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Abstract—In this paper, we present results on the application
of machine learning to the detection of human presence and
estimation of the number of occupants in our offices using
data from an IoT LoRa-based indoor environment monitoring
system at Aalborg University, Denmark. We cast the problem
as either binary or multi-class classification and apply a two-
layer feed forward neural network to the data. The data used
for training, validation and testing of the network comprises of
environmental data from the IoT sensors and manual recordings
of the door and window states. Results show that the classifier
is able to correctly determine occupancy of our offices from
the IoT sensor measurements with accuracy up to 94.6% and
91.5% for the binary (presence or absence of persons) and multi-
class (no person, one person or two or more persons) problems,
respectively. Our analysis also shows that occupancy detection
with a network trained either in another room or with single
environmental parameter is also possible but with less accuracy.

Index Terms—IoT, machine learning, indoor monitoring, oc-
cupancy detection, neural networks, sensor data

I. INTRODUCTION

The Wireless Communication Networks (WCN) Section of
the Department of Electronic Systems at Aalborg University,
Denmark in collaboration with a number of Danish local
industrial partners and the municipality of Aalborg recently
deployed an IoT LoRa-based indoor environment monitoring
system [1]. An illustration of the system comprising of multi-
sensor nodes, LoRa gateways, a back-end server and Grafana
open platform based visualization dashboard is shown in
Fig. 1.

The sensor nodes measure environmental parameters (in-
cluding temperature, pressure, Carbon Dioxide (CO2) and
light intensity among others) and transmit same via the internet
to the back-end server at AAU, where the data can be extracted
and visualized using the dashboard. Following successful
deployment of the wireless indoor environment monitoring
system at different observation positions in Gigantium - a large
sports and culture center in Aalborg municipality, Denmark
[1], a number of sensor nodes were installed in office spaces
at the FRB building in the Department of Electronic System,
Aalborg University in November, 2018. These nodes were
used to collect measurement of environmental parameters in
our offices over two periods with three weeks duration each,
in November and December, 2018.

Fig. 1: The LoRa-based indoor monitoring system [1].

Equipped with data from the sensors, our goal is to measure
utilization of our office spaces by determining the presence of
occupants and estimating the number of persons at a given
time. This utilization information can potentially be used to
optimize usage of our allocated offices spaces. Moreover,
occupancy estimates can also be used for indoor office au-
tomation [2]. For example, as input to indoor lighting control
system [3], [4] and heat, ventilatilation and air conditioning
systems [5], [6]. Environmental parameter measurements con-
tain useful information about occupancy of an enclosed space
since human beings affects their environment through, for
example, heat generation, Carbon Dioxide (CO2) emission [7],
switching on/off of artificial lighting sources and sound/noise
production. While visualization of the sensor data may reveal
trends and temporal variations, it is often difficult, if not im-
possible, to relate these variations to human presence without
utilizing data processing tools. Machine learning algorithms
can therefore be used to analyze the sensor data and identify
patterns. These patterns can then be used to determine occu-
pancy and estimate the number of persons with some degree
of accuracy.

In this paper, we investigate the potentials for occupancy
detection using data from our environmental measurements.
We cast the problem as either a binary or multi-class pat-



tern recognition classification problem and apply a two-layer
feed-forward pattern recognition network with sigmoid output
neurons [8] to individual parameter measurements and an aug-
mented data. The augmented data is a combination of the au-
tomatically collected sensor data (comprising of temperature,
pressure, humidity, CO2, Total Volatile Organic Compounds
(TVOC), sound pressure, and PaPIRMotion measurements)
and manual recording of the number of persons, window and
door position.

The remaining part of this paper is organized as follows.
Section II presents a brief overview of the IoT sensor nodes
and data collection procedure. Data pre-processing and analy-
sis is presented in Section III. Section IV presents the indoor
occupancy prediction procedure using pattern recognition net-
work. Section V presents classification accuracy results and
discussion. Conclusions are drawn in Section VI.

II. IOT SENSOR NODES AND DATA COLLECTION

The indoor monitoring multi-sensor nodes are installed in
the WCN offices at the locations indicated in Fig. 2. The
datasets used in this paper are those from nodes E2 and FD,
which are placed in the section’s secretary and a four-persons
office, respectively.

A. Sensor Node

Each sensor node consists of nine low-cost sensors: a SEN-
SIRION STS31 high accuracy temperature sensor; a MCP4726
DAC with external custom circuits for sound pressure sensing;
a Broadcom APDS-9200 digital UV and ambient light sensor;
a BOSCH BME280 combined humidity, pressure, and tem-
perature sensor; an Ams CCS811 ultra-low power digital gas
sensor, providing estimated CO2 based on Volatile Organic
Compounds (VOCs) measurements; a PaPIRs EKMB1 mo-
tion sensor (passive infrared-based), and a ST LSM9DS1TR
magnetometer, accelerometer and gyroscope. The sensor nodes
capture data and transmit to the back-end server for storage
via an IoT LoRa-based network every 5 minutes. Detailed
description of the sensor nodes and the LoRa-based IoT
network can be found in [1].

B. Data Collection

Sensor data for nodes E2 and FD are extracted from the
server and stored into excel files with each row containing the
time stamp, seven numerical values (temperature, humidity,
pressure, CO2, TVOC, sound pressure and light intensity)
and one categorical value (motion detection). In addition
to the extracted sensor data, separate excel files containing
three more attributes: number of persons, state of the window
(opened (1), tilted (0.5), and closed (0)) and position of the
door (opened (1) or closed (0)) were created during the six
weeks period when sensor data were collected. Each entry in
the manual data has a time stamp corresponding to instants
when there is a change in one or more of the attributes.

In Fig. 3, we show variation of the environmental parameters
from sensor node E2 aligned with the manually recorded
number of occupants over a four days period. Except for

Fig. 2: A portion of the floor plan of AAU Building FRB
showing placement of the sensor nodes.
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(d) Sound Pressure & Motion.

Fig. 3: Variation of environmental parameters from sensor node E2
over a period of about four days.

pressure, all other parameters show clear variation with the
presence of and/or change in the number of persons in the
room. Table I gives the statistics - minimum value, mean and
maximum value of the data from nodes E2 and FD over whole
six weeks duration of the measurement. These values indicate
that the likelihood of the sensor data containing outliers is low.
The difference in the statistics for data from the two rooms
may be associated to the different location and orientation of
the rooms as seen in Fig. 2.

III. DATA PREPROCESSING

As with any machine learning task, we apply signal pro-
cessing tools to pre-process the data before applying a pattern



TABLE I: Statistics of IoT sensor environmental data.

Node E2 (secretary office) Node FD (4-persons office)

Min Max Mean Min Max Mean

Temperature (◦C) 22.10 24.10 22.70 18.98 23.40 21.80
Pressure (hPa) 1015.70 1040.10 1028.10 977.12 1040.30 1017.70
Humidity (%) 27.30 41.20 35.70 20.03 45.30 29.90
Light (Lux) 0 291.0 18.60 0 274.0 22.50
CO2(ppm) 400 7832 2009.5 400 7469 1113.2
TVOC (ppb) 0 1132 244.69 0 1076 108.15

Sound Pressure (dB(A)). 4 85 6.6 1 221 6.2

recognition algorithm to determine occupancy and predict
the number of persons in the rooms. This step allows us to
detect the presence of potential outliers, identify redundancies
and generate data for training, validation and testing of the
algorithm.

Based on the time stamps, we combined measurements
from the sensor with the manually recorded data to form an
augmented dataset. To eliminate potential bias, we removed
all sensor recording between 6 pm and 6 am from the data.
This elimination is done to avoid having too many instances
with no occupants. The resulting augmented data contain 3136
and 4091 samples for nodes E2 and FD, respectively. Each
sample has eleven input attributes: date and time, temperature,
pressure, humidity, sound pressure, light intensity, motion
detection, CO2, TVOC, door and window status and a class
attribute (number of persons).

We show similarities between the different parameters in
the data in Fig. 4, where we plot the correlation coefficient
among input attributes for sensor node E2 in Fig. 4a and the
correlation between number of persons in the rooms (target
attribute) and input attributes for both sensor nodes in Fig. 4b.
We observe in Fig. 4a that CO2 and TVOC measurements
exhibit perfect correlation. This is expected, since the digital
gas sensor estimates CO2 from measurements of Volatile
Organic Compounds (VOCs). Either of these attributes can
therefore be eliminated from the data without impacting al-
gorithm performance. Some other attributes are also seen to
have correlations greater than 0.5. These include temperature
and humidity, CO2 and pressure and TVOC and pressure. The
significance of these correlation and possibility for further
reduction of the attributes is however, not explored in this
work. Fig. 4b shows that all input attributes (measurements)
exhibit some correlation with the class attribute (number of
people) with light and motion detection measurements having
the highest correlation. We further observe that the correlation
for some of the attributes differ significantly for the two
rooms. For instance, the correlation between number of people
and light intensity is approximately 0.7 and 0.05 for sensor
nodes FD and E2, respectively. A plausible explanation for
this observation as well as the difference in data statistics in
Table I is the variation in indoor environment condition in the
rooms. These observations raise the question on whether room
occupancy in a given room can be performed using machines
trained with measurements from a different room.
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Fig. 4: Relationship among inputs and between inputs and target.

TABLE II: Classification accuracy of applying two-layer feed
forward neural network to the data from sensor node FD for
both binary and multi-class problems.

Binary Multi-class

Temperature (◦C) 67% 55%
Pressure (hPa) 75.3% 57%
Humidity (%) 71.2% 58.7%

Light Intensity(Lux) 94.3% 73.9%
CO2(ppm) 63% 52.2%
TVOC (ppb) 63.9% 53.2%

Sound Pressure (dB(A)) 53.7% 47.8%
PaPIRMotion 66.1% 58.7%
Door Status 53.8% 50.3%

Window Status 53.7% 46.3%

IV. ROOM OCCUPANCY PREDICTION VIA MACHINE
LEARNING

In the machine learning framework, a biologically inspired
classification algorithm - a two-layer feedforward neural net-
work (FNN) [8] with sigmoid output neurons, is used to
process and learn from the data. The choice of FNN is
motivated by the ability of neural networks to learn and model
any kind of relationships including non-linear and complex
relationships inherent in most real world problems. Except
where stated otherwise, network creation, training, validation
and testing are performed using MATLAB’s neural network
pattern recognition tool [9] with default parameters. For each
of our experiments, the input data and associated features is
randomly grouped into three: 70% for training and 15% each
for validation and testing. We evaluate two possibilities for
room occupancy detection: a binary problem, which involves
detecting the presence or absence of occupants and a multi-
class problem, which involves estimation of the actual number
of occupants in the rooms.

For the binary problem, we grouped the target attributes
(i.e., number of persons, N ) into two classes: Class 1 corre-
sponding to instances with N = 0 and Class 2 which includes
all instances with N ≥ 1. Since the datasets contain very
few instances with 3 or 4 persons, we grouped the data into
three classes: Class 1 (N = 0), Class 2 (N = 1) and Class 3
(N ≥ 2) for the multi-class problem.
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Fig. 5: Intra-room performance of binary room occupancy detection
using data from both rooms.
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Fig. 6: Inter-room performance of binary room occupancy detection
using data from both rooms.

V. RESULTS AND DISCUSSION

We evaluate performance of the network using accuracy
and miss rate metrics. Accuracy and miss rate show the per-
centage of entries that are correctly and incorrectly classified,
respectively. Table II presents the accuracy of both binary and
multi-class occupancy prediction with single input attributes
using data from sensor node FD. It shows that accuracy of the
network varies with each of the attributes (environmental pa-
rameters and door/window status) as input. For binary(multi-
class) problem, light intensity and window status yield the
highest, 94.3% (73.9%) and lowest, 53.7% (46.3%) accuracy,
respectively. Table II also shows that all input attributes yield
higher accuracy for the binary problem. We will now show
network performance results with all attributes except TVOC
measurements as input. TVOC measurements are eliminated
considering the linear relationship with CO2 measurements.

Fig. 5 presents the overall confusion matrix for the binary
problem with all input attributes. The rows correspond to the
output (i.e., estimated) class and the columns to the target
(i.e., true) class. The diagonal and off-diagonal cells indicate
the observations that are correctly and incorrectly classified,
respectively. Each cell contains both the number of obser-
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Fig. 7: Intra-room performance of multi-class room occupancy
estimation using data from both rooms.
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Fig. 8: Inter-room performance of multi-class room occupancy
estimation using data from both rooms.

vations and percentage of the total number of observations.
The column on the far right shows the percentages of all the
observations predicted to belong to each class that are correctly
and incorrectly predicted. The row at the bottom shows the
percentages of all observations in each class that are correctly
and incorrectly classified. The bottom right cell (highlighted
orange) gives the overall classification accuracy. Fig. 5 shows
that the network prediction for the binary problem is very
accurate with accuracy of 94% and 94.6% for sensor nodes
E2 (secretary office) and FD (four-persons office), respectively.

In Fig. 6, we plot the confusion matrix for the binary
problem with training and test samples from either of the
two rooms. Fig. 6a (6b) shows the confusion matrix with data
from node FD (E2) and E2 (FD) used for training and testing,
respectively. Compared to Fig. 5, predictions from the network
is less accurate with overall accuracy of 71.4% (51.8%) for
a network trained with FD (E2) dataset and tested using
observations from node E2 (FD). This appears reasonable
considering the differences in statistics of observations from
the two rooms in Table I and the correlation in Fig. 4b.

We show the performance of the network for multi-class
classification in Fig. 7b, where we plot the confusion matrix



obtained with data from both sensor nodes. The classification
accuracy is 91.5% and 83.6% for node E2 and FD, respec-
tively. While this accuracy may be reasonable considering
the limited amount of observations, the observed accuracy is
slightly lower than that of the binary problem in Fig. 5. Fig. 7b
also show that classification accuracy differs significantly for
each of the three classes. For example, while class 1(N = 0)
has accuracy of 98.3% (90.2%), class 3 (N ≥ 2) has much
lower accuracy of 54%(70.8%) for node E2 (FD). A plausible
explanation for this performance variation is the proportion of
each class contained in the dataset.

Finally, we plot the confusion matrix for multi-class with
the network trained and tested using data from different rooms.
Compared to Fig. 7b where training and testing is done using
data from the same room, the performance is much worse with
accuracy of 60.1% (48.9%) for a network trained with FD (E2)
and tested using E2 (FD) dataset.

VI. SUMMARY AND CONCLUSION

We have presented results on application of machine learn-
ing to indoor occupancy estimation using sensor data from a
wireless IoT indoor monitoring system deployed at Aalborg
University, Denmark. We combined multi-sensor measure-
ments of eight parameters with manual recording of the
number of persons, window position and door status to form
an augmented data set. We cast the problem as either a binary
or multi-class pattern recognition classification problem and
applied a two-layer feed-forward pattern recognition network
with sigmoid output neurons.

With both training and testing data from the same room,
the network is able to correctly determine occupancy of

selected offices from the IoT sensor measurements with ac-
curacy up to 94.6% and 91.5% for the binary and multi-class
problems, respectively. Occupancy detection with a network
trained either in another room or with single environmental
parameter is also possible but with less accuracy. Further
improvement in classification performance via for example,
network optimization, larger training datasets and usage of
other algorithms will be considered in our future work.
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