
Aalborg Universitet

Mathematical models and simulated annealing algorithms for the robotic assembly line
balancing problem

Li, Zixiang; Janardhanan, Mukund Nilakantan; Nielsen, Peter; Tang, Qiuhua

Published in:
Assembly Automation

DOI (link to publication from Publisher):
10.1108/AA-09-2017-115

Creative Commons License
CC BY-NC 4.0

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Li, Z., Janardhanan, M. N., Nielsen, P., & Tang, Q. (2018). Mathematical models and simulated annealing
algorithms for the robotic assembly line balancing problem. Assembly Automation, 38(4), 420-436.
https://doi.org/10.1108/AA-09-2017-115

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1108/AA-09-2017-115
https://vbn.aau.dk/en/publications/51ee5075-2bda-4284-85a1-fadab581f499
https://doi.org/10.1108/AA-09-2017-115

Downloaded from vbn.aau.dk on: June 18, 2025

Assem
bly Autom

ation

Mathematical models and simulated annealing algorithms

for the robotic assembly line balancing problem

Journal: Assembly Automation

Manuscript ID AA-09-2017-115.R2

Manuscript Type: Original Article

Keywords:
Assembly line balancing, Robotic assembly line, Integer programming;,
Simulated annealing, Artificial Intelligence

Assembly Automation

Assem
bly Autom

ation

Mathematical models and simulated annealing algorithms

for the robotic assembly line balancing problem

Purpose– Robots are utilized in assembly lines due to their higher flexibility and lower costs.

The purpose of this paper is to develop mathematical models and simulated annealing

algorithms to solve the robotic assembly line balancing to minimize the cycle-time

(RALB-II).

Design/methodology/approach – Four mixed-integer linear programming models are

developed and encoded in CPLEX solver to find optimal solutions for small-sized problem

instances. Two simulated annealing algorithms: original simulated annealing algorithm and

restarted simulated annealing algorithm are proposed to tackle large-sized problems. The

restart mechanism in the restarted simulated annealing methodology replaces the incumbent

temperature with a new temperature. Additionally, the proposed methods employ iterative

mechanisms for updating cycle-time and a new objective to select the solution with fewer

critical workstations.

Findings– The comparative study among the tested algorithms and other methods adapted

verifies the effectiveness of the proposed methods. The results obtained by these algorithm on

the benchmark instances shows that 23 new upper bounds out of 32 tested cases are achieved.

The restarted simulated annealing algorithm ranks first among the algorithms in the number

of updated upper bounds.

Originality/value– Four models are developed for RALBP-II and their performance is

evaluated for the first time. A restarted simulated annealing algorithm is developed to solve

RALBP-II, where the restart mechanism is developed to replace the incumbent temperature

with a new temperature. The proposed methods also employ iterative mechanisms and a new

objective to select the solution with fewer critical workstations.

Keywords: Assembly line balancing; Robotic assembly line; Integer programming;

Simulated annealing; Artificial intelligence

1. Introduction

Assembly lines have a wide variety of applications in modern automotive and
consumer electronics industries to assemble different types of products (Scholl and
Becker, 2006, Battaïa and Dolgui, 2013). Manufacturing enterprises face challenges
such as increasing cost of labor, customized requests from customers and increasing
sizes of product portfolios (Relich and Pawlewski, 2016). To address these challenges,
robotic/automated assembly lines have increasingly replaced human-based lines.
Robots can operate 24 hours a day without worries of fatigue and with reduced cost
and higher flexibility (Gao et al., 2009, Nilakantan et al., 2017, Li et al., 2016b).
Assembly line balancing (ALB) problem is a well-known decision problem arising
when assembly lines are to be re-configured (Nourmohammadi et al., 2017) and for
better utilization of robotic assembly lines, robotic assembly line balancing (RALB)
problems are receiving increasing attention from researchers and production line
managers. RALB problem without loss of generality, can be described as assigning a

Page 1 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

set of tasks to workstations operated by the best-fit robots with one or several
optimization criteria.

RALB problems can be divided into two categories: Type I robotic assembly line
balancing (RALB-I) problems aim to minimize the number of workstations, and type
II robotic assembly line balancing (RALB-II) problems aim to optimize cycle-time.
As the simple assembly line balancing is already NP-hard (Scholl and Becker, 2006),
the more complex RALB-I and RALB-II problems also belong to the NP-hard
category. Since the initial work reported by Rubinovitz and Bukchin (1991), many
exact and metaheuristic methods have been applied to solve RALB problems. These
contributions can be further categorized into three types based on the assembly line
layout, including general RALB problems, robotic U-shaped assembly line balancing
(RUALB) problems, and robotic two-sided assembly line balancing (RTALB)
problems (Battaïa and Dolgui, 2013).

Regarding general RALB problems where the layout of the assembly is in the form
of a straight line, Rubinovitz and Bukchin (1991) present the first attempt to minimize
the number of workstations, and, later, Rubinovitz et al. (1993) use a
branch-and-bound algorithm for the same RALB-I problem. Levitin et al. (2006)
develop a genetic algorithm to tackle RALB-II problems where all types of robots are
assumed available without limitations. They develop a recursive assignment
procedure and a consecutive assignment procedure for the efficient allocation of
best-fit robots to the workstations. Gao et al. (2009) present a mixed-integer nonlinear
programming model for a variant of the RALB-II problem in which the available
robots are pre-determined. In their work, a type of robot is not available without
limitations, and there is only one of each type of robot. They utilize a robot
assignment vector to determine robot allocation and propose an improved genetic
algorithm along with local search procedures. From their contribution, it is concluded
that when all types of robots are available without limitations, the consecutive
assignment procedure is a good choice for the selection of the robots. However, when
the type of robot is not available without limitations, a robot assignment vector is a
good choice for determining the robot allocation. Yoosefelahi et al. (2012) tackle a
multi-objective RALB-II problem following the assumptions in Levitin et al. (2006)
and present a new mixed-integer linear programming model and three versions of
multi-objective evolution strategies. Daoud et al. (2014) propose several hybrid
algorithms to maximize line efficiency, among which ant colony optimization with a
guided local search achieves the best performance. Hybrid algorithms are well-known
to have superior performance for certain problem types (Sitek and Wikarek, 2016, Do
et al., 2016, Sitek et al., 2014). Nilakantan et al. (2015b) develop particle swarm
optimization and cuckoo search algorithms to tackle the same RALB-II problem
reported in Levitin et al. (2006) and present the improved solutions for the benchmark
problems. Subsequently, Nilakantan et al. (2015a) present the first paper in the area of
minimizing energy consumption in a straight robotic assembly line using particle
swarm optimization based on the assumptions in Levitin et al. (2006). Çil et al. (2016)
tackle the mixed-model RALB-II problem using beam search to optimize the sum of
cycle-times over all models. More recently, Rabbani et al. (2016) solve the

Page 2 of 27Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

multi-objective mixed-model RALB-II problem using a multi-objective genetic
algorithm and particle swarm optimization. Nilakantan et al. (2017) optimize carbon
footprint and line efficiency utilizing a multi-objective co-operative co-evolutionary
algorithm following the assumptions in Gao et al. (2009).

Regarding a robotic assembly line with U-shaped layout (RUALB) problems, in all
reported contributions it is assumed that all types of robots are available without
limitations. Specifically, Nilakantan and Ponnambalam (2016) propose a particle
swarm optimization algorithm embedded with a consecutive procedure to minimize
the cycle-time of robotic assembly lines. In the case of two-sided robotic assembly
lines (RTALB problems), all the reported contributions follow the assumption in Gao
et al. (2009), where a robot assignment vector is used to determine robot allocation. Li
et al. (2016a) optimize cycle-time using a co-evolutionary particle swarm
optimization algorithm and they also develop a mixed-integer linear programming
model to find optimal solutions for small-size problem instances. The same problem
is tackled by Li et al. (2017a) using a discrete cuckoo search algorithm and
co-evolutionary cuckoo search algorithm. These algorithms produce better results
than those found in Li et al. (2016a). Later, Li et al. (2016b) optimize the energy
consumption and cycle-time in RTALB problems using a Pareto simulated annealing
algorithm. Aghajani et al. (2014) tackle mixed-model RTALB problems by
minimizing the cycle-time. They develop a mixed-integer programming model to
achieve the optimal solution for small-size problem instances and propose a simulated
annealing algorithm for tackling large-size problem instances.

From the above literature review, two different basic assumptions appear as to
whether all types of robots are assumed to be available without limitations. The first
assumption in Levitin et al. (2006) is more appropriate for new assembly line design
and the first installation of the robots. The consecutive assignment procedure select
the robots, and, hence, the general algorithms summarized in Rashid et al. (2012) and
Li et al. (2017b) are able to solve this kind of RALB problem directly. In contrast, the
second assumption has diverse applications in reconfiguring/redesigning the robotic
assembly lines (Gao et al., 2009) where the workstation number and the available
robots remained unchanged. For this kind of RALB problem, the robot assignment
vector is usually proposed to determine robot allocation. The algorithm for this RALB
problem concerns the optimization of two or more vectors, and, hence, general
algorithms might not be as effective. It is also observed that there are more
contributions on the first type of RALB problem (Levitin et al., 2006, Nilakantan et
al., 2015b, Yoosefelahi et al., 2012, Nilakantan et al., 2015a), whereas there is limited
research on the second type of RALB problem (Gao et al., 2009, Nilakantan et al.,
2017).

For the aforementioned reasons, this research studies the RALB-II problem
following Gao et al. (2009) and presents several novel contributions as follows:
1) Four mixed-integer linear programming models are developed to tackle small-size
problem instances optimally. In addition, these models are evaluated by solving a set
of benchmark problems. It is to be noted that the model presented in Gao et al. (2009)
is a non-linear programming model, and only two small-sized cases are solved within

Page 3 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

acceptable computational time.
2) Two simulated annealing algorithms are proposed to solve large-sized problem
instances in which the first is the original simulated annealing (SA) algorithm and the
second is the restarted simulated annealing algorithm (RSA). The proposed RSA
employs a restart mechanism to replace the incumbent temperature with a new
temperature. In addition, this research proposes two improvements to enhance the
performance of the algorithms: an iterative mechanism for cycle-time update and a
new objective to select the solution with fewer critical workstations.
3) A comprehensive comparative study is carried out to test the performance of the
proposed algorithms. The compared methods include a genetic algorithm, a particle
swarm optimization algorithm, a cuckoo search algorithm, and two artificial bee
colony algorithms. Statistical analysis compares these algorithms, where RSA
achieves the best overall performance. Additionally, these compared algorithms
achieve 23 new upper bounds out of 32 tested cases where especially the upper
bounds for all large-size cases are updated.

The remainder of this paper is organized as follows. Section 2 provides a detailed
description of the proposed four mathematical models. Section 3 illustrates the two
proposed simulated annealing algorithms along with a detailed encoding scheme and
decoding procedure. Section 4 presents the computational study in which both the
models and algorithms are evaluated and compared. Section 5 concludes this paper
and gives several suggestions on future research avenues.

2. Mathematical model formulation

This section first describes the problem and the basic problem assumptions and
later presents the details of the four proposed integer-programming models for solving
the RALB-II problem.

2.1 Problem description

As presented in Section 1, this paper tackles the RALB-II problem based on the
work presented in Gao et al. (2009). The assumptions listed here are based on the
ones reported in Gao et al. (2009) and Nilakantan et al. (2017):

• A single type of product is assembled in this robotic line.
• The operation times of tasks depend on the assigned robot, and they are

deterministic.
• Each robot is allocated to a workstation and each workstation has a robot.
• The number of available robots is equal to the number of workstations.
• A task can be operated by any robot and a robot can be allocated to any

workstation.
• Material handling, loading & unloading, setup& tool changing are considered

negligible.
In robotic assembly lines, there is a set of workstations allocated with a set of

robots. Supposing that there are Nt tasks and Ns workstations, it is clear that there are
also Nr robots allocated to Ns workstation, where Nt is the number of tasks and Ns is
the number of workstations. RALB-II problem concerns assigning the Nt tasks to Ns

Page 4 of 27Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

workstations and allocating Nr robots to Ns workstations with the objective of
minimizing cycle-time. In short, the RALB-II problem consists of two sub-problems
that are to be optimized simultaneously: task assignment and robot allocation.
Regarding the task assignment, a task can be executed only when all predecessors
have been completed and the successors of a task must be assigned to the same
workstation or a latter one. Regarding robot allocation, each workstation must be
equipped with a robot and a robot must be allocated a workstation. A layout of robotic
assembly is depicted in Figure 1 in which there are 25 tasks and six robots. 25 tasks
are distributed among six workstations and they are operated in a sequence on the
given workstations. Correspondingly, there are six robots allocated to the six
workstations. It is to be noted that the largest value of the total operation times of
tasks on workstations is regarded as the achieved cycle-time.

15 9

Robot 5 Robot 3 Robot 1 Robot 6

111 5 6 13 14 20

Robot 2 Robot 4

2 3

4

8

7 12

Workstation 1 Workstation 2 Workstation 3

21 16 25

Workstation 4

17

Workstation 5

18 23

Workstation 6

19 22

10 24

Figure 1. Layout of robotic assembly line

2.2 Integer programming models

The notations to be used by these models are presented as follows.

Notations:

i, p, q: Task index, � ∈ I
j: Workstation index, � ∈ J
r,s,k: Robot index, � ∈ R
tir : Operation time of task i by robot r.
P(i): Set of immediate predecessors of the task i.
Pa(i): Set of all predecessors of the task i.
S(i): Set of immediate successors of the task i.
Sa(i): Set of all successors of the task i.
CT: Cycle-time.

�	
 : Operation time of task i by robot r.

xirj: Binary variable. xirj is equal to 1 when task i is operated by robot r on station j.
yij: Binary variable. yij is equal to 1 when task i is allocated to station j.
wrj: Binary variable. wrj is equal to 1 when robot r is allocated to station j.
vir: Binary variable. vit is equal to 1 when task i is operated by robot r.
ui: Binary variable
zpq: Binary variable. zpq is equal to 1 when task p is assigned earlier than task q on the
same workstation.
drs: Binary variable. drs is equal to 1 when robot r is allocated to the former station
than robot s.

Page 5 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

The first model, referred to as Model 1, is developed by modifying the model
reported in Miralles et al. (2008), where the worker assignment problem, which is
similar to the robot allocation in this paper, is addressed. This model utilizes a
three-index variable and a two-index variable to describe the task assignment and
robot allocation as follows.

Minimize CT (1)

∑ ∑ xirj�∈�∈� =1 ∀i ∈ I
(2)

∑ ����∈� = 1	∀� ∈ � (3)
∑ ����∈ = 1	∀� ∈ � (4)

∑ ∑ � ∙ xprj�∈�∈� -∑ ∑ � ∙ �qrj�∈�∈� ≤0 ∀p ∈P(q)
(5)

∑ ∑ �	� ∙ �irj ≤ ���∈�	∈� ∀� ∈ �
(6)

∑ xirj	∈� ≤ψ⋅���	 ∀� ∈ �, � ∈ �
(7)

The objective function in expression (1) minimizes the cycle-time. Equation (2)

ensures that each task is assigned to a workstation and operated by a robot. Equation
(3) and equation (4) guarantee that each workstation is equipped with a robot and each
robot is allocated to a workstation respectively. Equation (5) addresses the precedence
relationship ensuring that the successors of a task must be assigned to the same
workstation or latter workstation. Equation (6) deals with cycle-time constraint and
ensures that the total operation time of tasks on each workstation is less than or equal
to the cycle-time. Finally, equation (7) ensures that a task must be operated by the
robot allocated to the workstation to which the task is assigned.

The second model, referred to as Model 2, is built based on Li et al. (2016a) and
utilizes two two-index variables to describe the task assignment and robot allocation
as follows.

Minimize CT (8)

∑ �ij�∈ =1 ∀i ∈ I
(9)

∑ ����∈� = 1	∀� ∈ � (10)
∑ ����∈ = 1	∀� ∈ � (11)

∑ � ∙ y
pj�∈ − ∑ � ∙ �qj�∈ ≤0 ∀p ∈P(q) (12)

�	
 ≤ ��	∀i ∈ I
(13)

�!
 − �"
+ψ#1 − �!�$ +ψ#1 − �"�$≥ ∑ �!� ∙ ����∈� ∀p, q ∈S(p), � ∈ �
(14)

Page 6 of 27Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

�!
 − �"
+ψ#1 − �!�$ +ψ#1 − �"�$+ψ#1 − %"!$≥ & �!� ∙ ����∈�

∀p, q ∈'�|� ∈) − #*+,*- + /+,*-$	and	3 < �5, � ∈ �

(15)

�"
 − �!
+ψ#1 − �"�$ +ψ#1 − �!�$+ψ ∙ %"!≥ & �"� ∙ ����∈�

∀p, q ∈'�|� ∈) − #*+,*- + /+,*-$	and	3 < �5, � ∈ �

(16)

�	
+ψ#1 − �	�$ ≥ ∑ �	� ∙ ����∈� 	∀i ∈ I, j ∈J
(17)

Similarly to the work in Miralles et al. (2008), Equation (8) optimizes the

cycle-time. Equation (9) ensures that each task is allocated to a workstation. Equation
(10) and Equation (11) deal with the robot allocation. Equation (12) addresses the
precedence relationship. Equation (13) addresses the cycle-time constraint by
ensuring that all tasks are finished within the cycle-time. Equation (14-16) calculates
the completion times of the tasks. Equation (14) ensures that task q can be operated
only when its predecessor p has been completed. This equation is reduced to

�!
 − �"
≥ ∑ �!� ∙ ����∈� 	when task q is the successor of task p and they are allocated

to the same workstation. Equations (15-16) handle the situation in which two tasks
have no precedence relationship. If task p is assigned before task q on the same

workstation, Equation (15) is reduced to �!
 − �"
≥ ∑ �!� ∙ ����∈� ; otherwise,

Equation (16) is reduced to �"
 − �!
≥ ∑ �"� ∙ ����∈� . Equation (17) guarantees that

the completion time of a task is equal to or larger than its operation time.
The third and fourth models (referred to as Model 3 and Model 4) are modified

from Borba and Ritt (2014) who solve worker assignments. The main idea behind
these models is assigning tasks to robots.

Minimize CT (18)
∑ �	� ∙ 7	�	∈� ≤CT ∀r ∈ R (19)
∑ 7	��∈� =1 ∀i ∈ I (20)
8�9 ≥ 7"� + 7!9 − 1	∀p ∈P(q), r ,s ∈ R and r ≠s (21)
8�9 ≥ 8�: + 8:9 − 1	∀ r ,s, k ∈ R, r≠s, r≠k and s≠k (22)
8�9 + 89� ≤ 1	∀ r ,s ∈ R, r ≠s (23)

In Model 3, Equation (18) also minimizes the cycle-time. Inequality (19) addresses

the cycle-time constraint ensuring the total operation time of tasks by robot r is less
than or equal to the cycle-time. Equation (20) guarantees that each task is executed by
exactly one robot. Equation (21) handles precedence constraints and ensures that
robot r must precede robot s when task p is assigned to robot r and precedes the task q

assigned to robot s. Equation (22) ensures that robot r precedes robot s when robot r

Page 7 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

precedes robot k and robot k precedes robot s. Equation (23) ensures the
anti-symmetry of the robot dependencies since robot r must be allocated before robot
s or after robot s. To increase the search speed, the continuity constraint expressed in
Equation (24) is added in Model 4 along with Equations (18-23). Equation (24)
ensures that the task p should be assigned to robot r when task p is the successor of
task i and the predecessor of task q and task i and task q are assigned to the same
robot r.

7"� ≥ 7	� + 7!� − 1	∀ r ∈ R, i, p, q ∈I, p ∈ Sa(i) and p ∈ Pa(q) (24)

The four models for solving the RALB-II problem are presented in the form of

mixed-integer linear programming models and encoded in CPLEX solver to achieve
optimal or near-optimal solutions. These models are evaluated, and the findings are
presented in Section 4.

3. Proposed methodologies

Since the RALB-II problem consists of two interrelated sub-problems, local search
methods and co-evolutionary algorithms might be a good choice to produce promising
results (Li et al., 2017a). This research utilizes the simulated annealing (SA)
algorithm as a local search method to solve the RALB-II problem. SA is selected
mainly because SA has no complex operators and is much simpler in implementation
when compared to other evolutionary algorithms (Rabbani et al., 2015). SA has
shown promising results for solving many optimization problems. For instance, SA
has achieved promising results for different types of assembly line balancing
problems (Erel et al., 2001, Baykasoglu, 2006, Özcan and Toklu, 2009, Özcan, 2010,
Roshani et al., 2012, Fathi et al., 2016, Jayaswal and Agarwal, 2014, Roshani and
Nezami, 2017) and mixed-model assembly line balancing and sequencing (Mosadegh
et al., 2012, Hamzadayi and Yildiz, 2012, Hamzadayi and Yildiz, 2013). SA especially
shows superior performance over the co-evolutionary genetic algorithm in Mosadegh
et al. (2012) in optimizing two interrelated sub-problems simultaneously.

This paper adopts two types of SA methodologies: original simulated annealing
(SA) and restarted simulated annealing (RSA). In the RSA method, a restart
mechanism is developed to replace the incumbent temperature with a new
temperature emphasizing exploitation. Two problem-specific improvements are also
developed to enhance the SA and RSA: an iterative mechanism for cycle-time update
and a new objective to select the solution with less critical workstations detailed in
Section 3.1. In the following subsections, the encoding scheme and decoding
procedure along with two problem-specific improvements are introduced in Section
3.1, and the two proposed methodologies, SA and RSA, are illustrated in Section 3.2.

3.1 Encoding scheme and decoding procedure

Based on the contributions reported in the following researches (Gao et al., 2009,
Li et al., 2016a, Li et al., 2017a), this research proposes two vectors for encoding: task
permutation vector and robot allocation vector. Task permutation vector is a 1 × <�

Page 8 of 27Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

vector denoting the sequence of the tasks being allocated and that the tasks in the
former position of the task permutation vector should be assigned first. The robot
allocation vector is a 1 × <= vector, each element denotes the allocation of a robot to
a workstation. Suppose that the element in the jth position of this vector is r, robot r is
allocated to workstation j. Two examples for the task permutation vector and robot
allocation vector are as follows. In the task permutation vector, task 1 has the highest
priority and should be assigned first, whereas task 24 should be assigned last. In the
robot allocation vector, robot 5, robot 3, robot 1, robot 6, robot 2, and robot 4 should
be allocated to workstation 1, workstation 2, workstation 3, workstation 4,
workstation 5, and workstation 6 respectively.
Task permutation vector: 1, 2, 3, 4, 5, 6, 8, 7, 12, 15, 9, 11, 13, 14, 20, 21, 16, 17, 18,
23, 25, 19, 22, 10, 24.
Robot allocation vector: 5, 3, 1, 6, 2, 4.

To transfer the two vectors into a feasible solution, a decoding procedure is
necessary, where the determination of the initial cycle-time is a non-negligible issue
for RALB-II problems. Following Li et al. (2017b), this research proposes an iterative
mechanism for cycle-time updating. Figure 2 and Figure 3, respectively, present a
detailed iterative mechanism and decoding procedure. In the decoding procedure,
each former workstation is assigned as much workload as possible based on the task
permutation, and the last workstation endures all the remaining workload. The largest
value among the completion times of the workstation is regarded as the achieved
cycle-time by an individual. It should be noted that this decoding procedure differs
from Gao et al. (2009) as this method allows the allocation of all the remaining
workload to the last workstation even when these remaining tasks cannot be finished
within the provided initial cycle-time.

Regarding the iterative mechanism, the initial cycle-time is set to a large value at
first and this cycle-time is iteratively reduced. In this iterative mechanism, each
individual is decoded using CT-1 as the initial cycle-time at first. If the completion
time of the tasks on the last workstation is not bigger than CT-1, an individual with a
smaller cycle-time is achieved. If no better cycle-time is achieved, this individual is
decoded using CT as the initial cycle-time. This method guarantees that the CT and
��>?9@ gradually decrease, where ��>?9@ is the best cycle-time obtained so far.
When the	��>?9@ is reduced, all the individuals are re-decoded using CT as the initial
cycle-time, and the incumbent fitness values are replaced with this newly achieved
ones. This technique ensures that all the individuals are evaluated using the same
initial cycle-time. Notice that the proposed iterative mechanism executes decoding
procedure only twice to achieve the fitness for one individual.

In Levitin et al. (2006), the reported procedure calculates the lower bound of the
cycle-time as the initial cycle-time and increases this initial cycle-time until all tasks
can be allocated within the provided initial cycle-time. This method needs to execute
decoding procedure many times to obtain the proper initial cycle-time. The procedure
reported in Gao et al. (2009) also executes the decoding procedure several times using
the bisection method. The method proposed here avoids the possible drawbacks of the

Page 9 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

published research in searching for the proper cycle-time and executes the decoding
procedure only utilizing the lowest achievable cycle-time.

In the preliminary experiments for solving RALB-II problems, it is observed that
many solutions have the same cycle-time and the utilized cycle-time as the optimizing
objective is unable to distinguish between these. Hence, on the basis of Gao et al.
(2009), this research proposes a new objective expressed in Equation (25), where Ncs
is the number of critical workstations and a workstation is regarded as a critical
workstation when the completion time of this workstation is equal to the initial
cycle-time. In our experiments, the second part of the equation 0.1×Ncs is usually
less than 1.0, and therefore, the second part takes effect only when the individuals
have the same cycle-time. Note that the number 0.1 can be replaced with some other
small positive numbers as long as it ensures that second part takes effect only when
the individuals have the same cycle-time.

Minimize CT+0.1×Ncs (25)

Iterative mechanism:

% Cycle-time initialization

Step 1: Set the initial cycle-time to a large value as CT = 2 ∙ ∑ ∑ �	��∈�	∈� ,<� ∙ <=-⁄ and ��>?9@
is set as �� − 1, where ��>?9@ is the best cycle-time obtained so far.

% Cycle-time iteration during evolution process

Step 2:

For each individual do

Step 2.1: Achieve the solutions using CT-1 as the initial cycle-time. If the completion time of

the tasks on the last workstation for one individual is not bigger than CT-1, ��>?9@ = �� − 1,

CT = ��>?9@, the achieved fitness is regarded as the fitness of this individual and continue.

Otherwise, go to Step 2.2.

Step 2.2: Achieve one solution using CT as the initial cycle-time and the achieved fitness is

regarded as the fitness of this individual.

Endfor

Step 3:

If (��>?9@ is reduced)

Re-decode all the incumbent individuals using CT as the initial cycle-time and replace the

incumbent fitness values with this newly achieved one.

Endif

Step 4: Achieve the new individuals in the algorithm’s evolution and execute Step 2 and Step3 until

the termination criterion is satisfied.

Figure 2. Proposed iterative mechanism

Page 10 of 27Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

Decoding procedure:

Determine the initial cycle-time using iterative mechanism.

While (Some tasks are still unallocated)

Open a new workstation;

Do

When the current workstation is not the last workstation, obtain the assignable tasks whose

predecessors have been allocated and the completion times are not larger than CT; otherwise,

obtain the assignable tasks whose predecessors have been allocated.

Allocate the task on the former position of the task permutation to the current workstation;

Update the remaining capacity of the current workstation;

Until no assignable task exists.

End while

Set the largest value among the completion times of the workstation as the achieved cycle-time.

Figure 3. Proposed decoding procedure

3.2 Proposed simulated annealing algorithms

SA algorithm for RALB-II problem:

Input parameter values: T0, α and N;

% Algorithm initialization

n:=0, T:=T0;

Generate an initial solution S;

% Algorithm evolution

Do

For n:=0 to N do

Achieve a neighbor solution S′ using neighbor

operator;

Calculate △= Fit JS′K − Fit,S-;

If (△≤ 0) S ⟵ S′;

Else If (Rand ≤ N�3O△ #P×Q	@,R-$⁄) S ⟵ S′;

//Rand is a random number within [0,1]

Endfor

T = T × S

Until (Termination criterion is met)

Figure 4. Procedure of SA algorithm

Page 11 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

This section provides the details of the proposed SA and RSA, where the procedure
of original SA is first illustrated in Figure 4. This algorithm starts with three input
parameters: the initial temperature (T0), the cooling rate (α), and iteration times
before the temperature update (N). Subsequently, an initial individual is generated,
and a main loop is repeated until the termination criterion is met. Within the loop,
new neighbor solutions are obtained N times and then the current temperature is
updated. For each newly generated neighbor solution, it replaces the incumbent one

when it achieves a better fitness or with a probability of N�3O△ #P×Q	@,R-$⁄ when it

achieves a worse fitness. It is clear that SA to some extent allows for the acceptance
of a worse solution to replace the incumbent one, but the probability of accepting
the worst solutions decreases during algorithms evolution. Though SA has some
ability to escape from local optima, there is still a risk that it might be trapped into
local optima. During the preliminary experiment, this issue was observed for
especially small-size problem instances. Hence, this research improves the original
SA by embedding the restart mechanism, resulting in the RSA method. The general
procedure of RSA is presented in Figure 5, and its procedure is similar to that of SA.
Apart from the original three parameters in SA, RSA introduces two more
parameters: restart temperature (TR) and restart time (RT) before replacing the
current temperature with TR. The rationality of this restart mechanism is that the
current temperature T is replaced with the TR when no improvement of the best
fitness is achieved for consecutive TR times. This method increases the probability
of accepting worse solutions and thus helping the algorithm to escape from local
optima. It is to be noted that TR and RT are critical parameters that must be
carefully determined. A large value of TR might result in reduced intensification
whereas RSA with a low value of TR might achieve the same results as the original
SA.

RSA algorithm for RALB-II problem:

Input parameter values: T0, α, N, TR, and RT;

% Algorithm initialization

n:=0, T:=T0, rt :=0;

Generate an initial solution S;

% Algorithm evolution

Do

NewBest=0; //Check whether new best fitness is achieved

For n:=0 to N do

Achieve a neighbor solution S′ using neighbor

operator;

Calculate △= Fit JS′K − Fit,S-;

If (△≤ 0) S ⟵ S′;

If (New best cycle-time is achieved) NewBest=1;

Else If (Rand ≤ N�3O△ #P×Q	@,R-$⁄) S ⟵ S′;

Page 12 of 27Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

Endfor

If (NewBest!=0) rt:=0;

Else rt:=rt +1;

% Restart mechanism

If ((�� ≥ ��) and (T< TR)) T:= TR;

Else � = � × S

Until (Termination criterion is met)

Figure 5. Procedure of RSA algorithm

The quality of the initial solution and the neighbor operator have an important
effect on the final performance of the SA and RSA. In case of initialization, both
algorithms utilize the ranked positional weight heuristic, which has been used by
many researchers (Khorasanian et al., 2013) to achieve the initial task permutation. In
general, the ranked positional weight of task i is the sum of the operation time of task
i and the operation times of all the successors of task i. However, since the operation
times of a task by robots are different from each other, this research utilizes the
average value of the operation times by robots when utilizing this heuristic. It should
be noted that most robots need operation times for the ‘difficult’ tasks are more and
operation times for the ‘easy’ tasks are short. The average operation time of the
‘difficult’ tasks are usually larger than the ‘easy’ tasks, and hence utilizing “average
times” make tasks with larger operation times and more successors have higher
priorities with a larger probability. The robot allocation vector is randomly generated.
With regards to the neighbor operator, this research proposes an insert and a swap
operator for both the task permutation vector and robot allocation vector based on Li
et al. (2017a). Specifically, a random number between [0, 1] is generated first. If this
number is less than 0.5, the task permutation vector is selected, otherwise the robot
allocation vector is selected. Once the vector is selected, one of the insert operators or
swap operators is selected to modify the selected vector with 50 percentage
probability. It should be noted that in the long run both vectors will be selected for
almost half of the iteration times, and the insert operator or swap operator will be
utilized to modify each vector for almost a quarter of the iteration times.

4 Numerical example

To clarify the proposed methods for solving RALB-II, this section presents a
numerical example. The example has 25 tasks and six workstations equipped with six
robots, and the precedence relationship and operation times of tasks by robots are
presented in Table 1. In the table, the first column presents the task number and
column two describes the precedence relationship. The remaining columns provide
the details of the operation times by robots, and it is observed that the operation times
of a task by robots can differ. For the precedence constraint, one task cannot be
operated only all its predecessor have been completed. And the operation times of one
task depends on the allocated robot. For instance, if task 1 is operated by robot 1, the
corresponding time is 87. Nevertheless, this operation time is reduced to 44 if this task
is operated by robot 5.

Table 2 exhibits the detailed task assignment and robot allocation of the achieved

Page 13 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

solution using the proposed methodology. The second row shows the task assignment,
for example, task 1, task 2, task 3, and task 4 are assigned to workstation 1. The third
row presents the robot allocation, for example, robot 5, robot 3, and robot 1 are
allocated to workstation 1, workstation 2, and workstation 3 respectively. The fourth
row calculates the total operation time of tasks on each workstation. Specifically, for
workstation 1, robot 5 is allocated to operate tasks 1, 2, 3, and 4, and the total
operation time is calculated as 44+53+61+55=213. For workstation 2, robot 3 is
allocated to operate tasks 5, 6, 8, 7, and 12, and the total operation time is
28+51+44+33+50=206. The largest value of the total operation times on a
workstation is regarded as the achieved cycle-time presented in the last row. In
addition, the line efficiency of this assembly line is nearly 96.24%, and the achieved
task assignment and robot allocation are quite effective.

Table 1 Precedence relationship and operation times of tasks by robots

Tasks Successors
Operation times by robots

Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6

1 2 87 62 42 60 44 76

2 3 67 47 42 45 53 100

3 4 82 58 54 40 61 60

4 5,8 182 58 62 60 55 100

5 6 71 47 28 57 62 76

6 7,10 139 48 51 73 61 117

7 11,12 98 99 44 49 59 82

8 9,11 70 40 33 29 36 52

9 10,13 60 114 47 72 63 93

10 - 112 67 85 63 49 86

11 13 51 35 41 44 85 69

12 15 79 39 50 80 67 95

13 14 57 47 56 85 41 49

14 16,19,20 139 65 40 38 87 105

15 17,22 95 63 42 65 61 167

16 18 54 48 51 34 71 133

17 18,23 71 28 35 29 32 41

18 25 112 29 49 58 84 69

19 22 109 47 38 37 52 69

20 21,25 63 45 39 43 36 57

21 22,24 75 68 45 79 84 83

22 - 87 36 74 29 82 109

23 25 58 36 55 38 42 107

24 - 44 54 23 21 36 71

25 - 79 64 48 35 48 97

Table 2 Detailed task assignment and robot allocation

Workstation

1

Workstation

2

Workstation

3

Workstation

4

Workstation

5

Workstation

6

Page 14 of 27Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

Task

assignment
1, 2, 3, 4 5, 6, 8, 7, 12 15, 9, 11 13, 14, 20

21, 16, 17,

 18, 23

25, 19, 22,

 10, 24

Robot allocation 5 3 1 6 2 4

Total operation

times
213 206 206 211 209 185

Cycle-time 213

5. Computational study

This section first presents the details of the experimental design, and later presents
the findings of the evaluation of the proposed models and finally reports the
comparative campaign among implemented algorithms as well as the statistical
analysis.

5.1 Design of experiments

To evaluate the proposed models and algorithms, this study conducts two
comparative studies on models and algorithms respectively. Both comparative studies
use the benchmark problems presented in Gao et al. (2009) for testing. This
benchmark set contains eight sets of problems corresponding to eight precedence
diagrams: P25, P35, P53, P70, P89, P111, P148, and P297, where the symbol P is the
abbreviation of the problem and the numbers denote the task numbers. In addition,
each problem contains four cases with different workstations, leading to a total of 32
tested cases. In this research, these tested problems are divided into two categories:
small-size problem instances including P25, P35, and P53 and large-size problem
instances including P70, P89, P111, P148, and P297.

Regarding the model evaluation, only P25, P35, P53, and P70 or a total of 16 cases
are solved by the four models since the CPLEX solver cannot achieve optimality of
very large-size problems in acceptable CPU time. The execution terminates when the
optimal solution is achieved or elapsed computation time reaches 3600 seconds (s).
All the models are solved using CPLEX solver of General Algebraic Modeling
System 23.0 and they are tested on a set of personal computers equipped with Intel(R)
Core(TM) i7-4790S CPU @ 3.20 GHZ.

With respect to the algorithm evaluation, five other well-known metaheuristic
algorithms are modified and re-implemented for the comparative study to tackle all
the datasets. These algorithms are taken from literature on algorithms recently used to
solve RTALB problems (Li et al., 2016a, Li et al., 2017a) in which both task
permutation vector and robot allocation vector are applied. These methods include
genetic algorithm (Gao et al., 2009) (GA), particle swarm optimization (Li et al.,
2016a) (PSO), discrete cuckoo search (Li et al., 2017a) (DCS), and artificial bee
colony (Tang et al., 2016) (ABC1 and ABC2). It is to be noted that there are
potentially many variants of an algorithm, which might lead to ambiguous results. To
avoid this situation and have a better investigation of the performances of the
algorithms, some problem-specific improvements are omitted and the main operators
of these re-implemented algorithms are set similar to those presented in Li et al.
(2017a). All the tested algorithms share the same neighborhood structures as shown in

Page 15 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

Section 3.2. Apart from this, the main operators of the tested algorithms are presented
in Table A1 of the appendix.

Before executing the algorithms, there is a need for proper determination of the
termination criterion and the parameters of these algorithms. Based on the procedure
followed in Li et al. (2016a), Li et al. (2017a), and Nilakantan et al. (2017), this
research sets the elapsed CPU time as the termination criterion, which is calculated as
Nt × Nt × τ	milliseconds, where τ is a parameter which is set to 10, 20, and 30
respectively. These termination criteria provide more CPU time to large-size problem
instances and make it possible to observe the performances of the algorithm under
different elapsed CPU times. For parameter calibration, this research utilizes the full
factorial design similar to the ones reported in Li et al. (2016a), Li et al. (2017a), and
Li et al. (2017b). The initial levels of the parameters are determined based on the
published literature, and they are further reduced by fixing the values of other
parameters. Since the best parameter combination on small-sized problem instances
might greatly differ from those on large-sized problem instances for some algorithms,
this research calibrates the parameters for both sets of problems respectively. Taking
the large-sized problem as an example, the largest-sized case with 297 tasks and 29
workstations is solved by each parameter combination 10 times with the termination
criterion of Nt × Nt × 10	milliseconds. After completing all the experiments, the
relative percentage deviation (RPD) is calculated as the response variable using
expression (26). In this expression, CTsome is the yield cycle-time by one parameter
combination in one time execution, and CTBest is the smallest cycle-time by all
parameter combinations in 10 iterations.

�*V = 100 ∙ ,��RWX? − ��>?9@- ��>?9@⁄ (26)

After transferring these cycle-times, the well-known multifactor analysis of

variance (ANOVA) technique is applied to select the best parameter values based on
the method adopted in Li et al. (2017b). The selected values of parameters are
presented in Table A2 of the appendix. Due to space constraint, the detailed ANOVA
procedure is not presented in the paper, but this information will be uploaded in
Research Gate for readers reference.

5.2 Model evaluation

This section evaluates the four models and the achieved cycle-times (Results),
consumed CPU times (Time), and the number of the executed nodes (Nodes) are
presented in Table 3 and Table 4. More detailed results are presented in the Table
A3-1 and Table A3-2 in the appendix. From Table 3 and Table 4, it can be stated that
optimality is achieved for some problem instances when the elapsed CPU time is less
than 3600s. From Table 3, it is observed that Model 1, Model 2, Model 3, and Model
4 could achieve optimality for nine cases, zero cases, seven cases, and six cases out of
sixteen cases respectively. It is to be noted that the published model in Gao et al.
(2009) is able to achieve the optimality only for two smallest cases, P25 with three
and four workstations. It is clear that Model 1, Model 3, and Model 4 outperform the

Page 16 of 27Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

published non-linear model in Gao et al. (2009). It also can be seen that Model 2
achieves no optimality or cannot prove the optimality for the tested problems in the
limited CPU time allotted. The reason lies in that Model 2 considers the detailed task
sequence on each workstation, resulting in larger CPU times. Regarding the elapsed
CPU time to achieve optimality by Model 1, Model 2, and Model 3, Model 1 requires
the smallest CPU time, Model 3 consumes the second smallest CPU time, and Model
4 requires the largest CPU time, which is confirmed by a Wilcoxon signed rank test
with p<0.01 denoting that there is statistical difference. It is evident that Model 2 is
the worst performer, but Model 2 reports good performance in solving cases with a
larger task number and a larger workstation number. Specifically, Model 2 is the best
performer for P53 with 10 and 14 workstations and P70 with 14 and 19 workstations.

Table 3 Achieved results by the proposed models

Problem Ns
Model 1 Model 2 Model 3 Model 4

Results Time (s) Results Time (s) Results Time (s) Results Time (s)

P25 3 503 0.85 503 3600 503 0.44 503 1.23

4 327 2.28 327 3600 327 5.03 327 14.13

6 213 55.46 214 3600 213 243.59 213 83.16

9 123 3600 125 3600 130 3600 123 3600

P35 4 449 6.51 456 3600 449 5.04 449 70.53

5 344 12.40 348 3600 344 21.97 344 61.25

7 222 224.69 236 3600 222 466.32 222 632.80

12 130 3600 128 3600 125 3600 135 3600

P53 5 554 55.27 560 3600 554 1453.93 560 3600

7 320 1461.13 329 3600 347 3600 377 3600

10 345 3600 274 3600 347 3600 407 3600

14 288 3600 182 3600 529 3600 311 3600

P70 7 448 3091.40 507 3600 458 3600 467 3600

10 363 3600 352 3600 361 3600 308 3600

14 577 3600 296 3600 1383 3600 888 3600

19 1023 3600 185 3600 1395 3600 706 3600

In Table 4, it is observed that Model 1 has the smallest values of the nodes among
all the models to achieve optimality for P25 with three and four workstations and P35
with four workstations. Model 4 has the smallest values of the nodes to achieve
optimality for P25 with six workstations and P35 with five and seven7 workstations.
Though the difference of Model 1 and Model 4 on the executed nodes is not clear, it is,
however, clear that these two models need many fewer nodes to achieve optimality
than Model 2 for P25 with three, four, and six workstations and P35 with four, five,
and seven workstations. If one compares the executed nodes per seconds of these
models, Model 4 executes the fewest nodes per second and the difference between
Model 1, Model 2 and Model 3 is not clear. In summary, Model 1 shows advantages
over the others in the number of cases solved to optimality, but no model outperforms
the others for all cases.

Table 4 Executed nodes of the proposed models

Problem Ns
Model 1 Model 2 Model 3 Model 4

Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s)

P25 3 65 0.85 16477823 3600 451 0.44 68 1.23

4 611 2.28 7079287 3600 8198 5.03 978 14.13

6 15991 55.46 7485976 3600 367636 243.59 3622 83.16

9 537022 3600 5025133 3600 459797 3600 155859 3600

Page 17 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

P35 4 2244 6.51 5147710 3600 13552 5.04 3634 70.53

5 1847 12.40 4370414 3600 27924 21.97 1327 61.25

7 36812 224.69 799343 3600 263998 466.32 15559 632.80

12 54749 3600 1310261 3600 73719 3600 8022 3600

P53 5 7216 55.27 3144291 3600 1182648 1453.93 2037 3600

7 118910 1461.13 554717 3600 581730 3600 600 3600

10 70791 3600 366851 3600 46460 3600 144 3600

14 21798 3600 137086 3600 6654 3600 45 3600

P70 7 250196 3091.40 147177 3600 549926 3600 496 3600

10 43502 3600 25672 3600 41297 3600 149 3600

14 13091 3600 7507 3600 7090 3600 46 3600

19 7156 3600 61061 3600 912 3600 8 3600

5.3 Algorithm evaluation

This section exhibits the comparative study of the algorithms to test the
performance of the two proposed methodologies. All the implemented algorithms
solve the aforementioned benchmark cases for 20 iterative times under three
termination criteria (τ = 10, 20, 30). After completing all the experiments, the relative
percentage deviation or RPD is again applied to transfer the achieved cycle-times.
Since there are 32 cases solved 20 times under three termination criteria, each
algorithm has 1920 RPD values. Table 5 presents the average RPD values for each
problem, each average RPD value corresponding to the average value of four cases in
20 time repetitions or 80 RPD values. In this table, the three values for parameter	τ
denote three termination criteria and the symbol Avg means the overall RPD value of
all tested cases, that is, the average value of 640 RPD values.

It can be seen in Table 5 that RSA is the best performer in terms of the overall RPD
values under all the three termination criteria. RSA is followed by SA when
τ = 10, 20 and by ABC1 when τ = 30 . Specifically, RSA yields the best
performance for P25, P35, P89, P111, P148, and P297 when τ = 10 and for P25,
P35, P53, P111, P148, and P297 when τ = 20, 30. Especially, RSA and SA are the
two best performers for the three largest-size problems (P111, P148, and P297) under
the three termination criteria. If one sorts the tested algorithms in increasing order of
the overall RPD values, the sequence is: RSA, SA, ABC2, ABC1, DCS, GA, and PSO
when τ = 10. This sequence is modified to RSA, SA, ABC1, ABC2, DCS, GA and
PSO when τ = 20 and RSA, ABC1, SA, ABC2, DCS, GA, and PSO when τ = 30.
These results suggest that the proposed RSA performs best among these compared
problems and the proposed SA also shows promising results in solving large-size
problems.

Table 5 Achieved average RPD values by tested methodologies

Problem
Average relative percentage deviation

CPU time(s)
GA PSO DCS ABC1 ABC2 SA RSA

Z = [\
P25 0.92 1.37 0.64 0.10 0.35 0.48 0.10 6.3
P35 4.22 6.46 3.77 1.22 3.05 3.00 0.82 12.3
P53 3.55 5.75 2.76 2.23 2.91 2.82 2.36 28.1
P70 5.30 12.37 4.04 2.80 3.05 3.62 3.19 49.0
P89 3.71 9.83 2.85 2.28 2.46 2.54 2.14 79.2
P111 6.54 17.01 4.93 4.56 3.76 3.11 2.95 123.2
P148 8.02 20.72 5.91 6.14 4.45 3.23 2.91 219.0
P297 9.43 22.05 6.05 7.75 5.34 3.15 3.02 882.1
Avg. 5.21 11.95 3.87 3.38 3.17 2.75 2.19

Page 18 of 27Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

Z =]\
 P25 0.83 1.27 0.48 0.03 0.28 0.48 0.00 12.5

P35 3.92 5.78 3.55 1.00 2.77 3.00 0.42 24.5
P53 3.40 5.22 2.71 2.04 2.77 2.77 1.92 56.2
P70 4.98 11.39 3.75 2.25 2.87 3.54 2.79 98.0
P89 3.42 9.05 2.61 1.79 2.30 2.43 1.89 158.4
P111 5.86 15.99 4.52 3.40 3.32 2.85 2.46 246.4
P148 7.02 19.41 5.27 4.61 3.63 2.67 2.29 438.1
P297 8.17 21.32 5.13 6.14 4.00 2.38 2.19 1764.2
Avg. 4.70 11.18 3.50 2.66 2.74 2.51 1.75

Z = ^\
P25 0.83 1.27 0.46 0.03 0.20 0.48 0.00 18.8
P35 3.91 5.50 3.28 0.82 2.63 3.00 0.31 36.8
P53 3.31 5.00 2.68 1.98 2.64 2.71 1.82 84.3
P70 4.67 10.95 3.59 1.96 2.80 3.46 2.60 147.0
P89 3.25 8.68 2.49 1.55 2.24 2.39 1.63 237.6
P111 5.42 15.27 4.37 2.95 3.12 2.70 2.20 369.6
P148 6.65 18.76 4.83 3.89 3.30 2.41 2.07 657.1
P297 7.56 20.93 4.65 5.26 3.57 1.90 1.84 2646.3
Avg. 4.45 10.80 3.29 2.31 2.56 2.38 1.56

*Best average RPD values in bold.

To check whether the observed difference is statistically significant, this research
also carries out the multifactor ANOVA test with the algorithm type and elapsed CPU
time (τ = 10, 20, 30) as two factors. Since there is a big difference in the performance
of an algorithm on different problems, the proposed ANOVA test utilizes the average
RPD value of 32 cases in a single run as the response variables based on the work
done in Li et al. (2017b). There are 20 average RPD values for each algorithm under
one termination criterion. After checking the fulfillment of the three main hypotheses
required for ANOVA (independence of the residuals, homogeneity of variance, and
normality), the ANOVA test is conducted. The results of the analysis suggest a
significant statistical difference between algorithms and elapsed CPU time. For
brevity’s sake, the detailed ANOVA table is not presented, but the mean plots for the
interaction between algorithm type and elapsed CPU time are presented in Figure 6.
In this figure, the numbers 10, 20, and 30 indicate the three values of parameter τ in
the termination criteria.

Algorithm

GA DCS ABC1 ABC2 SA RSA

A
ve

ra
ge

 R
el

at
iv

e
P

er
ce

nt
ag

e
D

ev
ia

tio
n

2

3

4

5 10
20
30

Figure 6. Mean plots with Tukey HSD confidence intervals for the interaction between algorithm type

and elapsed CPU time (τ = 10, 20, 30)

Page 19 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

It is evident from Figure 6 that RSA is the best performer under all three
termination criteria, SA is the second-best performer when τ = 10, 20, and ABC1 is
the second-best performer when τ = 30. In short, the analysis results correspond with
those presented in Table 5. It also can be seen that there are no overlapping
confidence intervals between RSA and other methods. It can be seen that the
overlapping confidence intervals denote that the observed difference between the two
overlapped means is statistically insignificant. Hence, it is sufficient to say that the
proposed RSA is statistically better than benchmark methods.

This paper also presents the best achieved cycle-time in 20 times iterations by the
implemented algorithms in Table 6. In this table, OPT indicates the achieved optimal
cycle-times by the developed models. The abbreviation hGA means the best
cycle-times by a hybrid genetic algorithm in Gao et al. (2009), and the values of these
cycle-times are taken from the literature directly. It should be noted that the
cycle-times by hGA, to the authors’ best knowledge, are the current best published
results regarding solutions to the considered RALB-II problem.

From Table 6, it is seen that the cycle-times for 23 cases out of 32 cases are updated,
and especially the cycle-times for all the 20 large-size cases are updated. Among the
remaining nine cases, eight cases are solved optimally by hGA and hence no
improvement can be achieved. To be specific, among these updated cycle-times, GA
achieves two cases, PSO achieves one case, ABC1 achieves five cases, ABC2
achieves seven cases, SA achieves seven cases, and RSA achieves 16 cases. Clearly,
RSA is again the best performer in terms of the updated cycle-times. To evaluate the
performance of the algorithms in updating the cycle-time in all cases, this research
calculates the average improvement rate of 32 cases, and the improvement in one case
by an algorithm is calculated utilizing 100 ∙ ,��_`a − ��RWX?- ��_`a⁄ , where CThGA
is the best cycle-time by hGA or current best cycle-time, and CTSome is the yield
cycle-time by one implemented algorithm for the same case. The calculated average
improvement rates by the seven tested algorithms are as follows: -0.33% by GA, -6.26%
by PSO, -1.56% by DCS, 0.57% by ABC1, 0.92% by ABC2, 1.20% by SA, and 1.34%
by RSA. As we can see, RSA and SA achieve the largest and second-largest average
improvement rates, and ABC2 and ABC1 achieve the third- and fourth-largest average
improvement rates. The other three methods, cannot achieve positive average
improvement rate, indicating, on average, worse results than the known best results. It
should be noted that hGA utilizes a strong local search procedure whereas the
implemented method utilizes no local search procedure and is much simpler. Despite
the simplicity of the tested methods, four of them achieve positive average
improvement rates. In summary, these computational results validate the superiority
of the proposed RSA and SA in terms of the average improvement rate.

6. Conclusion and future research

Modern assembly line systems utilize robots by replacing human workers to
improve quality and increase flexibility. This paper studies type II robotic assembly
lines and the associated line-balancing problem with cycle-time minimization
criterion. To solve this problem, this paper formulates four mixed-integer linear

Page 20 of 27Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

programming models to tackle small-size problem instances for optimality and two
metaheuristic methodologies: original simulated annealing algorithm (SA) and
restarted simulated annealing algorithm (RSA) for solving large-size problem
instances in an acceptable computational time. The restarted method utilizes the
restart mechanism to replace the incumbent temperature with a new temperature to
emphasize exploitation. The two methods employ iterative mechanisms for cycle-time
update and new objective to preserve the solution with fewer critical workstations.

All the models achieve optimality for nine out of 16 cases within 3600s whereas the
published non-linear model in Gao et al. (2009) achieves the optimality only for two
cases within acceptable CPU time. Among the tested models (Model 1, Model 2,
Model 3, and Model 4), Model 1 is the best performer in terms of the number of cases
solved to optimality within the given CPU time. To evaluate the developed methods,
five other metaheuristic methodologies are re-implemented: genetic algorithm,
particle swarm optimization algorithm, cuckoo search algorithm, and two types of
artificial bee colony algorithms. A comprehensive study is conducted to solve 32
benchmark instances using three termination criteria. Computational results along
with statistical analysis using multifactor analysis of variance demonstrate that the
proposed methods produce promising results and the proposed RSA is the best
performer among those tested methods. The implemented algorithms are capable of
achieving smaller cycle times that in turn helps in increasing the line efficiency,
leading to increasing product output, by achieving 23 new upper bounds out of 32
benchmark cases. The proposed models will help production managers in the decision
making and these models can be utilized for designing/redesigning robotic assembly
lines that are efficient in terms of minimizing cycle time.

Future research avenues that stem out from the extensions of the solved problem
include mixed-model robotic assembly line and mixed-model robotic assembly line
balancing and sequencing. Since the real-world industrial contexts are much more
complex than the typical problem addressed in literature, this research will assist in
reducing the gap between research and real-world application. For instance, there
might be constraints such as a task that cannot be operated by some robots or a robot
cannot be allocated to some workstations. It would also be interesting to research the
collaboration between humans and robots and its impact on the line-balancing
problem, since this configuration is more relevant in the factories of the future.

Table 6 Best cycle-times by tested methodologies
Problem Ns OPT hGA(Gao et al., 2009) GA PSO DCS ABC1 ABC2 SA RSA

P25 3 503 503 503 503 503 503 503 503 503

4 327 327 327 327 327 327 327 327 327

6 213 213 213 213 213 213 213 213 213

9 - 123 121 121 125 121 121 121 121

P35 4 449 449 449 449 450 449 449 449 449

5 344 344 344 344 375 344 344 344 344

7 222 222 222 222 222 222 222 222 222

12 - 113 112 118 112 111 111 112 111

P53 5 554 554 558 560 560 556 556 556 554

7 320 320 320 320 320 320 320 320 320

10 - 230 230 248 239 230 239 239 238

14 - 162 162 169 165 159 160 160 158

P70 7 448 449 454 455 454 448 448 454 448

10 - 272 271 286 282 271 271 272 273

14 - 204 202 215 211 201 200 198 198

Page 21 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

19 - 154 154 166 155 149 148 151 151

P89 8 - 494 494 494 497 492 494 494 494

12 - 370 365 379 377 365 365 363 362

16 - 236 237 252 238 236 236 236 235

21 - 205 205 221 205 202 201 199 201

P111 9 - 557 562 588 579 559 556 559 560

13 - 319 329 355 331 321 321 320 319

17 - 257 253 280 262 251 250 246 248

22 - 192 197 222 196 195 192 191 190

P148 10 - 600 624 668 617 612 611 614 606

14 - 427 431 476 445 425 420 417 416

21 - 300 299 337 296 292 287 283 283

29 - 202 202 229 198 196 192 189 189

P297 19 - 646 654 711 662 639 638 632 629

29 - 430 435 503 448 435 427 424 422

38 - 344 339 392 340 341 333 324 328

50 - 256 263 299 256 256 249 244 245

*Updated cycle-times in bold.

References

AGHAJANI, M., GHODSI, R. & JAVADI, B. 2014. Balancing of robotic mixed-model two-sided

assembly line with robot setup times. The International Journal of Advanced Manufacturing

Technology, 74, 1005-1016.

BATTAÏA, O. & DOLGUI, A. 2013. A taxonomy of line balancing problems and their

solutionapproaches. International Journal of Production Economics, 142, 259-277.

BAYKASOGLU, A. 2006. Multi-rule Multi-objective Simulated Annealing Algorithm for Straight and

U Type Assembly Line Balancing Problems. Journal of Intelligent Manufacturing, 17,

217-232.

BORBA, L. & RITT, M. 2014. A heuristic and a branch-and-bound algorithm for the Assembly Line

Worker Assignment and Balancing Problem. Computers & Operations Research, 45, 87-96.

ÇIL, Z. A., METE, S. & AĞPAK, K. 2016. Analysis of the type II robotic mixed-model assembly line

balancing problem. Engineering Optimization, 1-20.

DAOUD, S., CHEHADE, H., YALAOUI, F. & AMODEO, L. 2014. Solving a robotic assembly line

balancing problem using efficient hybrid methods. Journal of Heuristics, 20, 235-259.

DO, N. A. D., NIELSEN, I. E., CHEN, G. & NIELSEN, P. 2016. A simulation-based genetic algorithm

approach for reducing emissions from import container pick-up operation at container

terminal. Annals of Operations Research, 242, 285-301.

EREL, E., SABUNCUOGLU, I. & AKSU, B. A. 2001. Balancing of U-type assembly systems using

simulated annealing. International Journal of Production Research, 39, 3003-3015.

FATHI, M., Á LVAREZ, M. J. & RODRÍGUEZ, V. 2016. A new heuristic-based bi-objective

simulated annealing method for U-shaped assembly line balancing. European Journal of

Industrial Engineering, 10, 145-169.

GAO, J., SUN, L., WANG, L. & GEN, M. 2009. An efficient approach for type II robotic assembly line

balancing problems. Computers & Industrial Engineering, 56, 1065-1080.

HAMZADAYI, A. & YILDIZ, G. 2012. A genetic algorithm based approach for simultaneously

balancing and sequencing of mixed-model U-lines with parallel workstations and zoning

constraints. Computers & Industrial Engineering, 62, 206-215.

HAMZADAYI, A. & YILDIZ, G. 2013. A simulated annealing algorithm based approach for balancing

and sequencing of mixed-model U-lines. Computers & Industrial Engineering, 66,

1070-1084.

Page 22 of 27Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

JAYASWAL, S. & AGARWAL, P. 2014. Balancing U-shaped assembly lines with resource dependent

task times: A Simulated Annealing approach. Journal of Manufacturing Systems, 33, 522-534.

KHORASANIAN, D., HEJAZI, S. R. & MOSLEHI, G. 2013. Two-sided assembly line balancing

considering the relationships between tasks. Computers & Industrial Engineering, 66,

1096-1105.

LEVITIN, G., RUBINOVITZ, J. & SHNITS, B. 2006. A genetic algorithm for robotic assembly line

balancing. European Journal of Operational Research, 168, 811-825.

LI, Z., DEY, N., ASHOUR, A. S. & TANG, Q. 2017a. Discrete cuckoo search algorithms for two-sided

robotic assembly line balancing problem. Neural Computing and Applications, 1-12.

LI, Z., JANARDHANAN, M. N., TANG, Q. & NIELSEN, P. 2016a. Co-evolutionary particle swarm

optimization algorithm for two-sided robotic assembly line balancing problem. Advances in

Mechanical Engineering, 8, 1-14.

LI, Z., KUCUKKOC, I. & NILAKANTAN, J. M. 2017b. Comprehensive review and evaluation of

heuristics and meta-heuristics for two-sided assembly line balancing problem. Computers &

Operations Research, 84, 146-161.

LI, Z., TANG, Q. & ZHANG, L. 2016b. Minimizing energy consumption and cycle time in two-sided

robotic assembly line systems using restarted simulated annealing algorithm. Journal of

Cleaner Production, 135, 508-522.

MIRALLES, C., GARCÍA-SABATER, J. P., ANDRÉS, C. & CARDÓS, M. 2008. Branch and bound

procedures for solving the Assembly Line Worker Assignment and Balancing Problem:

Application to Sheltered Work centres for Disabled. Discrete Applied Mathematics, 156,

352-367.

MOSADEGH, H., ZANDIEH, M. & GHOMI, S. M. T. F. 2012. Simultaneous solving of balancing and

sequencing problems with station-dependent assembly times for mixed-model assembly lines.

Applied Soft Computing, 12, 1359-1370.

NILAKANTAN, J. M., HUANG, G. Q. & PONNAMBALAM, S. 2015a. An investigation on

minimizing cycle time and total energy consumption in robotic assembly line systems.

Journal of Cleaner Production, 90, 311-325.

NILAKANTAN, J. M., LI, Z., TANG, Q. & NIELSEN, P. 2017. Multi-objective co-operative

co-evolutionary algorithm for minimizing carbon footprint and maximizing line efficiency in

robotic assembly line systems. Journal of Cleaner Production, 156, 124-136.

NILAKANTAN, J. M. & PONNAMBALAM, S. 2016. Robotic U-shaped assembly line balancing

using particle swarm optimization. Engineering Optimization, 48, 231-252.

NILAKANTAN, J. M., PONNAMBALAM, S. G., JAWAHAR, N. & KANAGARAJ, G. 2015b.

Bio-inspired search algorithms to solve robotic assembly line balancing problems. Neural

Computing & Applications, 26, 1379-1393.

NOURMOHAMMADI, A., NOURMOHAMMADI, A., ESKANDARI, H. & ESKANDARI, H. 2017.

Assembly line design considering line balancing and part feeding. Assembly Automation, 37,

135-143.

ÖZCAN, U. 2010. Balancing stochastic two-sided assembly lines: A chance-constrained,

piecewise-linear, mixed integer program and a simulated annealing algorithm. European

Journal of Operational Research, 205, 81-97.

ÖZCAN, U. & TOKLU, B. 2009. Balancing of mixed-model two-sided assembly lines. Computers &

Industrial Engineering, 57, 217-227.

Page 23 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

RABBANI, M., MANAVIZADEH, N. & HOSSEINI AGHOZI, N. S. 2015. Robust optimization

approach to production system with failure in rework and breakdown under uncertainty:

evolutionary methods. Assembly Automation, 35, 81-93.

RABBANI, M., MOUSAVI, Z. & FARROKHI-ASL, H. 2016. Multi-objective metaheuristics for

solving a type II robotic mixed-model assembly line balancing problem. Journal of Industrial

and Production Engineering, 33, 472-484.

RASHID, M. F. F., HUTABARAT, W. & TIWARI, A. 2012. A review on assembly sequence planning

and assembly line balancing optimisation using soft computing approaches. The International

Journal of Advanced Manufacturing Technology, 59, 335-349.

RELICH, M. & PAWLEWSKI, P. 2016. A Multi-agent Framework for Cost Estimation of Product

Design. In: BAJO, J., ESCALONA, M. J., GIROUX, S., HOFFA-DĄBROWSKA, P.,

JULIÁN, V., NOVAIS, P., SÁNCHEZ-PI, N., UNLAND, R. & AZAMBUJA-SILVEIRA, R.

(eds.) Highlights of Practical Applications of Scalable Multi-Agent Systems. The PAAMS

Collection: International Workshops of PAAMS 2016, Sevilla, Spain, June 1-3, 2016.

Proceedings. Cham: Springer International Publishing.

ROSHANI, A., FATTAHI, P., ROSHANI, A., SALEHI, M. & ROSHANI, A. 2012. Cost-oriented

two-sided assembly line balancing problem: A simulated annealing approach. International

Journal of Computer Integrated Manufacturing, 25, 689-715.

ROSHANI, A. & NEZAMI, F. G. 2017. Mixed-model multi-manned assembly line balancing problem:

a mathematical model and a simulated annealing approach. Assembly Automation, 37, 34-50.

RUBINOVITZ, J. & BUKCHIN, J. 1991. Design and balancing of robotic assembly lines, Society of

Manufacturing Engineers.

RUBINOVITZ, J., BUKCHIN, J. & LENZ, E. 1993. RALB – A Heuristic Algorithm for Design and

Balancing of Robotic Assembly Lines. CIRP Annals - Manufacturing Technology, 42,

497-500.

SCHOLL, A. & BECKER, C. 2006. State-of-the-art exact and heuristic solution procedures for simple

assembly line balancing. European Journal of Operational Research, 168, 666-693.

SITEK, P., NIELSEN, I. E. & WIKAREK, J. 2014. A hybrid multi-agent approach to the solving

supply chain problems. Procedia Computer Science, 35, 1557-1566.

SITEK, P. & WIKAREK, J. 2016. A Hybrid Programming Framework for Modeling and Solving

Constraint Satisfaction and Optimization Problems. Scientific Programming, 2016, 1-13.

TANG, Q., LI, Z. & ZHANG, L. 2016. An effective discrete artificial bee colony algorithm with idle

time reduction techniques for two-sided assembly line balancing problem of type-II.

Computers & Industrial Engineering, 97, 146-156.

YOOSEFELAHI, A., AMINNAYERI, M., MOSADEGH, H. & ARDAKANI, H. D. 2012. Type II

robotic assembly line balancing problem: An evolution strategies algorithm for a

multi-objective model. Journal of Manufacturing Systems, 31, 139-151.

Page 24 of 27Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

 Appendixes

Table A1 Main operators of the implemented methods

Algorithm Abbrev Applied operators

Genetic algorithm (Gao et al.,
2009)

GA
Binary tournament selection is applied for individual selection,
and elitism strategy is utilized to clone the best individual to the
offspring.

Particle swarm optimization
(Li et al., 2016a)

PSO

The crossover operator is applied to simulate the moving to global
best individual and local best individual, and neighbor operator is
utilized to simulate the initial velocity. No restart mechanism or
local search on the best individual is applied.

Discrete cuckoo search (Li et
al., 2017a)

DCS
The duplicated individuals and the worst individuals are
abandoned, and they are replaced with the neighbor solutions of
the remained individuals.

Artificial bee colony (Tang et
al., 2016)

ABC1

The incumbent solution is updated when the new one achieves the
better or the same fitness. The scout replaces the duplicated
individual or the worst individual in the swarm with a randomly
generated individual when no improvement on the best fitness is
achieved.

Artificial bee colony (Tang et
al., 2016)

ABC2

The incumbent solution is updated when the new one achieves the
better or the same fitness. The scout replaces the duplicated
individual or the worst individual in the swarm with a neighbor
solution of a randomly selected individual from the current swarm
when no improvement on the best fitness is achieved.

Simulated annealing SA The proposed methodology in Section 3.2.
Restarted simulated annealing RSA The proposed methodology in Section 3.2.

Page 25 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

Table A2 Selected parameter values of the implemented methodologies

Algorithm Parameters Range Selected value
GA Population size 80, 120, 160, 200 120
 Crossover rate (Mutation rate=1-crossover rate) 0.5, 0.6, 0.7, 0.8 0.5
 Selection type Binary tournament selection
 Crossover operator Two-point crossover operator
PSO Swarm number 4, 6, 8 4
 Number of particles in a swarm 20, 40 40
 Leaner rate 0.4, 0.5, 0.6, 0.7 0.7
 Moving to global best or local best Two-point crossover operator
DCS Population size 20, 40, 60, 80 20
 Abandon rate 0.1, 0.2, 0.3, 0.4 0.1
ABC1 Population size 20, 40, 60, 80 20
ABC2 Population size 20, 40, 60, 80 20
SA Initial temperature 0.5, 1 1.0
 Ratio of temperature decreasing 0.9, 0.95, 0.98 0.9
 Iteration rate 100, 500, 1000 500
RSA Initial temperature 0.5, 1.0 0.5
 Cooling rate 0.9, 0.95, 0.98 0.9

Number of iterations before a temperature
change

100, 500, 1000 100

 Restart temperature
0.1, 0.01, 0.001,
0.0001, 0.0

0.01 for small-size problems
0.001 for large-size problems

Restart time (RT) before executing restart
mechanism

100, 200 200

Table A3-1 Detailed results for Model 1 and Model 2

Tested
model

Task
number

Ns
Single

equations
Single

variables
Non-zero
elements

Iterations Nodes Results
Time

(s)
Model 1 P25 3 75 235 1,281 4359 65 503 0.85

4 85 417 2,276 40067 611 327 2.28

6 111 937 5,118 1303828 15991 213 55.46

9 165 2,107 11,511 57300147 537022 123 3600

P35 4 108 577 3,172 139989 2244 449 6.51

5 120 901 4,955 260772 1847 344 12.40

7 150 1,765 9,709 3858563 36812 222 224.69

12 260 5,185 28,524 26725190 54749 130 3600

P53 5 175 1,351 8,155 927120 7216 554 55.27

7 205 2,647 15,981 18055777 118910 320 1461.13

10 265 5,401 32,610 27379891 70791 345 3600

14 373 10,585 63,910 13952637 21798 288 3600

P70 7 226 3,480 18,872 31893875 250196 448 3091.40

10 286 7,101 38,510 21156916 43502 363 3600

14 394 13,917 75,474 12349626 13091 577 3600

19 574 25,632 139,004 6453810 7156 1023 3600

Model 2 P25 3 763 194 5,414 55949707 16477823 503 3600

4 990 226 8,110 31000819 7079287 327 3600

6 1,444 296 14,864 43303111 7485976 214 3600

9 2,125 416 28,400 27488794 5025133 125 3600

P35 4 2,371 433 20,234 33946347 5147710 456 3600

5 2,935 477 28,095 32543872 4370414 348 3600

7 4,063 571 47,201 20965116 799343 236 3600

12 6,883 841 114,706 11079698 1310261 128 3600

P53 5 3,103 567 29,086 30053350 3144291 560 3600

7 4,269 697 48,840 24080990 554717 329 3600

10 6,018 907 87,216 21623950 366851 274 3600

14 8,350 1,215 154,708 16664144 137086 182 3600

P70 7 15,052 1,590 177,604 7356866 147177 507 3600

10 21,406 1,851 317,200 4549834 25672 352 3600

14 29,878 2,227 562,632 3286099 7507 296 3600

19 40,468 2,742 964,732 1689243 61061 185 3600

Page 26 of 27Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Assem
bly Autom

ation

Table A3-2 Detailed results for Model 3 and Model 4

Tested
model

Task
number

Ns
Single

equations
Single

variables
Non-zero
elements

Iterations Nodes Results
Time

(s)
Model 3 P25 3 232 82 759 4043 451 503 0.44

4 449 113 1,452 244240 8198 327 5.03

6 1,141 181 3,606 5780437 367636 213 243.59

9 2,914 298 9,027 31466587 459797 130 3600

P35 4 615 153 2,000 143537 13552 449 5.04

5 1,020 196 3,275 500289 27924 344 21.97

7 2,184 288 6,881 6603289 263998 222 466.32

12 7,439 553 22,896 13138218 73719 125 3600

P53 5 1,778 286 5,675 27235094 1182648 554 1453.93

7 3,756 414 11,795 35108103 581730 347 3600

10 8,253 621 25,550 11004986 46460 347 3600

14 17,357 925 53,186 4343624 6654 529 3600

P70 7 3,941 533 12,537 32194702 549926 458 3600

10 8,630 791 26,970 10308079 41297 361 3600

14 18,102 1,163 55,846 4340084 7090 1383 3600

19 35,657 1,673 109,041 1771845 912 1395 3600

Model 4 P25 3 3,193 82 9,642 2351 68 503 1.23

4 4,397 113 13,296 39710 978 327 14.13

6 7,063 181 21,372 273109 3622 213 83.16

9 11,797 298 35,676 11183732 155859 123 3600

P35 4 7,967 153 24,056 178230 3634 449 70.53

5 10,210 196 30,845 126301 1327 344 61.25

7 15,050 288 45,479 1131004 15559 222 632.80

12 29,495 553 89,064 2830002 8022 135 3600

P53 5 75,168 286 225,845 747735 2037 560 3600

7 106,502 414 320,033 506316 600 377 3600

10 155,033 621 465,890 318338 144 407 3600

14 222,849 925 669,662 263176 45 311 3600

P70 7 103,208 533 310,338 551804 496 467 3600

10 150,440 791 452,400 319926 149 308 3600

14 216,636 1,163 651,448 235759 46 888 3600

19 305,096 1,673 917,358 317372 8 706 3600

Page 27 of 27 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

