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Effects of rescaling bilinear interpolant on image interpolation quality 
 

Olivier Rukundo1a, Samuel E. Schmidta 

aDepartment of Health Science and Technology, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark  

ABSTRACT   

Rescaling bilinear (RB) interpolant’s pixels is a novel image interpolation scheme. In the current study, we investigate 
the effects on the quality of interpolated images. RB determines the lower and upper bounds using the standard deviation 
of the four nearest pixels to find the new interval or range that will be used to rescale the bilinear interpolant’s pixels. 
The products of the rescaled-pixels and corresponding distance-based-weights are added to estimate the new pixel value, 
to be assigned at the empty locations of the destination image. Effects of RB on image interpolation quality were 
investigated using standard full-reference and non-reference objective image quality metrics, particularly those focusing 
on interpolated images features and distortion similarities. Furthermore, variance and mean based metrics were also 
employed to further investigate the effects in terms of contrast and intensity increment or decrement. The Matlab based 
simulations demonstrated generally superior performances of RB compared to the traditional bilinear (TB) interpolation 
algorithm. The studied scheme’s major drawback was a higher processing time and tendency to rely on the image type 
and/or specific interpolation scaling ratio to achieve superior performances. Potential applications of rescaling based 
bilinear interpolation may also include ultrasound scan conversion in cardiac ultrasound, endoscopic ultrasound, etc.   

Keywords: rescaling bilinear interpolant, image quality, sectored image, image interpolation, standard deviation 
 

1. INTRODUCTION  
Image interpolation quality can be understood as the image quality after interpolation. Image quality can refer to the 
level of accuracy in which different imaging systems present the signals that form an image. It can also refer to the 
weighted combination of the visually significant samples that make an image pleasant or visually artefact-free for 
observers [1]. Many works on image interpolation kept focusing on the minimization of visual artefacts – by either 
fitting the interpolation function (i.e. using non-adaptive or single kernel-based interpolation methods) or taking some 
image samples into account (i.e. using adaptive or edge-directed interpolation methods) [2], [3] – but very few, [10], 
focused specifically on the role of the spatial distribution of image pixels. For example, in [9], efforts have been made to 
minimize the relentless image interpolation artefacts by turning the interpolated value into the weighted mean between 
the pixel value corresponding to the smallest absolute difference and traditional bilinear interpolation value. In [5], a 
bilinear interpolation optimization method using ant colony algorithm has been introduced to tackle the isotropic 
assignment of pixels values in the effort to minimize visual artefacts related to such an assignment. In [4], a method 
based on the statistical selection of the pixel value closest to the traditional bilinear interpolation value has been proposed 
to efficiently tackle the image edge blurriness problem. In [6], the optimization scheme based on the nearest neighbor 
algorithm has been proposed with the main objective to improve the speed of the traditional bilinear interpolation 
algorithm by replacing the traditional bilinear with the nearest interpolation algorithm when the four nearest pixels have 
the same value. In [8], the author demonstrated the effects of rounding functions on the accuracy of the bilinear 
interpolation algorithm. In [7], a novel ant colony optimization-based interpolation method which, unlike in [5], uses a 
global weighting scheme has been proposed to smooth interpolated image edges. In [20], a method that enlarges the 
interpolation kernel without computing the locations of the nearest pixels has been proposed to create the pixel values 
leading to less visible interpolation artefacts using extrapolated pixels as well as the nearest four pixels of the traditional 
bilinear algorithm as the reference. Unlike in above-cited works, in this paper, effects of rescaled image pixels, are 
investigated in the bilinear interpolation algorithm due to its wide application and particularly in ultrasound imaging 
systems, in which the bilinear interpolation algorithm is a commonly used method for sectored image scan conversion 
[21]. For example, in [10], the authors developed a method for interpolating images using contrast enhancement 
techniques, coupled with additional constraints for the interpolation, to preserve ‘sharp edge’ information. Here, the 
studied scheme does not use any image contrast enhancement technique, instead it simply uses the standard deviation of 
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four nearest pixels to achieve new ranges or intervals on which the source image nearest four pixels can be locally 
rescaled (before multiplication with the standard distance weighted function) to improve image interpolation quality, in 
general. This paper is organized as follows: Part 2 gives a brief review of the bilinear interpolation method/algorithm and 
rescale function. Part 3 introduces the rescaling scheme and demonstrate how the lower and upper bound are determined. 
Part 4 presents and discusses experimental demonstrations. Part 5 gives the conclusion.  

2. BILINEAR INTERPOLATION AND RESCALE FUNCTION 
The bilinear interpolation is an extension of linear interpolation. It is based on performing interpolation in two directions. 
As can be seen, in Figure 1’s example, the bilinear interpolation algorithm uses four nearest pixels or samples in 
Equation 1 to estimate or approximate the missing pixel value at ( , )P x y , [11], [12].  

 

Figure 1: Four nearest pixel samples at the location 1 1( , )x y , 1 2( , )x y , 2 1( , )x y and 2 2( , )x y  of the source image. The 
'middle' sample, P , represents the pixel value at the location ( , )x y  of the destination image.  
 
       1 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )P x y P x y W x y P x y W x y P x y W x y P x y W x y= × + × + × + ×          (1) 
 
where, W, represents the weight (or area) assigned to the pixel samples belonging to the location 1 1( , )x y , 

1 2( , )x y , 2 1( , )x y and 2 2( , )x y . For example, 1 1( , ) ( 2 ) ( 2 )W x y y y x x= − × −  with 1 2( 1, 2)x x= = , 1 2( 1, 2)y y= =  and 
(1 2,1 2)x y≤ ≤ ≤ ≤ . By default, the rescale function rescales elements of an array or vector to the interval [0,1] . In 
other words, suppose we have a vector V  containing a certain number of scalar values or elements. In this case, 
Equation 2 rescales the[min( ),max( )]V V  range to the interval [0,1] .   

                                                                    
min( )

max( ) min( )
V VR

V V
⎛ ⎞−

= ⎜ ⎟−⎝ ⎠
                                                                      (2) 

However, when the new interval or range has been specified the rescale function uses Equation 3. 
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                                           ( ) min( )max min min
max( ) min( )

V VR N N N
V V

⎛ ⎞−
= − × +⎜ ⎟−⎝ ⎠

                                         (3) 

where [ min, max]N N is the new range or interval specified for rescaling elements of V . More details can be found for 
example in the MATLAB manuals from the R2017b and beyond. In brief, Equation 3 can change the vectorV ’s 
[min( ),max( )]V V  range to [ min, max]N N  range. By rescaling the vector V elements new elements or values are 
obtained, which is the key step in this study. How to determine the [ min, max]N N range is explained in the following 
part.  

3. BILINEAR INTERPOLANT PIXELS RESCALING SCHEME 

Suppose, we have a row vector [ 1 2 3 4]V P P P P= , consisting of pixel-samples ( 1, 1)P x y , ( 1, 2)P x y , ( 2, 1)P x y  
and ( 2, 2)P x y , as shown in Figure 1. Now, the question is: How can we determine the lower { min}N and upper 
bounds { max}N  on which the vector V elements can be rescaled without sacrificing image interpolation quality? It is 
from here, researchers can decide their own way to go because there are possibly many ways to determine such bounds. 
Therefore, in this paper, the way to go adopted is based on the statistical mean and standard deviation of vector 
V elements, as shown in Figure 2. The choice of the mean and standard deviation was because, the mean and standard 
deviation consider every data point or samples, and outliers among those samples, they would positively be part of the 
solution. 

 
Figure 2: P1, P2, P3, and P4 are elements of the vector V 

 
For a vector V consisting of N scalars (or N pixels), the mean is given by Equation 4.   

                                                                                
1 N

i
i

V
N

μ = ∑                                                                              (4) 

For a vector V consisting of N scalars (or N pixels), the standard deviation (with the normalization factor N instead 
of 1N − ) is given by Equation 5.   

                                                                          ( )
21 N

i
i

V
N

σ μ= −∑                                                                    (5) 

With Equation 4 and Equation 5, the equivalent of the lower and upper bounds is given in the Equation 6 and Equation 7, 
respectively.  

                                                                        minN μ σ= −                                                                                    (6) 
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                                                                        maxN μ σ= +                                                                                   (7) 

Now, replacing Equation 3 into the Equation 1, the interpolated sample is given by Equation 8.    
                                       
     1 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )P x y R x y W x y R x y W x y R x y W x y R x y W x y= × + × + × + ×          (8) 
 
Table 1 presents a numerical example, showing how the traditional bilinear’s Equation 1 and rescaled bilinear’s Equation 
8 approximates the interpolated value/sample, differently using the same distance weighted function.  

Table 1: Numerical examples 
x1 x x2 y1 y y2 P1 P2 P3 P4 Equation (1) Equation (8) 
1 1 2 1 1 2 91 210 162 95 91.0000 82.3190 
1 1.25 2 1 1 2 91 210 162 95 120.7500 110.9095 
1 1.5 2 1 1 2 91 210 162 95 150.5000 139.5000 
1 1.75 2 1 1 2 91 210 162 95 180.2500 168.0905 
1 2 2 1 1 2 91 210 162 95 210.0000 196.6810 
1 1.25 2 1 1.25 2 91 210 162 95 126.8750 116.7958 
1 1.5 2 1 1.5 2 91 210 162 95 139.5000 128.9287 
1 1.75 2 1 1.75 2 91 210 162 95 128.8750 118.7178 
1 2 2 1 2 2 91 210 162 95 95.0000 86.1631 
1 2 2 1 2 2 91 91 91 91 91.0000 91.0000 
1 1.5 2 1 1.5 2 91 91 91 91 91.0000 91.0000 

 
In the following part, we discuss the effects of the rescaled bilinear interpolant’s Equation 8 on image interpolation 
quality.     

4. EXPERIMENTS AND DISCUSSIONS 
The rescaled bilinear interpolation algorithm has been implemented in MATLAB-R2018a. Among many full-reference 
and non-reference objective image quality metrics available in the literature, [13], [15], [17], we only chose the feature 
similarity index (FSIM) [16], and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [14], as well as the 
variance and mean based equations metrics for statistical visual representation, shown in Equation 9 and Equation 10, 
[18], [19]. The FSIM and BRISQUE metrics have been chosen to quantify features (against a supposedly pristine or 
reference image) and distortions similarities (in a referenceless way). Here, the aim is to measure how the traditional and 
rescaled bilinear images can rapidly be evaluated and get the idea of how their output images would have consisted with 
subjective evaluations. Note that small-sized and some reference images used were inferred using the Microsoft Picture 
Manager application. Other two metrics, defined in Equation 9 and Equation 10, consisting of variance and mean 
equations, have been chosen to define the percentage of increment or decrement of contrast and intensity levels (which 
are also other key image quality indicators) in each algorithm’s output image [19], [18].  

                                                                                out in

in

C σ σ
σ
−

=                                                                                (9) 

                                                                                out in

in

L μ μ
μ
−

=                                                                               (10) 

where, outσ and outμ are the variance and mean of interpolated images, inσ and inμ are the variance and mean of 
reference images, respectively [19]. Grayscale images, mostly, downloaded from the USC-SIPI Image database have 
been used as test images. As can be seen, in Table 2, the effects of rescaling the pixels in bilinear interpolation remained 
comparable in terms of features similarity, except in terms of image distortions. In other words, the FSIM values 
obtained indicated a very small difference between the traditional and rescaled bilinear algorithms. In some cases, the 
traditional bilinear generated higher values than a rescaled bilinear algorithm. Here, it is important to note that the higher 
the FSIM value means the better image quality. Referring only to seven images presented, in Table 2, the rescaled 
bilinear algorithm demonstrated generally higher values (in bold) than a traditional bilinear algorithm. In Table 3, the 
BRISQUE scores presented, indicated that the rescaled bilinear algorithm can reduce image interpolation distortions 
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(such as jaggedness, blurriness, and noise) better than the traditional bilinear algorithm. Here, it is important to note that 
the smaller BRISQUE score the better visual quality; and that interpolated image must have at least one of the distortions 
to be scored by the BRISQUE metric.  

      Table 2: FSIM for rescaled bilinear (RB) and traditional bilinear (TB), Average (AV) 
 
 

Jet Lenna House Cam.man Peppers Aerial Gray 
  RB  TB   RB  TB   RB  TB   RB  TB   RB  TB   RB  TB   RB  TB 

2X 0.9544 0.9561 0.9655 0.9658 0.9698 0.9697 0.9551 0.9553 0.9586 0.9615 0.9263 0.9285 0.9863 0.9857 
3X 0.9412 0.9425 0.9478 0.9483 0.9475 0.9475 0.9241 0.9241 0.9541 0.9539 0.8821 0.8826 0.9829 0.9815 
4X 0.9116 0.9094 0.8820 0.8880 0.8784 0.8810 0.8446 0.8473 0.8740 0.8837 0.8059 0.8067 0.9642 0.9644 
5X 0.8968 0.8919 0.9403 0.9380 0.9280 0.9253 0.8902 0.8849 0.9386 0.9351 0.7648 0.7629 0.9574 0.9580 
6X 0.8735 0.8734 0.8634 0.8650 0.8534 0.8508 0.8006 0.7982 0.8679 0.8666 0.7120 0.7151 0.9426 0.9432 
7X 0.8553 0.8539 0.8484 0.8478 0.8340 0.8302 0.7788 0.7768 0.8476 0.8459 0.6820 0.6843 0.9365 0.9362 
8X 0.8379 0.8399 0.8213 0.8225 0.8045 0.8022 0.7507 0.7485 0.8211 0.8214 0.6339 0.6358 0.9204 0.9193 
AV 0.8959   0.8953 0.8956   0.8965 0.8880   0.8867 0.8492   0.8479 0.8946   0.8955 0.7725   0.7737 0.9558   0.9555 

 
In Figure 3, the RB algorithm demonstrated a smaller decrement than the TB in terms of contrast at the interpolation 
ratios used. However, in terms of intensity, the TB algorithm achieved a bigger increment than the RB algorithm only at 
the interpolation ratio that equals to two.  

Table 3: BRISQUE for rescaled bilinear (RB) and traditional bilinear (TB), Average (AV) 
 
 

Jet Lenna House Cam.man Peppers Aerial Gray 
  RB  TB   RB  TB   RB  TB   RB  TB   RB  TB   RB  TB RB TB 

2X 43.854 37.011 32.291 33.342 50.299 48.506 35.585 35.332 42.322 40.336 33.620 33.425 47.185 47.107 
3X 50.225 50.735 46.301 51.184 54.311 53.574 44.973 45.534 47.461 43.474 50.692 46.060 47.156 47.372 
4X 57.980 48.892 43.894 44.966 54.721 57.188 42.261 49.620 49.724 46.617 50.395 47.416 48.491 48.557 
5X 55.768 60.216 60.091 61.572 50.489 49.569 60.477 63.210 55.364 59.435 44.134 47.474 48.229 48.254 
6X 57.019 66.957 56.885 60.296 55.024 56.069 60.962 60.302 56.250 62.200 49.488 61.253 49.367 49.101 
7X 55.361 59.816 64.119 67.129 55.123 55.749 59.851 64.317 63.048 65.722 59.289 58.688 48.290 47.824 
8X 54.484 57.732 62.640 59.654 57.331 59.713 57.434 58.727 62.155 62.126 57.824 65.925 48.108 48.952 
AV 53.527   54.480 52.317  54.021 53.900   54.338 51.649   53.863 53.761   54.273 49.349   51.463 48.118   48.167 

 

In Figure 4, the RB algorithm demonstrated a smaller decrement than the TB in terms of contrast at the interpolation 
ratios used. However, in terms of intensity, the TB algorithm achieved a bigger increment than the RB algorithm only at 
the interpolation ratio that equals to two, four, and six.  

 
Figure 3: Contrast and Intensity increments or decrements in Jet images interpolated by TB and RB algorithms. 

 
At the interpolation ratio that equals to five and seven, the RB algorithm demonstrated a smaller decrement than the TB 
in terms of intensity It is important to note that the increment or decrement values shown at the y-axis of figures, 
represents a certain percentage. For example, if RB algorithm’s image has contrast decrement value that equals to -0.035 
and intensity increment values that equal to 0.00075, it means that the contrast and intensity levels of RB algorithm’s 
image are -3.5 and 0.075 times less and higher than the reference image, respectively. Here, the negative sign denotes the 
decrement while the positive sign denotes the increment. In Figure 5, the RB algorithm demonstrated a smaller 
decrement than the TB algorithm in terms of contrast at the interpolation ratios used.  
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Figure 4: Contrast and Intensity increments or decrements in Lenna images interpolated by TB and RB algorithms. 

 
However, RB algorithm showed a bigger increment only at the interpolation ratio that equals to five. In terms of 
intensity, the TB algorithm achieved a bigger increment and a smaller decrement than the RB algorithm. 

  
Figure 5: Contrast and Intensity increments or decrements in House images interpolated by TB and RB algorithms. 

 
In Figure 6, the RB algorithm demonstrated a smaller decrement than the TB in terms of contrast at the interpolation 
ratios used. In terms of intensity, the TB algorithm achieved bigger increment and a smaller decrement than the RB 
algorithm at the interpolation ratios used.  

  
Figure 6: Contrast and Intensity increments or decrements in Cameraman images interpolated by TB and RB algorithms. 
Also, in Figure 7, the RB algorithm demonstrated a smaller decrement than the TB in terms of contrast at the 
interpolation ratios used. In terms of intensity, the TB algorithm achieved bigger increment and a smaller decrement than 
the RB algorithm at the interpolation ratios used. 

Proc. of SPIE Vol. 10817  1081715-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 03 Jul 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



C
O

N
T

R
A

S
T

IN
C

R
E

M
E

N
T

lD
E

C
R

E
M

E
N

T
b

b
b

b
b

pb

b
p

Ó
O

O
O

Ñ

X

IN
T

E
N

S
IT

Y
 IN

C
R

E
M

E
N

T
 /D

E
C

R
E

M
E

N
T

L.
W

Ñ
C

N
w

C
O

N
T

R
A

S
T

 IN
C

R
E

M
E

N
T

/D
E

C
R

E
M

E
N

T
b

b
b

b
b

b
tJ

1

IN
T

E
N

SI
T

Y
 I

N
C

R
E

M
E

N
T

 /D
E

C
R

E
M

E
N

T
c

n,
..:

E

C
O

N
T

R
A

S
T

 IN
C

R
E

M
E

N
T

 /D
E

C
R

E
M

E
N

T

C
O

<
3.

)
A

N
O

W
6,

o
N

IN
T

E
N

S
IT

Y
 IN

C
R

E
M

E
N

T
 /D

E
C

R
E

M
E

N
T

Ó
,

Ñ
Á

W
Ñ

 

 

  
Figure 7: Contrast and Intensity increments or decrements in Peppers images interpolated by TB and RB algorithms. 

 
In Figure 8, the RB algorithm demonstrated a smaller decrement than the TB in terms of contrast at the interpolation 
ratios used. In terms of intensity, the RB algorithm achieved a bigger increment than the TB algorithm at the 
interpolation ratios used. In Figure 9, at the interpolation ratio that equals to two, the RB didn't show any increment or 
decrement in terms of contrast. 

  
Figure 8: Contrast and Intensity increments or decrements in Aerial images interpolated by TB and RB algorithms. 

 

  
Figure 9: Contrast and Intensity increments or decrements in Gray images interpolated by TB and RB algorithms. 

At other interpolation ratios, the RB algorithm demonstrated smaller decrement than the TB in terms of contrast. In terms 
of intensity, at the interpolation ratio that equals to two, three and seven, both TB and RB algorithms tied. At other 
interpolation ratios, the TB algorithm demonstrated smaller decrement than the RB algorithm. 
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Figure 10: Source test grayscale images of the size 170 x 170 

 
The time elapsed performance measurement between the RB and TB demonstrated that the RB algorithm was slower 
than the TB algorithm. As can be seen in Figure 11, there is a visibly small difference between the images interpolated 
using the TB and RB algorithms. On top of that, the blurriness artefacts are not to the same extent or level. However, a 
big difference can be easily be noticed looking at the corresponding small versions, presented in Figure 10. In Figure 12, 
the edge features among interpolated images (using both algorithms) have almost the same sharpness with a debatable 
smoothness difference. In Figure 13, we have almost the same situation (looking straight to the edge and texture features) 
but not the same contrast level in both images. Note that, if the metrics produced the highest or least values, it meant that 
were more closely related to the corresponding reference images which might or might not match with subjective 
evaluations. 
 

   
Figure 11:   3x-interpolated images using the TB algorithm (left) and RB algorithm (right) 

 
Potential applications of the proposed RB method may include ultrasound scan conversion for displaying the sectored 
image. This possibility is based on the preliminary experiments conducted, using the ultrasound data to display the 
sectored image, which revealed the reduction in BRISQUE-scored-distortions by 0.4%, 0.42%, 0.63%, as shown in 
Table 4. Note that three different frames/images data have been used and, the TB’s brisque score was used as the 
reference or original score while the RB’s brisque score was used as the targeted score. Here, it is also important to note 
that to compare the proposed RB method against the TB algorithm because it is meaningful because TB is a commonly 
used interpolation method for scan conversion [21]. 
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Figure 12:   3x-interpolated images using the TB algorithm (left) and RB algorithm (right) 

 

   
Figure 13:   3x-interpolated images using the TB algorithm (left) and RB algorithm (right) 

 
Also, it is important to note that in the absence of a reference ultrasound data image, only non-reference metric could be 
used to estimate increase or decrease in objectively quantifiable distortions. 
 

Table 4: TB and RB brisque scores  
IMAGE 1 IMAGE 2 IMAGE 3 

TB RB TB RB TB RB 
46.2410 46.0568 46.9549 46.7564 46.4631 46.1719 
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5. CONCLUSION 
Effects of interpolating rescaled pixels have been studied in this paper for image interpolation quality. Many works on 
image interpolation kept focusing on the minimization of visual artefacts by working on the weighting functions which 
was not the case in this paper since we focused on the effects of rescaling pixels in the spatial domain. Therefore, this 
paper proposed a solution that used rescaled pixels. The new interval or range (or lower and upper bounds limit) for pixel 
rescaling purposes was obtained using statistical mean and standard deviation of a vector of four nearest pixels. Effects 
were investigated using standard full-reference and non-reference quality metrics as well as variance and mean based 
metrics. Natural image-based experiments demonstrated that the rescaled bilinear interpolation algorithm achieved 
generally smaller decrements than the traditional bilinear interpolation algorithm in terms of image quality indicators, 
mentioned. Also, the feature similarities between rescaled and traditional algorithms remained comparable, except in 
terms of image distortions. This suggests that rescaling image pixels was a non-trivial way to go in optimizing the 
bilinear interpolation algorithm. The problem with the rescaling scheme was an increase in processing time compared to 
the traditional method as well as being image type dependent in performance. With the ultrasound scan conversion, the 
rescaled bilinear algorithm proved to be better than the traditional bilinear algorithm as it showed more image details and 
fewer distortions in interpolated images. Future research efforts may be put in the development of new strategies that 
would fasten the interpolation process and that would consider variable kernels in the effort to improve the quality of 
both natural and sectored images.  
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