
Aalborg Universitet

Muscle stretching - the potential role of endogenous pain inhibitory modulation on
stretch tolerance

Støve, Morten Pallisgaard; Hirata, Rogerio Pessoto; Palsson, Thorvaldur Skuli

Published in:
Scandinavian Journal of Pain

DOI (link to publication from Publisher):
10.1515/sjpain-2018-0334

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Støve, M. P., Hirata, R. P., & Palsson, T. S. (2019). Muscle stretching - the potential role of endogenous pain
inhibitory modulation on stretch tolerance. Scandinavian Journal of Pain, 19(2), 415-422.
https://doi.org/10.1515/sjpain-2018-0334

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1515/sjpain-2018-0334
https://vbn.aau.dk/en/publications/31690fc4-aa00-4f7e-b483-4410132350d2
https://doi.org/10.1515/sjpain-2018-0334


Downloaded from vbn.aau.dk on: June 18, 2025



Scand J Pain 2019; 19(2): 415–422

Original experimental

Morten Pallisgaard Støve*, Rogerio Pessoto Hirata and Thorvaldur Skuli Palsson

Muscle stretching – the potential role of 
endogenous pain inhibitory modulation on stretch 
tolerance
https://doi.org/10.1515/sjpain-2018-0334
Received November 3, 2018; revised December 10, 2018; accepted 
December 18, 2018; previously  published online January 30, 2019

Abstract

Background and aims: The effect of stretching on joint 
range of motion is well documented and is primarily 
related to changes in the tolerance to stretch, but the mech-
anisms underlying this change are still largely unknown. 
The aim of this study was to investigate the influence of a 
remote, painful stimulus on stretch tolerance.
Methods: Thirty-four healthy male subjects were recruited 
and randomly assigned to an experimental pain group 
(n = 17) or a control group (n = 17). Passive knee extension 
range of motion, the activity of hamstring muscles and 
passive resistive torque were measured with subjects in 
a seated position. Three consecutive measures were per-
formed with a 5-min interval between. A static stretch 
protocol was utilized in both groups to examine the effect 
of stretching and differences in stretch tolerance between 
groups. Following this, the pain-group performed a cold 
pressor test which is known to engage the endogenous 
pain inhibitory system after which measurements were 
repeated.
Results: A significant increase in knee extension range 
of motion was found in the pain group compared with 
controls (ANCOVA: p < 0.05). No difference was found in 
muscle activity or passive resistive torque between groups 
(ANCOVA p > 0.091).
Conclusions: Passive knee extension range of motion 
 following stretching increased when following a distant, 

painful stimulus, potentially engaging the endogenous 
pain inhibitory systems. Current findings indicate a link 
between increased tolerance to stretch and endogenous 
pain inhibition.
Implications: The current findings may have implications 
for clinical practice as they indicate that a distant pain-
ful stimulus can influence range of motion in healthy 
individuals. This implies that the modulation of pain has 
significance for the efficacy of stretching which is impor-
tant knowledge when prescribing stretching as part of 
rehabilitation.

Keywords: stretch tolerance; range of motion; pain; 
stretching.

1   Introduction
Flexibility is an important factor in the ability to maintain 
independent activities of daily living [1] and reduced flex-
ibility is likewise associated with both musculoskeletal 
pain [2] and reduced balance [3]. Stretching is commonly 
used in relation to both exercise and rehabilitation where 
the purpose is to improve function, reduce pain and to 
prevent injury [4]. The acute increase in joint flexibil-
ity following stretching is commonly related to changes 
in the viscoelastic properties of the muscle-tendon unit 
or an acute neuromuscular relaxation [5]. However, the 
mechanical properties of the muscle-tendon unit are 
largely unaffected by stretching, hence the increase in 
range of motion following both acute and chronic stretch-
ing is mainly related to alterations in the sensory system 
[6, 7]. Current evidence suggests that the increase in range 
of motion following stretching is strongly related to an 
increase in the tolerance to stretch [5, 8–10]. Moreover, 
a recent study showed that range of motion following 
stretching was significantly and positively associated 
with average pain sensitivity ratings [11]. Stretch tolerance 
is defined as the ability to tolerate the discomfort related 
to stretching [12]. An increase in stretch tolerance seems 
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to depend on a reduction in pain sensitivity [13] and is 
associated with average pain sensitivity ratings [11]. This 
may be related to an analgesic effect allowing the person 
to tolerate increased levels of passive tension required to 
stretch the muscle farther than it was before [14]. These 
findings may indicate that by reducing the input from 
regional peripheral nociceptive afferents, the stretch tol-
erance could be increased.

The nervous system has an inbuilt ability to modulate 
the perceived magnitude of afferent noxious stimuli via 
supraspinally mediated endogenous pain inhibition or 
facilitation [15] and by engaging endogenous mechanisms 
in healthy individuals pain tolerance is known to increase 
[16, 17]. Given the relationship between tolerance to pain 
and stretch tolerance, increasing tolerance to pain could 
potentially increase range of motion following stretching. 
Whether such modulating mechanisms affect the stretch 
tolerance is unclear, warranting an investigation of how 
and if engaging endogenous inhibitory pain mechanisms 
may increase joint flexibility during stretching.

The purpose of this study was to extend the findings 
of previous literature by investigating the influence of a 
remote, painful stimulus, known to modulate pain per-
ception in healthy adults, on stretch tolerance follow-
ing stretching, as measured by changes in passive knee 
extension range of motion. The hypotheses were that i) 
passive, pain-free range of motion and passive resistive 
torque would increase following a tonic, painful stimulus 
at a remote site of the body but ii) muscle activity during 
passive knee extension would remain unchanged.

2   Materials and methods
A sample of convenience consisting of 34  healthy male 
university students was recruited for this cross-sectional 
study. Participants were randomly assigned to a pain 
group (n = 17) or a control group (n = 17) using counterbal-
anced block randomization. Only males were included 
to avoid the potential effect that fluctuations in gonadal 
hormone values may have on the endogenous pain inhibi-
tory mechanisms [18]. According to International Knee 
Documentation Committee (IKDC) criteria a patient is 
considered to have normal range of motion if extension 
is within 2° of the opposite knee [19, 20], hence a differ-
ence in knee extension of >2° must be detected in order 
to properly categorize knee function [21]. The sample size 
was thus determined to detect a minimum difference in 
knee extension range of motion of 2° with α = 0:05, β = 0.2 
(80% power). Based on these data, an n value of 16 sub-
jects in each group was calculated to be necessary which 

was increased to n = 17 in each group to account for pos-
sible technical errors during the study. Eligibility for 
participation included the absence of any pain or other 
neurological, psychological or cardiovascular conditions 
that might affect the somatosensory system. All subjects 
were asked to refrain from physical exercises, caffeinated 
beverages and the use of pain medication on the day of 
participation. The participants entered the study after pro-
viding their written informed consent. The study was con-
ducted in accordance with the declaration of Helsinki and 
approved by the local ethical committee (N-20160019). 
The study was registered at ClinicalTrials.gov with the 
registry ID NCT03713788.

Following an introduction to the testing procedures, 
passive knee extension range of motion was measured in a 
seated position (Fig. 1) three consecutive times with 5-min 
intervals between measurements (Fig. 2).

A Biodex system 4 pro isokinetic dynamometer 
(Biodex Medical Systems, Shirley, NY, USA) was used 

Fig. 1: The picture illustrates the experimental set-up using the 
isokinetic dynamometer. Here, the participant was comfortably seated 
with the trunk and lower extremities securely fastened with straps. The 
lever arm of the biodex passively moved the leg towards extension at 
a speed of 5°/s. The participant was instructed to press a button when 
the stretch sensation in the posterior thigh changed to pain.
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to quantify knee extension range of motion and passive 
resistive torque during the passive knee extension 
motions. The torque values were corrected for gravity 
using the embedded software. The subjects were seated 
and fixed to the chair in accordance with previous pro-
cedures [22] with restraining straps over the pelvis, 
trunk, thigh and lower leg with a hip flexion angle of 
100°, and a knee extension angle of 80° with 180° being 
equal to full knee extension. Posterior pelvic tilt was 
prevented by placing a firm wedge (22.5*6*5 cm) at the 
low back (the level of L5) (Fig. 1). The seated position 
ensured that no subject was able to reach full knee 
extension hence the stretch manoeuvre placed tension 
primarily on the muscle-tendon unit [23]. To exclude 
any reflexive muscle activity, the dynamometer lever 
arm passively extended the knee at an angular veloc-
ity of 5°/s [24] with a sampling rate of 100 Hz. The sub-
jects were instructed to press a stop button when they 
felt that the sensation of stretch changed to pain, which 
instantaneously stopped the lever arm. This was defined 
as the stretch tolerance [8, 22]. The Biodex system has 
a minimum detectable change (MDC95%) of 1.2° (range 
of motion) and 0.0 Nm (passive resistive torque) as cal-
culated based upon the standard error of measurement 
(SEM) reported by Drouin et al. [25].

Muscle activity during the passive knee extension 
motion was recorded with a Noraxon Desktop DTS Wire-
less Surface EMG amplifier (Noraxon U.S.A. Inc., Scotts-
dale, AZ, USA). Following appropriate skin preparation, 
surface electrodes (Noraxon Dual EMG Gel Electrodes; 
Noraxon U.S.A. Inc., Scottsdale, AZ, USA) were placed 
on the muscle bellies, parallel to the muscle fibres on the 
M. Biceps femoris, M. Semimembranosus, and M. Sem-
itendinosus in accordance with SENIAM guidelines [26]. 
A reference electrode was placed on the antero-superior 
aspect of the tibia [1]. Measurements were documented 
using video recordings (Logitech HD pro Webcam C920; 
Logitech International S.A, Romanel-sur-Morges, Swit-
zerland) with a sampling rate of 30 frames per second 
(1080px). EMG activity was quantified as the root mean 
square (RMS) amplitude over the period from initiation 
of extension until movement was stopped in accordance 
with previous procedures [22, 27, 28]. EMG data and video 

recordings were digitally synchronized by placing digital 
time markers on the first and last frame in which move-
ment of the lever arm on the Biodex could be identified. 
Using this method, the range of motion and passive resis-
tive torque data were synchronised to within 1/30 of a 
second of the EMG data. EMG data were collected using a 
sampling rate of 1500 Hz and the signals were filtered with 
a 6th order Butterworth pass-band filter 20–500 Hz [29], 
and RMS (50 ms window) values were calculated for each 
measurement [1, 24]. MR 3.8  software (Noraxon U.S.A. 
Inc., Scottsdale, AZ, USA) was used for both synchronisa-
tion and analysis.

The first measurement served as a pre-stretch base-
line, the second measurement as a post-stretch meas-
urement and the third measurement was the post-pain 
measurement. To reduce potential confounders in rela-
tion to group differences in stretch tolerance, the effect 
of stretching was first examined and compared between 
groups before the tonic pain was induced in the pain 
group.

Following the pre-stretch measurement, both 
groups underwent a static stretch protocol consisting 
of two bouts of 30-s constant-angle static stretching of 
the knee flexors with a 1-min rest between bouts. Sub-
jects were instructed to keep the limb relaxed as the 
lower leg was passively moved towards extension. Each 
movement was stopped when the subjects felt that the 
sensation of stretch changed to pain, which was defined 
as the stretch tolerance. This position was then kept 
constant for 30  s. Following the stretch protocol, the 
post-stretch measurement was performed, following 
the same procedures as at baseline. Finally, only sub-
jects in the pain group were instructed to immerse their 
non-dominant hand into a container with circulating 
water at 1 °C–4 °C and keep it there for 2 min. They were 
instructed to immerse it to wrist-level and keep the hand 
open. During this part of the study, both groups were 
seated in the Biodex. Water temperature was controlled 
using a digital thermometer (Electronic Temperature 
Ltd. 810–930; Electronic Temperature Instruments Ltd., 
Worthing, UK) and a water pump (Aquadistri Aqua-
Power 200–200 l; Aquadistri UK Ltd, Great Gransden, 
Cambridgeshire, UK) was used to circulate the water, 

Fig. 2: Illustration of the procedures presented in experimental order. Knee extension ROM, muscle activity and passive resistive torque 
were measured three times, pre-stretch, post-stretch and post-pain. Two bouts of 30 s Constant Angle stretching was administered in both 
groups and the pain group performed the cold pressor test while the control group rested passively.
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preventing local warming [30]. The subjects rated the 
cold-induced pain intensity on a 0–10 numerical rating 
scale (NRS) where 0  was defined as “no pain” and 10 
as “maximal pain” [17]. Following this procedure, the 
participants extracted their hand out of the water. The 
post-pain measurement was then performed 30 s later to 
minimize the likelihood of pain-induced distraction on 
the measurement [31]. All data (muscle activity, passive 
resistive torque and range of motion) were extracted for 
analysis when all measurements had been performed. 
Therefore, both the participant and researcher were 
blind to the results of all measurements.

The data were analysed using SPSS 23 (SPSS Inc., 
Chicago, IL, USA). To explore the homogeneity between 
the two groups, physical characteristics of the partici-
pants and pre-stretch range of motion were examined 
using independent samples t-tests, between groups dif-
ference in hand dominance was assessed by Fisher’s 
Exact test and normality of the data were assessed by 
the Shapiro-Wilks test. Pre-stretch between-groups dif-
ferences in range of motion, muscle activity and passive 
resistive torque were examined using One Way analysis 
of variance (ANOVA). Univariate Analysis of Covariance 
(ANCOVA) was used to examine the post-stretch between-
groups differences in range of motion, muscle activity and 
passive resistive torque. The pre-stretch values served as 
the covariate following verification of the homogeneity of 
regression assumption to account for the potential issue 
of collinearity and for potential between-groups pre-test 
or post-stretch differences. Post-pain Between-group dif-
ferences in range of motion, muscle activity and passive 
resistive torque were examined with the post-stretching 
values serving as the covariate following verification of 
the homogeneity of regression assumption. Cohen’s d was 
used to calculate effect size. Within-group differences in 
range of motion, passive resistive torque and muscle activ-
ity were analysed using paired samples t-tests. An alpha 
level of 0.05 was defined for the statistical significance of 
all the tests.

3   Results
Due to technical failure, post-pain measurement data was 
lost for n = 1 subject in the pain group. Due to this, a post-
pain intention-to-treat analysis was performed using data 
from the post-stretch measurement for that subject. There-
fore, a full dataset for 34 subjects (17 in each group) was 
available for data analysis.

Participant characteristics are summarized in Table 1. 
No significant between group differences were found in 

demographic or physical characteristic variables (p > 0.05) 
(Table 1). Mean pain intensity (NRS) after the cold pressor 
test was 6.8 ± 0.9 (95% CI 6.27–7.26).

3.1   Between-groups comparisons

The ANCOVA showed significantly increased post-pain 
knee extension range of motion in the pain group com-
pared with the control group (F = 4,706 (1, 32), p = 0.038) 
with an observed power = 0.6 and an effect size (d) = −0.83. 
The ANCOVA showed no additional between-groups dif-
ferences in range of motion (F < 0.605 (1, 32), p > 0.442) 
(Fig. 3).

The ANCOVA showed no between-groups differences 
in muscle activity (p > 0.162) or passive resistive torque 
(p > 0.091) during the passive knee extension motions 
(Fig. 5).

Table 1: Demographic and Physical characteristics of the 
participants shown as mean group values ± SD.

  Pain 
(n = 17)

  Control 
(n = 17)

  p-Value  Total 
(n = 34)

Age (years)   25.7 ± 5.5   25.0 ± 5.1   0.701  25.5 ± 5.4
Height (cm)   181.8 ± 5.4   181.8 ± 5.7   0.976  181.6 ± 5.5
Weight (kg)   82.5 ± 11.9   75.9 ± 8.7   0.075  79.5 ± 10.7
BMI (kg/m2)   25.0 ± 3.8   22.4 ± 1.9   0.052  24.2 ± 3.1
Hand dominance   R (14/17)   R (16/17)   0.601  R 30/34
MET score (W/kg)   46.0 ± 7.4   45.2 ± 6.9   0.746  46.0 ± 7.0

Hand dominance is indicated as the ratio between left and right-
handed individuals. MET: Metabolic Equivalent of Task score and 
BMI = body mass index.
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Fig. 3: Mean ± SD of range of motion (in degrees) in the passive 
knee extension measured pre-stretch, post-stretch and post-pain for 
the control and pain group. *Between-groups difference Post-pain 
(p = 0.038). #Within-group post-stretch – post-pain difference for the 
pain group (p = 0.003).
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3.2   Within-Groups comparisons

A significant within-group post-stretch – post-pain dif-
ference in range of motion was found for the pain group 
(p = 0.003) but not the control group (p > 0.1). No addi-
tional within-group differences in range of motion were 
found (p > 0.2) (Fig. 3).

For passive resistive torque, a significant within-
group post-stretch – post pain increase was found in the 
pain group (p > 0.001). No additional within-group differ-
ences in passive resistive torque (p > 0.3) or muscle activity 
(p > 0.07) were found (Figs. 4 and 5).

4   Discussion
This is the first study to investigate the role of a remote, 
painful stimulus on passive joint range of movement 
 following stretching. The main findings of this study 
demonstrate that by engaging the endogenous pain 
inhibitory systems after stretching, a significant between-
groups increase in passive knee extension range of motion 
and within-groups increase in passive resistive torque is 
found without any apparent changes in muscle activity.

Bishop & George (2017) showed that range of motion 
measures was associated with average pain sensitiv-
ity ratings thus further indicating that sensory percep-
tion may be an important mechanism during stretching. 
However, they were unable to exclude potential changes 
in muscle activity due to an absence of electromyographic 
data. [11] The present results support previous findings 
indicating that an increase in stretch tolerance following 
stretching is not related to a reduction in muscle  activity 
[28], implicating mechanisms other than the intrinsic 

mechanical properties of the muscle-tendon unit. This 
may imply that the increased, pain-free passive range 
of motion seen here is related to an upwards shift of the 
stretch-pain threshold, e.g. stretch tolerance.

Supraspinally-mediated endogenous pain modula-
tion has significance for both the perception of pain [32] 
and the intensity of pain via descending inhibition of 
nociceptive signals from the peripheral nervous system 
[33]. By engaging this mechanism, e.g. by using the cold 
pressor test, is known to decrease pain sensitivity and 
thereby increasing the tolerance to pain [16, 17]. The 
current findings, therefore, indicate that perceived pain 
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Fig. 4: Mean ± SD of passive resistive torque (N-m) in the passive 
knee extension measured pre-stretch, post-stretch and post-pain for 
the control and pain group. *Within-group post-stretch – post pain 
difference in the pain group (p > 0.001).
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has a significant role in pain-free range of motion follow-
ing stretching.

Stretching is a common part of exercise and reha-
bilitation; it is recommended for increasing joint range 
of motion and injury prevention [34] and is generally 
recommended as part of a pre-exercise warm-up regime 
[35]. Although an increase in intramuscular temperature 
has been shown to decrease muscular stiffness [14], it 
remains unclear how and if an increase in intramuscu-
lar temperature following physical activity affects joint 
range of motion [14]. In light of the current findings, it is 
interesting to note that physical activity has been shown 
to reduce pain sensitivity in a similar manner as a painful 
conditioning stimulus [36]. Exercise-induced analgesia 
has been related with brainstem-mediated modulation 
of endogenous opioid and non-opioid systems [37] but 
given the parallels which have been drawn between this 
phenomenon and the effectiveness of conditioned pain 
modulation (CPM) [38], it is possible that this relates to a 
reduction in the sensitivity to stretch. This is similar to the 
current findings and may lead to an increase in the tol-
erance to stretch. Further studies to investigate whether 
exercise-induced activation of the pain inhibitory system 
results in similar findings is warranted.

Furthermore, stretch exercises are commonly used in 
clinical settings as part of the rehabilitation strategies for 
patients with chronic musculoskeletal pain [12]. However, 
chronic pain patients often have impaired pain inhibition 
[32] as a result of reduced efficiency of central pain inhibi-
tory systems [17, 39]. Although speculative, this may indi-
cate that people with chronic musculoskeletal pain, may 
respond differently to a stretching protocol than healthy 
individuals as the present results seem to support the 
hypothesis that observed changes in flexibility are at least 
sometimes a manifestation of pain sensitivity.

It has been shown that endogenous pain inhibitory 
mechanisms can have both a pro- and antinociceptive 
effect [40] which may account for the variation in post-
pain joint range of motion observed in this study. Also, 
cognitive attentional factors (e.g. distraction) can alter 
perceived pain intensity and it has been suggested that 
the CPM effect is, at least partly, due to cognitive atten-
tion manipulation [16]. However, the same authors con-
cluded that separate physiological mechanisms underlie 
distraction and the CPM effect [16]. With this in mind, 
this study was designed so that the post-pain passive 
knee extension range of motion measurements were first 
conducted 30-s after the hand had been removed from 
the ice water.

The results of this study indicate that the significant 
post-pain increase in passive knee extension range of 

motion was a result of supraspinally mediated endogenous 
pain inhibition, which increased the stretch tolerance fol-
lowing stretching. This implies that central pain mecha-
nisms can to some extent modulate joint range of motion 
following stretching, supporting the doubts recently put 
forward [5, 7, 28] regarding the acute increase in post-
stretch joint range of motion being a result of changes 
in the mechanical properties of the muscle-tendon unit. 
Given that fact that the increase in range of motion follow-
ing stretching is strongly related to stretch tolerance [10], 
the influence of endogenous pain inhibitory mechanisms 
on stretch tolerance reported in this study supports the 
hypothesis that an increase in stretch tolerance depends 
on an analgesic effect, resulting in greater tolerance to 
passive tension.

4.1   Methodologic considerations

The manual synchronisation of SEMG and range of 
motion data using visual inspection from a video record-
ing resulted in a systematic bias that might have influ-
enced the results regarding muscle activity during 
passive knee extension range of motion. It is therefore 
recommended, that future studies utilize digital syn-
chronisation to eliminate this potential bias. Although 
the limitations of manual synchronisation were inherent 
to the experimental design, all procedures were identical 
for all subjects, and the findings were in line with that of 
similar studies [41, 42].

A tonic, nociceptive cold stimulus has consistently 
been shown to modulate the sensitivity of central pain 
mechanism in experimental and clinical studies [33, 43]. 
This study did, however, not confirm the presence or mag-
nitude of the response by e.g. assessing the pain sensi-
tivity at remote sites. Future studies should include such 
measurements in the protocol to confirm the role of these 
mechanisms.

5   Conclusion
This is the first study to demonstrate a link between the tol-
erance to stretch and endogenous inhibitory pain mecha-
nisms. The findings may have implications for clinical 
practice as they indicate that pain, regardless of changes 
in mechanical properties can influence range of motion 
in healthy individuals. The current results warrant further 
investigations of endogenous pain inhibitory mechanisms 
effect on muscle stretches on joint range of motion in dif-
ferent chronic pain states.
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