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ABSTRACT As an effective approach to gain the high-spatial-resolution hyperspectral images, data fusion
is usually adopted to enhance the spatial resolution of hyperspectral images by the spatial information
of multispectral images. In this paper, in order to remove the ill-posedness of well-known coupled
non-negative matrix factorization, we formulate a well-posed fusion problem by incorporating total variation
and signature-based regularizations for image smoothing and high-fidelity signature reconstruction. Then,
the problem can be decoupled into two convex subproblems, which yield closed-form solutions separately
by the alternating direction method of multipliers algorithms. Due to the large sizes of the problems, a few
of constructed matrices and tensor operations are employed to simplify the expressions for reducing the
computational complexities. Simulation and experimental results not only demonstrate that the performance
of the proposed fusion algorithm is much better than that of state-of-the-art methods but also show that the
total variation and signature-based regularizers are of paramount importance in yielding the high-spatial-
resolution hyperspectral images.

INDEX TERMS Total variation, CNMF, data fusion, alternating direction method of multipliers.

I. INTRODUCTION
As we all know, several kinds of images in geoscience
and remote sensing [1]–[4] are usually exploited, such as
panchromatic (PAN), multispectral and hyperspectal images.
Compared with multispectral images (MSIs), PAN images
have higher spatial and lower spectral resolutions, while
hyperspectal images (HSIs) usually have lower spatial
and higher spectral resolutions. In practice, high-spatial-
resolution HSIs are required for accurate identification and
classification of the underlyingmaterials (named as endmem-
bers). Thus, how to obtain the high-spatial-resolution HSI
data is an important and challenging topic in hyperspectral
areas [5]. As an effective and promising approach, data fusion
of low-spatial-resolution HSIs and high-spatial-resolution
MSIs has been drawing considerable attentions to enhance
the spatial resolution of HSIs [6]–[8]. There have been var-
ious methods based on different theories, so far, to achieve
the goal of data fusion, which can be divided into three

main categories including extended pan-sharpening methods,
Bayesian-based methods and spectral unmixing-based meth-
ods.

Pan-sharpening, short for panchromatic sharpening
[9]–[11], has been developed originally to fuse MSIs and
PAN images for improving the spatial resolution of the MSIs.
Corresponding to the feature relationships amongHSIs,MSIs
and PAN images, pan-sharpening can be thought of as the
special case of the fusion of HSIs and MSIs [7]. In other
words, pan-sharpening can be extended to the fusion of HSI
and MSI data, whose representative methods mainly include
component substitution [12]–[14] and multi-resolution
analysis [15]–[17]. For instance, component-substitution-
based pan-sharpening, originally substituting the component
of MSIs by the corresponding part of PAN images, can be
adapted to fuse the HSI and MSI data. The pansharpening
methods based on multiresolution analysis [18] can be uti-
lized by linearly combining multispectral band images to
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synthesize a high-spatial-resolution image for each HSI band.
However, pansharpening methods usually involve multiple
spectral bands in data fusion, yielding significant spectral
distortion and performance degradation.

Another popular approach is based on Bayesian probabil-
ity. For example, a Bayesianmethod, using amaximum a pos-
teriori (MAP) estimation and a stochastic mixing model [19],
was proposed to enhance the spatial resolution of all
hyperspectral band images in the principal component sub-
space. Wei et al. [20] proposed a sparse representation-based
Bayesian method to address the ill-posed problem, by defin-
ing a proper posterior distribution based on a decomposition
of the image in a set of dictionaries. A Sylvester-equation-
based solution was integrated into the Bayesian fusion
methodology, named as the fast fusion based on Sylvester
equation [21], to drop the large computational complex-
ity of Bayesian method [20]. As another representative,
Simoes et al. [22] developed a method, termed as hyperspec-
tral superresolution (HySure), by imposing the vector total
variation regularizer on two convex data fitting terms for
piecewise smoothing, which was solved via the split aug-
mented Lagrangian shrinkage algorithm.

Another promising data fusion approach is known as cou-
pled non-negative matrix factorization (CNMF) [23], which
could not only yield the high-spatial-resolution HSIs, but also
estimate spectral signatures and abundance distribution of the
underlying materials in the meantime. Moreover, CNMF has
a good property that only requires a larger model-order for the
number of endmember instead of an accurate value as a prior
knowledge [23]. However, CNMF criterion often amounts to
an ill-posed inverse problem, such as when the number of MS
bands is smaller than that of endmembers [7], it requires the
regularization [24]. The most commonly used regularizers
are to promote the sparsity of abundance matrix based on
`0-norm or its convex surrogate `1-norm, and recently sparse
regularization terms based on Frobenius norm have also been
proposed [25]–[27]. However, the sparsity-promoting regu-
larization itself may not be sufficient to yield high-quality
fused data.

From the view of NMF, except for abundance regular-
izations, e.g. sparsity, the regularizations on spectral signa-
ture can be considered, which were derived from Craig’s
criterion on simplex volume minimization [28], [29]. To the
best of our knowledge, the research work in this line was
firstly proposed in [30], where the volume of signature
vectors’ simplex is employed to regularize the CNMF solu-
tion. However, the multiplicative update rules adopted in [30]
can not yield an obvious enhancement of fusion perfor-
mance. Recently, a state-of-the-art method, termed as con-
vex optimization-based CNMF (CO-CNMF), was conducted
by Lin et al. [31], where the signature regularization based
on sum-of-squared distances between all the simplex ver-
tices (i.e. the surrogate of the simplex volume), as well as
sparsity-promoting term `1-norm, was employed to yield
significant improvements of HSI-MSI fusion performance.
However, further research suggests that the performance of

CO-CNMF method would degrade rapidly with the increase
of noise level, i.e., it is susceptible to high noise level.
As a result, the image denoising or smoothing should be
introduced into the fusion method. Total variation (TV) is
a suitable term that has been extensively utilized for image
removal and edge preserving, which has two forms including
isotropic and anisotropic expressions [22].

In this article, to address the performance degradation in a
high noise environment [31], we incorporate the anisotropic
total variation and signature-based regularizations to refor-
mulate the CNMF problem as a bi-convex problem. That
is, it can be decoupled into two convex subproblems via
alternating optimization, after converting the regularizations
into the convex forms. Furthermore, we propose the care-
fully designed algorithms to yield closed-form solutions via
ADMM, in which some equality constraints are employed
to split the primal variables. However, these closed-form
solutions have high computational complexity that are not
suitable for fast iterative solvers. Therefore, some structured
matrices and vector-matrix operators are exploited to greatly
drop the heavy computational burden on the time-consuming
ADMM iterations. In the experiments based on Wald’s
protocol [32], model-order selection is conducted to determi-
nate the number of endmembers. The experimental results
demonstrate that the proposed algorithm outperforms the
baseline methods and enhance the quality of fused data,
especially in low signal-to-noise ratio (SNR) environments.

This paper is organized as follows. Section II presents
the signal model and problem formulation. Section III pro-
poses the data fusion algorithm and simplify the solutions to
reduce the computational complexity. In Section IV, semi-real
dataset experiments are employed to evaluate the perfor-
mance of the proposed algorithms. Then, some conclusions
are drawn in Section V.
Notation: R, Rn and Rm×n denote the set of real number,

n-vector and m× nmatrices, respectively. R+, Rn
+ and Rm×n

+

denote the set of nonnegative real number, n-vector andm×n
matrices, respectively. ‖·‖p denotes the p-norm. ‖·‖F repre-
sents the Frobenius-norm. IL , {1, . . . ,L} stands for any
positive integer L. Boldface 0, 1 and I denote the all-zero vec-
tor, all-one vector and identity matrix of proper dimension,
respectively. e(m)i denotes the ith m-dimensional unit vector.
conv(S) denotes the convex hull of the set S [33]. vec(X)
represents the vector formed by stacking the columns of the
matrix X. ⊗ stands for the Kronecker product. [·]+ denotes
the orthogonal projection onto the nonnegative orthant of
Euclidean space. � denotes the componentwise inequality
operation.

II. SIGNAL MODEL AND PROBLEM FORMULATION
Data fusion aims at fusing the observed low-spatial-
resolution HSI data Yh ∈ RM×Lh and high-spatial-resolution
MSI data Ym ∈ RMm×L to yield the desired hyperspectral
data Z ∈ RM×L , where M and Lh (or Mm and L) represent
the number of spectral bands and the number of pixels in
Yh (or Ym), respectively. In other words, Yh and Ym can
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be obtained by degrading the desired hyperspectral data Z
spatially (i.e., Lh < L) and spectrally (i.e., Mm < M ),
respectively.

Let N denote the number of endmembers in the selected
region. The high-spatial-resolution hyperspectral data Z can
be decomposed into two matrices in hyperspectral unmixing
by the linear mixing model [23] as

Z = AS, (1)

where A � 0M×N is the endmember signature matrix with
ith column being the ith endmember, and S � 0N×L is
the abundance matrix [2], [34]. To be exact, the observed
mode [23] is expressed as

Yh = ZG+ Eh = ASG+ Eh, (2)

Ym = FZ+ Em = FAS+ Em, (3)

where Eh and Em are the residuals. The spectral response
transform matrix F ∈ RMm×M downsamples the hyperspec-
tral bands of Z, yielding the multispectral data Ym. And the
spatial spread transform matrix

G = ILh ⊗ g ∈ RL×Lh , (4)

demonstrated in Fig. 1, blurs and downsamples the desired
data Z to yield the low-spatial-resolution data Yh, in which
g ∈ Rr2 is associated with the Gaussian point spread function
with a blurring factor of r ,

√
L/Lh [23], [35]. F and G are

assumed to be known in this article [23], [31].
To address the ill-posedness of the original CNMF prob-

lem, total variation and signature-based regularizers are intro-
duced into this problem. By the equations (1), (2) and (3),
the regularized CNMF criterion reconstructs the fused data
Z = AS by solving the following problem

min
A,S

1
2
C(A,S)+ λaφa(A)+ λsφs(S)

s.t. A � 0M×N , S � 0N×L , (5)

where C(A,S) , ‖Yh − ASG‖2F + ‖Ym − FAS‖2F is the
original CNMF criterion proposed in [23]; λa > 0 and λs > 0
are the regularization parameters.

In the problem (5), the regularizers φa(A) and φs(S) based
on the volume of the simplex conv{a1, . . . , aN } are assigned
to regulate the signature and abundance matrices, respec-
tively. In this article, two regularization expressions are intro-
duced into the original CNMF as follows [33], [36],

φa(A) ,
1
2

N−1∑
i=1

N∑
j=i+1

‖ai − aj‖22, (6a)

φs(S) ,
∑
{i,j}∈ε

‖si − sj‖1, (6b)

where ε denotes the set of horizontal and vertical neighbors
in the image. φa(A) is the well-known iterated-constrained-
endmembers (ICE) regularizer in the hyperspectral unmixing
context [31], [36], while φs(S) is the anisotropic total vari-
ation regularizer that promotes piecewise smoothing in the

FIGURE 1. Spatial blurring effect by the matrix G with the parameter
g ∈ R25 (r = 5) for yielding the degraded image.

fractional abundance of the same endmember among neigh-
boring pixels [22], [37].

III. ADMM-BASED DATA FUSION ALGORITHM
In this section, we propose a novel CNMF algorithm with
total variation and signature-based regularizers (termed as
TVSR-CNMF) for efficiently solving the problem (5).

A. CONVEX REFORMULATION
Since (5) is a nonconvex problem, then it should be reformu-
lated as a convex form. First of all, (6a) can be rewritten via
convex optimization method [31], [33], [38] as

φ(A) =
1
2

N−1∑
i=1

N∑
j=i+1

‖Pija‖22, (7)

where a , vec(A), Pij , (e(N )
i − e(N )

j )T ⊗ IM and P ∈
R0.5MN (N−1)×MN . It can be easily proved that (5) is convex
in A for each fixed S. Then, we focus on the reformulation of
(6b) from the nonconvex expression into the convex.

Assume that S̄ is an Ly × Lx square matrix (i.e. Ly =
Lx =

√
L) for a single band of hyperspectral data cube Z,

depicted in Fig. 1, which is used to generate the horizontal
and vertical difference matrices [37], [39], respectively. The
vertical differences of S̄ can be presented as R̄Ly S̄, where R̄Ly
is the first-order vertical difference matrix [33], defined as

R̄Ly (i, j) ,


1, j = i+ 1,
−1, j = i,
0, otherwise.

The vertical differences can also be computed via the
vector-matrix operator by vec(R̄Ly S̄) = D̄ys̄, where D̄y =

ILx ⊗ R̄Ly and s̄ = vec(S̄). Since there are N endmembers in
each pixel as mentioned above, then the vectorized vertical
difference matrix Dv ∈ RN

√
L(
√
L−1)×NL for the abundance

vector s is presented as

Dv = ILx ⊗ R̄Ly ⊗ IN . (8)
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Algorithm 1 TVSR-CNMF Algorithm for Solving (5)
1: Input: Yh, Ym, F and G.
2: Initialize A0.
3: k = 0
4: while the stopping criterion is not met do
5: compute Sk+1 by (11);
6: compute Ak+1 by (12);
7: k := k + 1;
8: end while
9: Output Z = AkSk .

In the same way, the horizontal differences S̄R̄T
Lx can be

vectorized into the expression D̄x s̄, where D̄x = R̄Lx ⊗ ILy
and R̄Lx = R̄Ly . Thus, the vectorized horizontal difference
matrix can be computed as

Dh = R̄Lx ⊗ ILy ⊗ IN . (9)

To sum up, (6b) can be reformulated via two convex
surrogates as

φs(S) = ‖Dvs‖1 + ‖Dhs‖1, (10)

where s , vec(S) ∈ RNL . Different from the method in [22]
that combined two difference matrices together, (10) handles
two differences separately to implement variable splitting
easily for complexity reduction. So far, one can see that the
problem (5) is also convex in S for each fixed A. In other
words, the problem (5) is a bi-convex problem, so alternating
optimization (AO) method is adopted to get the closed-form
solutions.

B. TVSR-CNMF ALGORITHM VIA AO
The TVSR-CNMF algorithm is proposed via AO, shown in
Algorithm 1, to alternatively iterate the following two convex
subproblems until convergence,

Sk+1 ∈ arg min
S�0N×L

1
2
C(Ak ,S)+ λv‖Dvs‖1 + λh‖Dhs‖1,

(11)

Ak+1
∈ arg min

A�0M×N

1
2
C(A,Sk )+

λa

2

N−1∑
i=1

N∑
j=i+1

‖Pija‖22,

(12)

where k denotes the iteration number of AO method (also
called outer iteration); λv and λh (corresponding to λs) are
the regularization parameters of vertical and horizontal total
variation, respectively. As shown in the problem (11), the 1st
iteration of S (i.e. k = 0) needs an initial value A0,
which can be gained by the successive projection algorithm
(SPA) [34], [40]. Due to the large size of the problems (11)
and (12), two ADMM-based algorithms are proposed to
solve these convex subproblems efficiently in the following
subsections.

C. SOLVING ABUNDANCE MATRIX VIA ADMM
Using ADMM [41] and vector-matrix operators, we combine
two Frobenius-norm terms into an `2-norm term by vector-
izing the matrix. The bottleneck for solving (11) lies in the
heavy computations of B1, Dv and Dh. As far as ADMM
is concerned, there’s more than one way to reformulate this
problem into the ADMM form. To handle the bottleneck
efficiently, we rewrite (11) in this form wherein the primal
variables can be split into several separable blocks by intro-
ducing different equality constraints. That is, the subproblem
(11) can be reformulated as

min
s,u,z,x,v1,v2

1
2
‖B1s− y‖22 + λv‖v1‖1 + λh‖v2‖1 + I+(x)

s.t. s = u,

v1 = Dvu,

s = z,

v2 = Dhz,

s = x, (13)

whereB1 , [(GT
⊗Ak )T , (IL⊗FAk )T ]T ∈ R(MLh+LMm)×NL ,

y , [vec(Yh)T , vec(Ym)T ]T ∈ RMLh+LMm , and the indicator
function I+(x) is defined as

I+(x) ,

{
0, if x � 0MN ,
∞, otherwise.

The augmented Lagrangian of (13) is presented by

L(s,u, z, x, v1, v2) =
1
2
‖B1s− y‖22 + λv‖v1‖1 + λh‖v2‖1

+ I+(x)+ h1T (s− u)+
η

2
‖s− u‖22

+h2T (v1 − Dvu)+
η

2
‖v1 − Dvu‖22

+h3T (s− z)+
η

2
‖s− z‖22

+h4T (v2 − Dhz)+
η

2
‖v2 − Dhz‖22

+h5T (s− x)+
η

2
‖s− x‖22, (14)

where hi(i = 1, · · · , 5) are dual variables, and η is the
augmented Lagrangian parameter. Then, ADMM iteratively
updates the primal and the dual variables in step by

sj+1 ∈ arg min
s∈RNL

L(s,uj, zj, xj,h1j,h3j,h5j), (15a)

uj+1 ∈ arg min
u∈RNL

L(sj+1,u, vj1,h1
j,h2j), (15b)

vj+11 ∈ arg min
v1∈RN

√
L(
√
L−1)

L(uj+1, v1,h2j), (15c)

zj+1 ∈ arg min
z∈RNL

L(sj+1, z, vj2,h3
j,h4j), (15d)

vj+12 ∈ arg min
v2∈RN

√
L(
√
L−1)

L(zj+1, v2,h4j), (15e)

xj+1 ∈ arg min
x∈RNL

L(sj+1, x,h5j), (15f)

h1j+1 = h1j + η(sj+1 − uj+1), (15g)

h2j+1 = h2j + η(v
j+1
1 − Dvuj+1), (15h)
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h3j+1 = h3j + η(sj+1 − zj+1), (15i)

h4j+1 = h4j + η(v
j+1
2 − Dhzj+1), (15j)

h5j+1 = h5j + η(sj+1 − xj+1), (15k)

where j stands for the iteration number of ADMM-based
algorithms (also called inner iteration). Furthermore, (15a)
· · · (15f) can be conveniently given in the following scaled
forms as

sj+1 ∈ arg min
s∈RNL

1
2
‖B1s− y‖22 +

η

2
‖s− uj + h̃1

j
‖
2
2

+
η

2
‖s− zj + h̃3

j
‖
2
2 +

η

2
‖s− xj + h̃5

j
‖
2
2, (16a)

uj+1 ∈ arg min
u∈RNL

η

2
‖sj+1 − u+ h̃1

j
‖
2
2

+
η

2
‖vj1 − Dvu+ h̃2

j
‖
2
2, (16b)

vj+11 ∈ arg min
v1∈RN

√
L(
√
L−1)

λv‖v1‖1

+
η

2
‖v1 − Dvuj+1 + h̃2

j
‖
2
2, (16c)

zj+1 ∈ arg min
z∈RNL

η

2
‖sj+1 − z+ h̃3

j
‖
2
2

+
η

2
‖vj2 − Dhz+ h̃4

j
‖
2
2, (16d)

vj+12 ∈ arg min
v2∈RN

√
L(
√
L−1)

λh‖v2‖1

+
η

2
‖v2 − Dhuj+1 + h̃2

j
‖
2
2, (16e)

xj+1 ∈ arg min
x∈RNL

I+(x)+
η

2
‖sj+1 − x+ h̃5

j
‖
2
2, (16f)

where h̃i , hi/η, (i = 1, · · · , 5) are defined as the scaled
dual variables; all the variables, including h̃i

0
, u0, z0, x0, v01

and v02, are initialized by zero vectors with proper sizes or
warm start [41].

By observational analysis, (16a), (16b) and (16d) are all
unconstrained quadratic problems, (16c) and (16e) are the
generalized Lasso problems [41], and (16f) is a proximal
operator with I+(x). Thus, the closed-form solutions are
derived and simplified to reduce the complexity step by step.
The closed-form solution of (16a) is expressed as

sj+1 = (BT1B1 + 3ηINL)−1[BT1 y+ η (u
j
− h̃1

j
+ zj

− h̃3
j
+ xj − h̃5

j
)]. (17)

The computational complexity of (17) is shown as
O
(
Lh(NL)2ξ

)
, where ξ , max{M ,Mmr2,Nr2}. It is obvious

that the complexity of BT1B1 is the bottleneck to increase
the efficiency of ADMM iterations, especially when the
size of L reaches tens of thousands. To conduct the com-
plexity reduction, we define B̄1 , [(gT ⊗ Ak )T , (Ir2 ⊗
FAk )T ]T ∈ R(M+r2Mm)×Nr2 , BT1 y , vec((gT ⊗ Ak )TYh) +
vec((FAk )TYm), ṽ , BT1 y+η(u

j
−h̃1

j
+zj−h̃3

j
+xj−h̃5

j
), and

then reshape ṽ into a matrix Ṽ ∈ RNr2×Lh . Using structure
feature of the matrix (4) and IL = ILh ⊗ Ir2 , the optimized
solution of (17) is rewritten as

sj+1 = vec((B̄T1 B̄1 + 3ηINr2 )
−1Ṽ). (18)

The complexity of (18) is no more than O(((Nr2)2 + NL)ξ ),
whose complexity order is much lower than that of (17).More
details are given in the Appendix of [31].

As for (16b), the closed-form solution is presented as

uj+1 = (DT
v Dv + ηINL)−1[DT

v (v
j
1 + h̃2

j
)+ sj+1 + h̃1

j
],

(19)

which amounts to a high complexity ofO
(
(NL)3)

)
. Let ũ1 ,

vj1 + h̃2
j
and ũ2 , sj+1 + h̃1

j
, which are then reshaped into

the matrices Ũ1 and Ũ2, respectively. By the structure of (8),
(19) is simplified as

uj+1 = vec({[(R̄T
LyR̄Ly + η ILy )

−1R̄T
Ly ]⊗ IN }Ũ1)

+ vec([(R̄T
LyR̄Ly + η ILy )

−1
⊗ IN ]Ũ2) (20)

which involves the computational complexity ofO
(
N 2L
√
L
)
,

detailedly given in Appendix A. Based on these results above,
(16c) has the following closed-form solution as

vj+11 = shrink(Dvuj+1 − h̃2
j
, λv/η), (21)

where the shrinkage operator is defined as

shrink(v, λ) = sgn(v)max(|v| − λ, 0). (22)

Similar to (16b), the closed-form solution of (16d) is given
as

zj+1 = (DT
hDh + ηINL)−1[DT

h (v
j
2 + h̃4

j
)+ sj+1 + h̃3

j
],

(23)

which has the same computational complexity of O
(
(NL)3

)
as (19). Let z̃1 , vj2+ h̃4

j
and z̃2 , sj+1+ h̃3

j
, which are then

reshaped into the matrices Z̃1 and Z̃2, respectively. Thus, (23)
can be simplified as

zj+1 = vec(Z̃1R̄Ly [(R̄
T
LyR̄Ly + η ILy )

−1]T )

+ vec(Z̃2[(R̄T
LyR̄Ly + η ILy )

−1]T ), (24)

whose complexity is evaluated by O
(
NL
√
L
)
, detailed in

Appendix B. Correspondingly, we can get the closed-form
solution of (16e) via shrinkage operator as

vj+12 = shrink(Dhzj+1 − h̃4
j
, λh/η). (25)

As we all know, (16f) is a projection onto the nonnegative
orthant RNL

+ via the indicator function I+(x), yielding the
following closed-form solution:

xj+1 =
[
sj+1 + h̃5

j
]
+

. (26)

All in all, the resulting ADMM algorithm is shown in
Algorithm 2.
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Algorithm 2 ADMM Algorithm for Solving (11)

1: Input: N , Yh, Ym, F, G, and Ak .
2: Initialize u0, z0, x0,v01, v

0
2 and h̃i

0
(i = 1, . . . , 5) with 0

or warm start.
3: j = 0
4: while the stopping criterion is not met do
5: compute sj+1 by (18);
6: compute uj+1 by (20);
7: compute vj+11 by (21);
8: compute zj+1 by (24);
9: compute vj+12 by (25);
10: compute xj+1 by (26);
11: compute h̃i

j+1
= hij+1/η, (i = 1, · · · , 5) by

(15g) · · · (15k), respectively;
12: j := j+ 1;
13: end while.
14: Output Sk+1.

D. SOLVING ENDMEMBER SIGNATURE MATRIX
VIA ADMM
By observation, the bottleneck in (12) comes from the
non-negativity constraint, which amounts to the projection of
the solution onto the non-negative orthant. To solve (12) by
ADMM [41], we rewrite (12) in a certain form such that the
primal variable can be split into several parts. To be precise,
we reformulate (12) as

min
a,β∈RMN

1
2
‖B2a− y‖22 +

λa

2

N−1∑
i=1

N∑
j=i+1

‖Pija‖22 + I+(β)

s.t. a = β (27)

where B2 , [((Sk+1G)T ⊗ IM )T , ((Sk+1)T ⊗ F)T ]T ∈
R(MLh+LMm)×MN and a = vec(A) ∈ RMN

+ .
The augmented Lagrangian of the problem (27) is then

given by

L(a,β,h) =
1
2
‖B2a− y‖22 +

λa

2

N−1∑
i=1

N∑
j=i+1

‖Pija‖22

+ I+(β)+ hT (a− β)+
η

2
‖a− β‖22,

where h ∈ RMN is the dual variable associated with the
equality constraint in (27), and η > 0 is the penalty
parameter. Then, ADMM iteratively updates the two primal
variables and the dual variable, with provable convergence
property [42], as follows:

aj+1 ∈ arg min
a∈RMN

L(a,β j,hj), (28a)

β j+1 ∈ arg min
β∈RMN

L(aj+1,β,hj), (28b)

hj+1 = hj + η(aj+1 − β j+1), (28c)

where β0 and h0 are initialized by 0MN or warm start.
(28a) can be further expressed as an unconstrained quadratic

convex problem, that is,

aj+1 ∈ arg min
a∈RMN

1
2
‖B2a− y‖22 +

λa

2

N−1∑
i=1

N∑
j=i+1

‖Pija‖22

+hj
T
(a− β j)+

η

2
‖a− β j‖22. (29)

Thus, we can derive the closed-form solution as

aj+1 = (BT2B2 + λaPTP+ ηIMN )−1(BT2 y+ ηβ j − hj),

(30)

where P ∈ R(0.5MN (N−1))×(MN ) is the matrix formed by stack-
ing all the Pij ∈ RM×(MN ). The computational complexity of
(30) is O(N 4M3

+ (NM )2ξ ′), where ξ ′ , max {MLh,MmL}.
Using the structure of B2, (30) can be presented as

aj+1 = {((Sk+1G)(Sk+1G)T )⊗ IM + λaPTP+ ηIMN
+ (Sk+1(Sk+1)T )⊗ FTF}−1(BT2 y+ ηβ j − hj) (31)

where BT2 y = vec(Yh(Sk+1G)T ) + vec(FTYm(Sk+1)T ),
detailedly given in the Appendix of [31]. The computation
of (31) is evaluated by O

(
N 4M3

+ N 2L
)
, which is much

lower than that of (30).
By defining the scaled dual variable µ , h/η [41], (28b)

can be conveniently expressed in the following scaled form
as

β j+1 ∈ arg min
β∈RMN

I+(β)+
η

2
‖aj+1 − β + µj

‖
2
2 (32)

which is generally referred to as a proximity operator for
the indicator function I+(β) [41], with a closed-form solution
given by

β j+1 = [aj+1 + µj]+. (33)

In sum, the resulting ADMM algorithm is summarized in
Algorithm 3.

Algorithm 3 ADMM Algorithm for Solving (12)

1: Input: Yh, Ym, B, D, and Sk+1.
2: Initialize β0 and h0 with 0MN or warm start.
3: j = 0
4: while the stopping criterion is not met do
5: compute aj+1 by (31);
6: compute β j+1 by (32);
7: compute µj+1

= hj+1/η by (28c);
8: j := j+ 1;
9: end while
10: Output Ak+1.

IV. EXPERIMENTS AND PERFORMANCE ANALYSIS
This section conducts the experimental tests to eval-
uate the performance of the proposed TVSR-CNMF
algorithm. Wald’s protocol is adopted to design the
experiments [7], [23], [32], in which the observed hyper-
spectral datasets are regarded as the reference images Z
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to simulate the degraded images Yh and Ym, yielding the
fused image Ẑ. To measure the similarity quantitatively
between Ẑ and Z, a lot of widely used quality metrics are
utilized [7], [23], [25], [31], including reconstructed signal-
to-noise ratio (RSNR), root mean squared error (RMSE),
spectral angle mapper (SAM), and erreur relative globale
adimensionnelle de synthèse (ERGAS). In addition, the com-
putational time T (in seconds) is regarded as the measure of
computational efficiency.

In order to reduce the effect of randomness, the per-
formance in the experiments takes the corresponding
mean of multiple measurements. In comparison, we take
four state-of-the-art fusion methods, including convex
optimization-based CNMF(CO-CNMF) [31], Bayesian
method [25], Hysure [22] and the original CNMF [23] as
the baseline algorithms. All the algorithms under test are
implemented using Mathworks Matlab R2015a, running on a
computer equipped with Xeon E5-2630 CPU with 2.40GHz
speed and 64GB random access memory.

A. DATASETS
In this paper, we consider two datasets that were acquired
by two different hyperspectral sensors, respectively. The
first dataset was taken over the area of Pavia University,
northern Italy [43], by the reflective optics system imaging
spectrometer (ROSIS) sensor, with 115 spectral bands and
a spatial resolution of 1.3 m. After preprocessing, a total
of 103 bands (ranging from 430 to 860 nm) are used in our
experiments. The IKONOS [44] sensor that is utilized for the
ROSIS sensor scene, approximates to Landsat TM bands 1-4
(covering 445-516-, 516-595, 632-698, and 757-853 nm
regions). Thus, a spectral response transform matrix F ∈
R4×103 uniformly downsamples the reference data Z to gen-
erate the multispectral data Ym [22], [25], [31]. The second
dataset was acquired by Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS) sensor over Moffett Field, CA,
in 1997 [45]. A total of 183 bands approximately correspond
to the Landsat TM bands 1-5 and 7 after preprocessing, cover-
ing from 400 to 2500 nm. In consequence, a spectral response
matrix F ∈ R6×183 is constructed to yield the multispectral
data Ym for Moffett dataset [22], [23], [31], [46].
For these two reference images, both L = 210 × 210

subscenes are selected as regions of interest [25], [31], [34],
the 50th bands of which are displayed in the left column of
Fig. 2. Thus, with the parameters setting of variance 2 and
blurring factor r = 5 [23], [35], [47], a spatial spread trans-
form matrix G ∈ R44100×1764 was employed to downsample
the reference data Z spatially to obtain the degraded hyper-
spectral data Yh with low spatial resolution [35], [48], [49].
The associated 50th band image of Yh, with Lh = 42 × 42
pixels, are displayed in the middle column of Fig. 2.

B. PARAMETER SETTING AND NUMBER OF ENDMEMBER
The optimized problem is reformulated into the regularized
CNMFwith three regularizers, as well as three corresponding
weights λa, λv and λh, respectively. The values of these three

FIGURE 2. The 50th band of (a) the reference image Z, (b) the blurred
low-spatial-resolution image Yh and (c) the reconstructed image Ẑ
obtained by the proposed TVSR-CNMF algorithm for (top row) Pavia
University and (bottom row) Moffett datasets, respectively.

weights are set as λa = λv = λh = 0.001 to balance
the original CNMF terms and regularization terms [31], [47],
which are relevant to the noise powers of HSIs and MSIs.
The stopping rule is adopted that the relative difference
between the successive updates of the objective function
is less than 10−3. Experiments have demonstrated that
Algorithm 2 can converge within 5 iterations faster than
Algorithm 1, and varying these parameters have no much
impact on the convergence of the whole algorithm without
running ADMM exhaustively [47]. Thus, the numbers of
outer and inner iterations are set to be 30 and 10 for AO and
ADMM algorithms [31], [47], respectively.

To study the denoising performance of the algorithm with
total variation regularization, the SNR values of HSIs and
MSIs range separately from 30 dB to 20 dB with an interval
of 5 dB in the discussion. Fig. 3 shows that the performance
(i.e. RSNR and RMSE) vary with the increase of noise (i.e.
σ 2/Psignal) for two datasets. We can observe that the perfor-
mance of CO-CNMF algorithm is better than those of the
proposed TVSR-CNMF and other baseline methods when the
SNRs of Yh and Ym are equal or greater than about 30dB.
It verifies that CO-CNMF did improve the performance
greater than other methods under the condition of high SNRs,
as described in [31]. However, with the decrease of SNRs,
the performance of CO-CNMF algorithm degrades rapidly
while our proposed TVSR-CNMF outperforms CO-CNMF
and other baseline methods in Fig. 3, owing to the effect of
total variation regularization.

The number of endmembers can be determined by widely
used virtual dimensionality (VD) for two datasets [50], [51].
However, following the CNMF criterion [23], the num-
ber of endmember N can be set to be larger than the
ground-truth value, due to shade and mixed endmembers in
the regions [23]. To evaluate a proper value of N , we test the
fusion performance of the proposed TVSR-CNMF algorithm
w.r.t. different N for two datasets, demonstrated in Fig. 4.
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TABLE 1. Performance comparison of fusion algorithms for Pavia University dataset.

TABLE 2. Performance comparison of fusion algorithms for Moffett dataset.

FIGURE 3. The curves of CO-CNMF (blue line with 4), CNMF (black line
with � ), Bayesian (green line with �), HySure (purple line with ∗) and the
proposed TVSR-CNMF (red line with ◦) algorithms, in terms of (left
column) RSNR and (right column) RMSE, w.r.t. different the values of N ,
for (top row) Pavia University and (bottom row) Moffett datasets,
respectively.

From the figure, one can see that the performance curve varies
with the value N to a certain extent. Also, setting the number
of endmember N > 10 does not improve the data fusion
performance too much (in terms of both RSNR and SAM),
and especially the proposed TVSR-CNMF algorithm almost
outperforms the other two CNMF-based algorithms for two
datasets. Without loss of generality, we set N = 10 for
the proposed TVSR-CNMF algorithm in all the subsequent
experiments [31]. The reconstructed high-spatial-resolution
images, obtained by the proposed TVSR-CNMF under the
parameter setting above, are displayed in the right column of

FIGURE 4. The curves of CO-CNMF (blue line with 4), CNMF (black line
with �) and the proposed TVSR-CNMF (red line with ◦) algorithms,
in terms of (left column) RSNR and (right column) SAM w.r.t. different the
values of N , for (top row) Pavia University and (bottom row) Moffett
datasets, respectively.

Fig. 2, where the reconstructed images hold high resemblance
to their respective reference images. The performance differ-
ences between fusion algorithms are distinguished detailedly
by the ensuing tables and curves, although the differences
may be indiscernible visually.

C. PERFORMANCE COMPARISON AND DISCUSSION
The performance results of the proposed algorithm and four
baseline methods are summarized in Table 1 and 2 for
Pavia University and Moffett datasets, respectively, where
the computational time T is also utilized to serve as the
metric of computational efficiency. The boldface numbers in
these tables indicate the best performance (i.e., the largest
RSNR/ERGAS, or the smallest SAM/RMSE) of all fusion
algorithms under test. To investigate the performance of
image smoothing, the noise levels of HSIs and MSIs data are
divided into three cases shown in the ensuing tables.
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TABLE 3. Complexity comparison of ADMM iterations for Pavia and Moffett data sets.

For Pavia University dataset in Table 1, one can see that the
proposed TVSR-CNMF performs the smallest spectral dis-
tortion (the smallest SAM), while the published CO-CNMF
algorithm achieves good performance on the other three
performance metrics in Case I (i.e. SNR(Ym)=30 dB,
SNR(Yh)=25 dB). With the noise power higher, the proposed
algorithm outperforms all the baseline algorithms over all
four performance metrics in case II (i.e. SNR(Ym)=25 dB,
SNR(Yh)=20 dB). Moreover, the proposed TVSR-CNMF
has the best performance except for the spectral distortion
in the case III (i.e. SNR(Ym)=20 dB, SNR(Yh)=20 dB), i.e.
the Bayesian method gets the smallest SAM. In comparison,
we can observe that Table 2 forMoffett dataset has the similar
trends to Table 1. From the performance tables, we can draw
a conclusion that the TVSR-CNMF algorithm can effectively
enhance the fusion performance especially under high noise
conditions, whereas it may excessively smoothen small scale
features of the image, leading to performance degradation in
a low-noise or noise free environment.

To evaluate the fusion performance w.r.t. different spectral
bands, we also take Case II as an example to display the
RSNR and RMSE curves of all fusion algorithms w.r.t spec-
tral bands for two datasets in Fig. 5. One can observe that the
proposed TVSR-CNMF algorithm does improve the perfor-
mance to some extent in comparison with all baseline algo-
rithms over the spectral bands, especially 500-600 nm and
800-850 nm for Pavia University dataset, and 1000-1400 nm
for Moffett dataset. These experimental results testify the
validity of the total variation and signature-based regulariza-
tions on original CNMF criterion (5) and the effectiveness of
the carefully designed TVSR-CNMF algorithm.

As for computational efficiency, we can see that the orig-
inal CNMF has the best performance while the Bayesian
method costs the longest running time in Table 1 and 2.
In addition, Table 3 shows the complexity comparisons
between the naive closed-form solutions and their respective
simplified expressions for sj+1,uj+1, zj+1 and aj+1, which
utilize order of magnitude (OM) and per-iteration running
time (PRT) as the complexity metrics. In the experiments,
(17), (19) and (23) generally run out of memory, due to
the large size of this problem. So, some basic processes are
employed to yield the results successfully, such as matrix
division and Cholesky factorization, etc. However, even so
the TVSR-CNMF still takes more than 2000 seconds without

FIGURE 5. The curves of performance (left column) RSNR and (right
column) RMSE over spectral bands, including CO-CNMF (blue line), CNMF
(black line), Bayesian (green line), HySure (purple line) and the proposed
TVSR-CNMF (red line) for (top row) Cuprite and (bottom row) Pavia
datasets, respectively.

further complexity reduction. In Table 3, (19) and (23) take
much lower PRT than (17) for sparsity, though they have
the same OM. After complexity reduction detailed in the
appendix, the optimized solutions (18), (20), (24) and (31)
greatly reduce the running time, in comparison with their
respective naive expressions.

V. CONCLUSION
Incorporating the total variation and signature-based reg-
ularizers into the CNMF criterion, we have presented an
ADMM-based TVSR-CNMF algorithm for the fusion of
hyperspectral and multispectral data, in which only linear
closed-form expressions are needed to compute for each
ADMM iteration. Our experiments not only demonstrate the
superior efficacy of the proposed TVSR-CNMF algorithm
over some baseline methods, but also show that the total
variation and signature-based regularizations are essential to
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enhance the spatial resolution and the quality of the fused
data, especially under the environment of high noise level.

APPENDIX
In this part, we detail the procedures of the optimized
solutions in Section III, in which some properties and
vector-matrix operator of Kronecker product are adopted.

A. PROOF OF VERTICAL-DIFFERENCE-BASED SOLUTION
Due to the large size of vertical difference matrix Dv, (19) is
computationally expensive, requiringO((NL)3). To make use
of the structure of (8), we get

DT
v Dv = (ILx ⊗ R̄Ly ⊗ IN )T (ILx ⊗ R̄Ly ⊗ IN )

= ILx ⊗ [(R̄T
Ly ⊗ ITN )(R̄Ly ⊗ IN )]

= ILx ⊗ (R̄T
LyR̄Ly )⊗ IN (34)

Then, (19) can be expressed as

uj+1 = (DT
v Dv + ηINL)−1[DT

v (v
j
1 + h̃2

j
)+ sj+1 + h̃1

j
]

= (DT
v Dv + ηINL)−1DT

v (v
j
1 + h̃2

j
)

+ (DT
v Dv + ηINL)−1(sj+1 + h̃1

j
)

= [ILx ⊗ (R̄T
LyR̄Ly + η ILy )⊗ IN ]−1(ILx ⊗ R̄T

Ly ⊗ IN )ũ1

+ [ILx ⊗ (R̄T
LyR̄Ly + η ILy )⊗ IN ]−1ũ2

= {ILx ⊗ [(R̄T
LyR̄Ly + η ILy )

−1R̄T
Ly ]⊗ IN }ũ1

+ [ILx ⊗ (R̄T
LyR̄Ly + η ILy )

−1
⊗ IN ]ũ2

= vec({[(R̄T
LyR̄Ly + η ILy )

−1R̄T
Ly ]⊗ IN }Ũ1)

+ vec([(R̄T
LyR̄Ly + η ILy )

−1
⊗ IN ]Ũ2), (35)

whose computational complexity is dominated by two
vector-matrix operators. In the first vector-matrix oper-
ator, the complexity of R̄T

LyR̄Ly needs O(L(
√
L − 1)),

and the inverse of a
√
L ×

√
L matrix takes O(L

√
L).

Then, the matrix-matrix product requires O(L(
√
L − 1)).

The kronecker product costs O(N 2
√
L(
√
L − 1)). Finally,

the reshaped matrix-matrix product involves O(N 2L(
√
L −

1)). In all, the first operator requires O(N 2L
√
L − 1)). Sim-

ilarly, the complexity of the second vector-matrix opera-
tor is easily to be computed by O(N 2L

√
L). To sum up,

the whole computational complexity of (35) can be given by
O(N 2L

√
L). �

B. PROOF OF HORIZONTAL-DIFFERENCE-BASED
SOLUTION
By the structure of the horizontal difference matrix, (23) can
also be simplified to yield the lower complexity. First of all,
by means of (9), we have

DT
hDh = (R̄Lx ⊗ ILy ⊗ IN )T (R̄Lx ⊗ ILy ⊗ IN )

= (R̄Lx ⊗ INLy )
T (R̄Lx ⊗ INLy )

= (R̄T
Lx R̄Lx )⊗ INLy . (36)

Thus, (23) is reformulated by the following procedure as

zj+1 = (DT
hDh + ηINL)−1[DT

h (v
j
2 + h̃4

j
)+ sj+1 + h̃3

j
]

= (DT
hDh + ηINL)−1DT

h (v
j
2 + h̃4

j
)

+ (DT
hDh + ηINL)−1(sj+1 + h̃3

j
)

= [(R̄T
Lx R̄Lx + η ILx )

−1
⊗ INLy ](R̄

T
Lx ⊗ INLy )z̃1

+ [(R̄T
Lx R̄Lx + η ILx )

−1
⊗ INLy ]z̃2

= {[(R̄T
Lx R̄Lx + η ILx )

−1R̄T
Lx ]⊗ INLy}z̃1

+{(R̄T
Lx R̄Lx + η ILx )

−1
⊗ INLy}z̃2

= vec(Z̃1[(R̄T
Lx R̄Lx + η ILx )

−1R̄T
Lx ]

T )

+ vec(Z̃2[(R̄T
Lx R̄Lx + η ILx )

−1]T )

= vec(Z̃1R̄Lx [(R̄
T
Lx R̄Lx + η ILx )

−1]T )

+ vec(Z̃2[(R̄T
Lx R̄Lx + η ILx )

−1]T ) (37)

Using the samemethod as (35),the computational complexity
is computed by O(NL

√
L), due to the facts of R̄Ly = R̄Lx

and Ly = Lx =
√
L. In comparison, we can observe that the

complexity of (37) is less than that of (35) for the difference
between (36) and (34). �
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