uniform.

3) Transmitter position and orientation are uniform and
independent of the receiver position and orientation.

4) Transmitter position and antenna orientation are uniform
conditioned on the receiver position and orientation.

Obviously, Case 4) implies Cases 1) through 3). Moreover, by
symmetry, any of the above results hold true if the transmitter
and receiver swap roles.

This quadratically increasing rate bears witness of the
gradual transition in the impulse response that consists of
separate specular components at early delays to a late diffuse
tail consisting of myriads of specular components. We remark
that for isotropic antennas Eyring’s approximation (see (14))
is equal to our expression for the mean count. In this sense,
Eyring’s approximation is not only valid asymptotically, but
is exact in the mean. The inclusion of the beam coverages is
a natural extension to the non-isotropic case.

The relative ease by which we derived the mean arrival
count (24) may lead us to think that perhaps also higher



0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2846785, IEEE
Transactions on Antennas and Propagation

6

moments could be easily derived. However, it proves much
more challenging to derive its second moment—in fact we
have not been able to establish an exact expression. We give
an approximation in Appendix A. Similarly, it is difficult to
get exact formulas if less randomness is introduced in the
model. To that end, Appendix B gives an upper bound to the
mean arrival rate for the case where the transmitter antenna
has random position, but fixed orientation; Appendix C gives
an approximation for the mean count for fixed transmitter-
receiver distance known/unknown line-of-sight state.

B. Mixing Time

Commonly we consider a channel impulse response consist-
ing of so many specular components that each of these cannot
be separated by the receiver as “diffuse”. It is well known
that in the inroom scenario, a specular-to-diffuse transition
from early separate components to a later diffuse tail can be
observed. Impulse response models that includes both specular
and diffuse components must account for this transition in
some way. In the literature this has been done in various ways,
see e.g. [9], [19], [26], [38]–[40]. The model studied here also
leads to a specular-to-diffuse transition. The simple quadratic
expression for the arrival rate (25) enable us to give a definition
of the onset of the diffuse tail by analogy to room acoustics.

In the room acoustics literature, a similar diffusion process
have been studied intensively for over a century [41]. A useful
and widespread characteristic of the diffuse tail’s onset is the
so-called “mixing time”. In [42], the mixing time defined as
the delay at which a listener is no longer able to distinguish
individual echoes. In analogy thereto, we propose to define
mixing time τmix for room electromagnetics. The mixing time
should indicate the delay value beyond which the receiver can
no longer be expected to distinguish the signal components
of individual paths. If the receiver in a system with signal
bandwidth B can distinguish on average up to Nmix signal
components per pulse duration, we can find the mixing time
by solving the equation

Nmix =

∫ τmix+ 1
2B

τmix− 1
2B

λ(τ)dτ. (26)

Inserting (25) and solving for τmix gives the expression

τmix =

√
NmixBV

4πc3ωTωR
− 1

12B2
, (27)

where τmix > 1/2B was assumed.
Fig. 3 shows the mixing time versus B/ωTωR for a range of

room volumes. The number Nmix of components that can be
distinguished within a pulse duration depends on the particular
system in question. Determining this value is beyond the scope
of the present investigation and thus we set it to unity in Fig. 3.

For large signal bandwidth, the mixing time attains the
asymptote

τmix =
√
Nmix

√
BV

4πc3ωTωR
. (28)

Thus to determine the large bandwidth asymptote of the
mixing time for Nmix different from unity is obtained by a
scaling by

√
Nmix. In the large bandwidth case, the mixing
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Fig. 3. Mixing time versus B/ωTωR for different room volumes with
Nmix = 1.

time is proportional to the square root of the room volume
which is quite intuitive: larger rooms have longer mixing
times. Moreover, the mixing time is inversely proportional
to the square root of the beam coverages: more directive
antennas lead to a later onset for the diffuse tail. Finally, by
increasing the system bandwidth, the mixing time increases by
the square root of the bandwidth. The mixing time determines
if a diffuse reverberation tail can be observed in noise limited
measurements. The diffuse tail appears only if the power-delay
spectrum exceeds the noise floor at the mixing time, and is
otherwise masked by noise.

VI. APPROXIMATION FOR POWER-DELAY SPECTRUM

We now turn to the question of approximating the power-
delay spectrum. As in Section V, we consider the case where
the position and orientation of the transmitter is random and
the line-of-sight state is unknown. The case of deterministic
transmitter-receiver distance and known line-of-sight state is
discussed in Appendix C.

As can be seen from the product form in (3), the power
delay spectrum is factorized into the arrival rate and the
conditional second moment σ2

α(τ) of the complex gain. We
already derived the arrival rate in (25), so it only remains to
derive an (approximate) expression for σ2

α(τ). To this end, we
follow an adaptation of Eyring’s approach [22].

Let the average wall gain be defined as

ḡ =
1

S

∑
i

Sigi, (29)

where wall i has area Si and gain gi, and the total surface
area of the room is

S =
∑
i

Si = 2(LxLy + LxLz + LyLz). (30)
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Here, the second equality is due to the rectangular room
geometry. Replacing the individual wall gains in (12) by the
average value ḡ, we approximate the gain of path k as

|αk|2 ≈ ḡ|k| ·
GT (ΩTk)GR(ΩRk)

(4πcτk/lc)2
, (31)

with the convention |k| = |kx|+ |ky|+ |kz| for the number of
wall interactions of path k.

For a given path length cτk, the number of interactions |k|
varies according to the positions of the transmitter and receiver
and the orientation of the path. As Eyring further noted in
[22], the number of wall interactions for mirror source k can
be approximated as the path length cτk divided by the mean
chord length of a room which is 4V/S [22], [41], [43]. Hence,
we insert

|k| ≈ τk ·
cS

4V
(32)

into (11) to obtain

|αk|2 ≈

{
ḡτkcS/4V · GT (ΩTk)GR(ΩRk)

(4πcτk/lc)2
, k 6= (0, 0, 0)

GT (ΩT0)GR(ΩR0)
(4πcτ0/lc)2

, k = (0, 0, 0).
(33)

The factor gτ0cS/4V is close to unity if τ0 is small compared
to the mean chord length of the room, or if ḡ is close to unity.
In this case,

E[|αk|2|τk] ≈ ḡτkcS/4V

(4πcτk/lc)2
·E
[
GT (ΩTk)GR(ΩRk)

∣∣τk] ,
(34)

where the expectation at the right-hand side is with respect to
the directions of arrival and the orientation of the transmitter
antenna.

This expectation can be computed by first invoking the law
of total expectation:

E
[
GT (ΩTk)GR(ΩRk)

∣∣τk] =

E
[
E
[
GT (ΩTk)

∣∣ΩRk, τk]GR(ΩRk)
∣∣τk] . (35)

Due to the one-to-one relation (10) between the arrival and
departure direction, it is clear that for a given direction of
arrival, the direction of departure is also fixed. Therefore
the innermost expectation in (35) is the expected gain of
a uniformly oriented antenna evaluated in a fixed direction
within its footprint:

E
[
GT (ΩTk)

∣∣ΩRk, τk] =
1

|OT |

∫
OT

GT (Ω)dΩ

=
1

|OT |

∫
S2
GT (Ω)dΩ =

1

ωT
. (36)

It now remains to compute the expectation E
[
GR(ΩRk)

∣∣τk].
The mirror source process homogeneous and therefore the
direction of paths impinging on the receive antenna is uni-
formly distributed on the sphere. Therefore, the direction of
arrival (of a path actually received by the antenna) is uniformly
distributed within the footprint, hence

E
[
GR(ΩRk)

∣∣τk] =
1

|OR|

∫
S2
GR(Ω)dΩ =

1

ωR
. (37)

Finally, inserting (35),(36), and (37) into (34) yields

σ2
α(τ) ≈ ḡτcS/4V

(4πcτ/lc)2
· 1

ωTωR
. (38)

Together the expressions (25), (38) and (3) gives an approx-
imation for the power-delay spectrum:

P (τ) ≈ 1(τ > 0)
e−τ/T

4πV/l2cc
, (39)

with the reverberation time T defined as

T = − 4V

cS ln(ḡ)
. (40)

This expression for the reverberation time is the same as
obtained in Eyring’s model [17], [22].

The power-delay spectrum takes the form of an exponen-
tially decaying function. This is interesting in the light of the
super-exponential decay of the per-path gain in (31). However,
this super-exponential trend is balanced out by the quadratic
increase in arrival rate such that the net result is an exponential
decay.

It is a remarkable and perhaps surprising fact that the
approximate power-delay spectrum in (39) is unaffected by
the directivity of the antenna. Indeed, the antennas enter in
both the arrival rate and in the conditional gain, but these
effects cancel in the power-delay spectrum. Thus neither
the total expected power nor the reverberation time change
with antenna directivity. Obviously, the individual realizations
of the received signal are vary greatly with the particular
antenna responses, positions and orientations. However, this
dependency vanishes when taking the expectation over all
transmitter positions and orientations.

The aspect ratio of the room enter in the expression (39)
only via the ratio V/S in (40). In fact some information of
the aspect ration is lost due to the approximation in (32). The
accuracy of (32) can be improved by incorporating more com-
plex models such as the ones developed for room acoustics,
see [41], [44]. As an example, the modification introduced
in [41] improves the approximation in (32) by adjusting the
reverberation time by a correction factor ξ defined as

ξ =
1

1 + γ2 ln(ḡ)/2
. (41)

The constant γ2, which depends on the aspect ratio of the
room, can be determined by Monte Carlo simulation and
typically takes values in the range 0.3 to 0.4 [41]. The
particularities of such corrections are of less importance here,
and therefore further refinements of (41) are left as future
work.

VII. NUMERICAL EXAMPLES

We now illustrate the derived theoretical results by compar-
ing the theoretical results to simulations of the mirror source
model in a particular setup.
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A. Simulation Method

The equations (7)–(12) allow for simulating the received
signal in a straight forward manner. First a set of mirror
sources positions are constructed using (7) with the associated
multipath parameters obtained by evaluating (8)–(12). Since
the set of mirror sources is clearly infinite, a stopping criterion
is required to ensure finite computational complexity. Here
we chose to simulate all mirror sources with a delay up to a
predefined time τmax. The received signal can be obtained by
(1) for a specified transmitted signal. Based on the multipath
parameters, the arrival count (13) is evaluated by first removing
paths that with direction of arrival or departure outside the
antenna footprints. Then the arrival count can be computed by
computing the unnormalized empirical distribution function
(ecdf) for which ready-made routines exists in most scientific
programming packages. The arrival rate can be estimated using
a kernel-density estimate, which is also widely available.

In the deterministic case, the model is evaluated for particu-
lar antenna positions and orientations. The randomized model
is evaluated by simulating a large number of independent
Monte Carlo runs. In each run, one position of the transmit
antenna position and orientation is generated uniformly by
draws from pseudo-random number generators.

B. Simulation Setup

Table I specifies the simulation settings. In the numerical
examples we consider for simplicity the same gain value
g for all walls. The transmitted signal s(t) is a sinc pulse
with constant Fourier transform over the considered frequency
band, and zero elsewhere.

We consider in our simulations two different types of
idealized antennas both defined with the beam coverage as a
parameter (setting ε = 0). The first type is an idealized sector
antenna with constant gain over the spherical cap centered at
the direction given by the unit vector ζ:

Gsector(Ω) =
1

ω
1(ΩT ζ ≥ 1− 2ω). (42)

This antenna gain exhibits neither back- nor side-lobes. For the
sector antenna, the half-beamwidth is arccos(1−2ω) and gain
1/ω over an isotropic antenna. For the special case of ω = 1
the isotropic pattern is obtained; ω = 1/2 gives the hemisphere
antenna. Arbitrarily narrow beams can be obtained by setting
ω to sufficiently small values. The second antenna type is a
sector antenna with front- and back-lobes:

Gbacklobe(Ω) =
4

3ω
1(ΩT ζ ≥ 1− ω) +

2

3ω
1(ΩT ζ ≤ ω − 1).

(43)
This antenna has a half-beamwidth arccos(1−ω) and the the
front-to-back ratio is 3 dB.

In the simulations we consider different settings of the beam
coverages as given in Table II. For ease of comparison we
also report in the table, the resulting half-beamwidth and gain.
It is clear from the table that the beam coverage does not
map one-to-one to the half-beamwidth. We remark that we
for simplicity reason simulate only antenna responses that are
rotationally symmetric about the direction ζ. Furthermore, in
all cases considered, the transmitter and receivier are equipped

TABLE I
SIMULATION SETTINGS

Room dim., Lx × Ly × Lz 5× 5× 3m3

Reflection gain, g 0.6
Center Frequency 60GHz
Bandwidth, B 2GHz
Speed of light, c 3 · 108 m/s
Maximum delay, τmax 120 ns
Transmitted signal, s(t) Sinc pulse
No. Monte Carlo Runs 10 000

TABLE II
ANTENNA SETTINGS

Antenna Type ω Half-beamwidth Gain [dBi]

Sector (Isotropic) 1 180◦ 0
Sector (Hemisphere) 0.5 90◦ 3

Sector 0.25 60◦ 6

Backlobe 1 90◦ 3
Backlobe 0.5 60◦ 6
Backlobe 0.25 41.1◦ 9

with identical antennas. These choices are made for simplicity
of the simulation, and is not a limitation of the derived theory.

C. Deterministic Case
We consider first the example with the orientation and

positions of the antennas are deterministic. In this example, we
orient the antennas in direction of line-of sight, i.e. ζT = ΩT0

and ζR = ΩR0. Then direct propagation occurs and ILOS = 1.
Figs. 4 and 5 show received signals and arrival counts for
sector and backlobe antennas given in Table II.

The general trend is that the received signal decays expo-
nentially with delay while the signal contributions gradually
merge into a diffuse tail. As can be seen, the rate of diffusion
depends on the antenna: smaller beam coverage leads to a
slower diffusion process with a sparser response in which each
signal component having higher gain. This effect accord with
the mixing times also indicated in the plots. Moreover, for the
same beam coverage setting, the received signals are similar
for the sector and backlobe antennas. The corresponding
arrival counts is observed to fluctuate about their respective
approximation given by (18). The count clearly depends on the
particular antenna type, but approach the same approximation
for different antennas with equal beam coverages.

The fluctuations of the count about the approximation
appear to be larger at smaller counts, which can be primarily
attributed to the double logarithmic scale which magnify
visually the errors at small counts, while deemphasising errors
at large counts. Furthermore, the approximation is essentially
to approximate the number of mirror sources inside a section
of a sphere by the number of mirror source volumes within
that sector. This approximation is more accurate if the sphere
is large compared to the room size, which is the case at large
delays.

D. Randomized Model
We now compare the theoretical results derived for the

randomized model with Monte Carlo simulations. The sim-
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Fig. 4. Magnitude squared received signal and arrival counts for the three different sector antennas in Table II. Line-of-sight delay is indicated by a vertical
dotted line and mixing time is indicated by a vertical solid line. Theoretical approximate counts are shown in black dashed lines. The antennas are located at
rT = [2.5, 2.5, 1.5]Tm and rR = [1.5, 1.5, 2.7]Tm and are oriented exactly in direction of line-of-sight. The remaining settings are given in Table I.

ulation settings are listed in Table I. In each Monte Carlo run,
the transmitter and receiver antennas are placed uniformly at
random within the room and the orientations picked uniformly
at random. Thus we simulate a setup for which (24) and (25)
apply.

Fig. 6(a) reports arrival counts for different antenna settings
along with their respective theoretical mean counts. For each
setting of the beam coverage, ten individual arrival counts are
shown to exemplify the variations among the realizations. The
realizations fluctuate about their respective theoretical mean.
We observe that this variation is more pronounced for more
directive antennas and at low delays. In Fig. 6(b) the mean
count estimated as the average of the arrival counts from
all Monte Carlo runs is compared to the theoretical mean
count in (24). As expected, the corresponding curves fit almost
perfectly. Similarly, the estimated arrival rates matches closely
the theoretical values as seen in Fig. 6(c).

Finally, Fig. 6(d) shows the expected power of the received
signal, i.e. E[|y(t)|2] obtained from the Monte Carlo simula-
tion. We observe that as predicted, the curves for the different
antenna settings are identical modulo uncertainties due to the
Monte Carlo simulation technique. This observation confirms
the observation made in the introduction that models with
very different arrival rates, e.g. due to differences in antenna
directivity, can indeed lead to the same power-delay spectrum.
The simulation is compared with the approximation obtained
by using (2) and (39). From Fig. 6(d) it appears that the slope
of the theoretical curve, i.e. the reverberation time computed
in (40), deviates from the simulation by about 9 %. The fit can
be improved by applying the correction factor (41). According
to [41], the value γ2 = 0.30 can be used for the aspect ratio
of the room considered. For our simulation setup, this yields
a correction factor of ξ ≈ 1.083 which gives an excellent fit.

A comparison of Figs. 6 and 7 reveals that the sector and
backlobe antennas yield very similar behaviors in terms of
mean arrival count, arrival rate and power delay spectrum. The
major difference is in fluctuations of individual realizations
about the mean arrival count. The backlobe antenna yields
more pronounced variation in the arrival count than the sector
antenna.

The instantaneous mean delay and rms delay spread are
often considered as important parameters for design of radio
systems. Theoretical analysis of these entities is beyond the
scope of this contribution, but we report some simulated
empirical cumulative distribution functions in Figs. 8 and 9.
In these simulations the mean delay and rms delay spread
are computed as respectively the first and centered second
moments of the realizations of |y(t)|2 (thus including the
effect of the transmitted pulse). Even though the directional
antenna gain pattern does not affect the power delay spectrum,
it is apparent from Figs. 8 and 9 that the instantaneous mean
delay and rms delay spread vary significantly with the beam
coverage.

VIII. DISCUSSION

Some of the predictions of the mirror source analysis can be
compared to observations from measurements reported in the
open literature. The model for the power delay spectrum has
already been validated with measurements in [17]. The valida-
tion concerned the relation to room volume, average gain, and
surface area. It was found that Eyring’s model more accurately
predicts the reverberation time than Sabine’s model considered
more widely in the room electromagnetics literature [12]–[17].
However, due to the typically lower value for ḡ observed
in room electromagnetics, (approximately 0.6 in [17]), the
Sabine model is inaccurate. Moreover, [17, Fig. 5], reports
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Fig. 5. Magnitude squared received signal and arrival counts for the same setup as in Fig.4, but with three different backlobe antennas as specified in Table II.

the power delay spectrum for an inroom channel averaged over
all measured positions in the room. The average power delay
spectrum agrees well with an exponentially decaying model
similar to (39) with decay rate given by Eyring’s reverberation
time. Due to the fact that it was not possible to measure at
very short distances, the average power delay spectrum in [17,
Fig. 5] exhibit an onset at a delay corresponding to the shortest
distance included in the measurements. It should be noted
here that the validation in [17] is done with respect to the
power delay spectrum, received power, and rms delay spread
but the arrival rate was not measured. In this scenario however,
it turns out to be difficult to distinguish individual multipath
components in the received signal.3

Predictions of the arrival rate model can be compared qual-
itatively to previously published measurements. The quadrat-
ically increasing arrival gives in combination with a finite
bandwidth signal rise to a specular-to-diffuse transition. This
transition is routinely observed in inroom scenarios with
sufficient measurement bandwidth, see e.g [9], [12], [23], [28].
The effect of directive antennas on the arrival rate appears to
be under-explored experimentally. The effect can, however, be
observed qualitatively in a few publications e.g. in the early
work by Manabe [28] where received signals for an inroom
scenario are reported for different antenna configurations. It
appears that the received signal becomes sparser in applying
more directive antennas. We observe from our simulations
reported in Figs. 8 and 9 that for more directive antennas, the
rms delay spread reduces. This trend is confirmed by several
measurements reported in the literature, see e.g. [28], [31],

3In [17] the measurement in bandwidth, B = 120MHz, the antennas are
omnidirectional hemisphere antennas, ω ≈ 1/2 and room volume is V =
65m3. With Nmix = 1 this gives the mixing time of 9.6 ns calculated by
(28) or slightly lower value 9.3 ns from (27). In this case, the mixing time
corresponds to approximately the sampling time and therefore we can expect
the multipath components to overlap even the direct component.

[45], [46].
To validate the quantitative predictions of the proposed

arrival rate model, the dependency on antenna responses and
room volume should be checked. Such a validation is currently
pending due to the lack of appropriate estimators for the
arrival rate. The estimators applied in literature to estimate
arrival rate follow a two-step procedure (similar to the method
used by Turin [2]): First delays of multipath components are
estimated using high-resolution estimators, (e.g. CLEAN [47],
ESPRIT [48], SAGE [49], RiMax [50]); then the arrival rate is
estimated from the obtained delays. Unfortunately, the delay
estimates are inaccurate if applied to channel responses with
very high arrival rates, such as the proposed model predicts.
As a consequence, this approach may lead to biased estimates
of the arrival rate. We remark that to properly validate the
model, new estimators for arrival rate should be proposed. We
leave the development of such new estimators and thus the
quantitative validation as future work.

The presented arrival rate model is based on mirror source
analysis applied to an idealized propagation environment,
namely an empty rectangular room with flat walls. We note
that the diffusion effect is predicted to happen even with
an empty room and plane walls. While relevant from a
theoretical perspective, this scenario cannot be expected to
occur in practical situations. For more complicated scenarios,
e.g. in furnished rooms, we conjecture that the arrival rate will
increase faster than quadratic. Thus the predicted mixing time
may be considered an upper bound for the mixing time in real
situations. In such situation, we may consider a more general
model for the arrival rate, e.g. the two parameter model

λ(τ) = ωTωRqτ
p1(τ > 0) (44)

where the parameters q and p should be determined. Note that
this model generalizes both the arrival rate model in (25) and
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Fig. 6. Simulations (colored lines) and theory (black lines) for randomly
placed and oriented sector antennas (a) Realizations of arrival count and
theoretical mean count; (b) Mean arrival count; (c) Arrival rate (theory and
kernel-density estimate); (d) Mean square received signal. The settings are
given in Tables II and I.
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(d) Received Signal Mean Power. Backlobe antenna
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Fig. 7. Simulations (colored lines) and theory (black lines) for the same setup
as in Fig. 6, but with backlobe antennas.
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Fig. 8. Empirical cumulative probability of instantaneous mean delay (upper
panel) and rms delay spread (lower panel) for the sector antenna. The settings
are given in Tables II and I.
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Fig. 9. Empirical cumulative probability of instantaneous mean delay (upper
panel) and rms delay spread (lower panel) for the backlobe antenna. The
settings are given in Tables II and I.

“constant rate model” at the cost of introducing introducing a
second parameter.

IX. CONCLUSION

The present study shows how the path arrival rate can be
analyzed based on mirror source theory for rectangular room
which accounts for the antenna directivity. We give an exact
formula for the mean arrival count and consequently for the ar-
rival rate for the case where the position and orientation of the
transmitter are uniformly random. The rate grows quadratically
with delay giving rise to a transition from early isolated signal
components gradually merging into a diffuse reverberation tail
at later delays. The rate is inversely proportional to the room
volume, and thus larger rooms lead to a slower transition.
Moreover, the rate is proportional to the product of beam
coverage fractions of the transmitter and receiver antennas,
and thus more directive antennas yield lower arrival rate. The
derived expression quantifies the impact of directive antennas
on the arrival rate, a phenomenon observed qualitatively in a
number of previous experimental and simulation studies in the
literature. The expression for the arrival rate yields a simple
formula for the “mixing time”, i.e. the point in time at which
the mean arrival rate exceeds one component per transmit
pulse duration. The mixing time quantifies to what extent non-
overlapping signal components is to be expected for a given
scenario. The arrival rate expresion can be used to approximate
the power delay spectrum which appears to be unaffected by
the antenna radiation pattern. However, the antennas do indeed
play an important role for other characteristics as exemplified
by simulations of the distribution of instantaneous mean delay
and rms delay spread.

ACKNOWLEDGEMENTS

The author thanks Carles Navarro Manchon, Ramoni Adeo-
gun, Gilberto Berardinelli, and Bernard H. Fleury for com-
ments and discussions which helped to improve this work.

APPENDIX A
SECOND MOMENT OF ARRIVAL COUNT

The raw second moment of the arrival count reads

E[N(τ)2] =
∑
k,k′

E[NkNk′ ], (45)

with the shorthand notation

Nk = 1(τ < τk)1(ΩTk′ ∈ OT )1(ΩRk′ ∈ OR)]. (46)

Noting that N2
k = Nk, we see that the sum of diagonal terms

(k = k′) equals the mean E[N(τ)] and thus

E[N(τ)2] =E[N(τ)] +
∑
k 6=k′

E[NkNk′ ]. (47)

The cross terms (k 6= k′), cannot be readily computed. Instead,
we approximate the cross terms by considering the positions
of the mirror to be uncorrelated:

E[N(τ)2] ≈E[N(τ)] +
∑
k,k′

E[Nk]E[Nk′ ] (48)

=E[N(τ)]2 +
∑
k

(E[Nk]− E[Nk]2). (49)
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The terms in the last sum are variances of Nk of which most
vanish. Only mirror rooms which can be intersected by a
sphere of radius cτ centered at the receiver contribute to this
sum. Considering a receiver at the center of the room, for these
mirror rooms,

τ −D/2c < τk < τ +D/2c, (50)

where D =
√
L2
x + L2

y + L2
z is the length of the main

diagonal of the room. The number of such mirror rooms can
be approximated as

E[N(τ +D/(2c))]− E[N(τ −D/(2c))]. (51)

Finally, approximating the values of the variances by the
maximal variance of a Bernoulli variable, we have

E[N(τ)2] ≈E[N(τ)]2

+
1

4
(E[N(τ +

D

2c
)]− E[N(τ − D

2c
)]). (52)

Monte Carlo simulations (not reported here) for the setup
described in Section VII demonstrate that the approximation
is reasonably accurate for the raw moment, but overshoots the
variance significantly.

APPENDIX B
TRANSMITTER WITH RANDOM POSITION AND FIXED

ORIENTATION

Let the transmitter’s orientation be fixed, but its position
be uniformly distributed.The position and orientation of the
receiver is fixed. Then the mean arrival count reads

E[N(τ)] = E
[∑

k

1(τk < τ) ·1(ΩTk ∈ OT ) ·1(ΩRk ∈ OR)
]

≤ E
[∑

k

1(τk < τ) ·1(ΩRk ∈ OR)
]
, (53)

with equality for isotropic transmitter antenna. By Campbell’s
theorem,

E[N(τ)] ≤ 1

V

∫
1
(
‖r−rR‖

c < τ
)
1
(

r−rR
‖r−rR‖ ∈ OR

)
dr

=
4πc3τ3

3V
·ωR1(τ > 0). (54)

Symmetry gives a similar inequality involving ωR. In combi-
nation, these two lower bound yields

E[N(τ)] ≤ 4πc3τ3

3V
· min{ωT , ωR}1(τ > 0), (55)

again, with equality obtained either of the antennas are
isotropic. Since (55) holds for all τ , the arrival rate is upper
bounded as

λ(τ) ≤ 4πc3τ2

V
· min{ωT , ωR}1(τ > 0), (56)

with equality if either of the antennas are isotropic.
We remark that by symmetry, the bounds (55) and (56) hold

true if we instead let position of the receiver be uniformly
distributed within the room and the transmitters be fixed.
Furthermore, it can be shown by some adaptation of the proof
that the bound also holds in the case where both transmitter
and receiver have independent and uniformly distributed but
fixed orientations.

APPENDIX C
DETERMINISTIC TRANSMITTER-RECEIVER DISTANCE

To compute the mean arrival count for fixed transmitter-
receiver distance we need to compute a conditional expec-
tation. However, the condition renders the calculation of the
mean count very cumbersome if at all possible. Instead, we
approximate the expected count as motivated by the following
reasoning. First, the conditional arrival count is strictly zero for
τ < τ0. Second, due to the random orientation of antennas, the
direct component τ = τ0 occurs with probability ILOS defined
in (16). Third, conditioning on τ0 does not change the fact that
there is exactly one mirror source per mirror room. Therefore,
the mean count for cτ much greater than the diagonal of the
room remains the same as in the unconditional case. Thus, we
have the approximation for the conditional mean arrival count

E[N(τ)|τ0] ≈ 1(τ ≤ τ0)

(
ILOS +

4πc3(τ3 − τ3
0 )ωTωR

3V

)
,

(57)
with corresponding conditional arrival rate

λ(τ |τ0) ≈ δ(τ − τ0)ILOS + 1(τ > τ0)
4πc3τ2

V
ωTωR. (58)

The right hand side of (57) coincides with that of the approx-
imation obtained in the case with non-random transmitter and
receiver location in (18). An approximation for the conditional
gain σα(τ |τ0) for τ > 0 is obtained by the same line of
argumentation used to derive (38). For the direct component,
however, the gain obtained by inserting τ0 in (11), and thus
we obtain

σ2
α(τ |τ0) ≈


GT (ΩT0)GT (ΩR0)

(4πcτ0/lc)2
, τ = τ0

ḡτcS/4V

(4πcτ/lc)2
· 1
ωTωR

, τ > τ0.
(59)

Inserting (58) and (59) into (3), we obtain the power delay
spectrum

P (τ |τ0) ≈ δ(τ − τ0)ILOS
GT (ΩT0)GT (ΩR0)

(4πcτ0/lc)2

+ 1(τ > τ0)
e−τ/T

4πV/l2cc
(60)

with T defined in (40).
The onset of the power delay spectrum depends on the delay

of the direct component. Moreover, the onset and strength of
the tail are unaffected by the transmitter and receiver positions
and are thus constant throughout the whole room. For the
special case of line-of-sight is known to exist, i.e. ILOS = 1,
this power delay spectrum is of the form studied in [20] and
used to derive and validate distance-dependent models for the
mean of the received power, mean delay and rms delay spread.
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G. K. Karagiannidis, E. BjÃűrnson, K. Yang, C.-L. I, and A. Ghosh,
“Millimeter wave communications for future mobile networks,” IEEE J.
Sel. Areas Commun., vol. 35, no. 9, pp. 1909–1934, Sep. 2017.

[37] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and its
Applications, 2nd ed. John Wiley & Sons, Inc., 1995.

[38] A. Richter and R. S. Thomä, “Joint maximum likelihood estimation of
specular paths and distributed diffuse scattering,” in 2005 IEEE 61st
Vehicular Technology Conference, vol. 1, May 2005, pp. 11–15 Vol. 1.

[39] J. Poutanen, J. Salmi, K. Haneda, V. M. Kolmonen, F. Tufvesson,
and P. Vainikainen, “Propagation characteristics of dense multipath
components,” IEEE Antennas and Wireless Propagation Letters, vol. 9,
pp. 791–794, 2010.

[40] E. Leitinger, P. Meissner, C. Rüdisser, G. Dumphart, and K. Witrisal,
“Evaluation of position-related information in multipath components for
indoor positioning,” IEEE J. Sel. Areas Commun., vol. 33, no. 11, pp.
2313–2328, nov 2015.

[41] H. Kuttruff, Room Acoustics. London: Taylor & Francis, 2000.
[42] A. Lindau, L. Kosanke, and S. Weinzierl, “Perceptual evaluation of phys-

ical predictors of the mixing time in binaural room impulse responses,”
in Audio Engineering Society Convention 128. Audio Engineering
Society, 2010.

[43] A. E. Bate and M. E. Pillow, “Mean free path of sound in an auditorium,”
Proc. Physical Society, vol. 59, pp. 535–541, 1947.

[44] R. Neubauer and B. Kostek, “Prediction of the reverberation time in
rectangular rooms with non-uniformly distributed sound absorption,”
Archives of Acoustics, vol. 26, no. 3, pp. 183–201, 2001.

[45] M. Chamchoy, S. Promwong, P. Tangtisanon, and J. Takada, “Charac-
terization of in-home uwb channel with different antenna directivity,” in
2004 IEEE Region 10 Conference TENCON 2004., vol. C, Nov 2004,
pp. 129–132 Vol. 3.

[46] J. A. Dabin, A. M. Haimovich, and H. Grebel, “A statistical ultra-
wideband indoor channel model and the effects of antenna directivity on
path loss and multipath propagation,” IEEE Journal on Selected Areas
in Communications, vol. 24, no. 4, pp. 752–758, April 2006.

[47] J. A. Högbom, “Aperture synthesis with a non-regular distribution
of interferometer baselines,” Astronomy and Astrophysics Supplement
Series, vol. 15, no. 3, pp. 417–426, 1974.

[48] K. Sakaguchi, J. ichi Takada, and K. Araki, “On measuring the delay
profile and the directions of arrival byusing super resolution algorithm,”
in Proceedings of the 48th IEEE Vehicular Technology Conf., 1998.

[49] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. L.
Pedersen, “Channel parameter estimation in mobile radio environments
using the SAGE algorithm,” IEEE J. Sel. Areas Commun., vol. 17, no. 3,
pp. 434–450, Mar. 1999.



0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2846785, IEEE
Transactions on Antennas and Propagation

15

[50] R. Thomä, M. Landmann, G. Sommerkorn, and A. Richter, “Multidi-
mensional high-resolution channel sounding in mobile radio,” in Proc.
21st IEEE Instrumentation and Measurement Technology Conf., IMTC,
vol. 1, May 2004, pp. 257–262.


