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Electrodynamics with magnetic monopoles: Photon wave mechanical theory

Ole Keller*

Institute of Physics, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst, Denmark

(Received 25 July 2018; published 9 November 2018)

The microscopic Maxwell-Lorentz equations show an intrinsic symmetry if magnetic charge and current
densities are included. Starting from the symmetrized set of field equations a propagator approach is used
to describe the transverse (photon) electrodynamics in space-time. Two dyadic propagators are needed: (i) a
transverse electric propagator with a near-field part and (ii) a magnetic propagator with a midfield part. The
first quantized photon wave mechanical theory, based on the analytical parts of the two transverse Riemann-
Silberstein vectors, is extended to include magnetic monopole dynamics. The dynamical equations for the
photon helicity eigenvectors and the local energy conservation in the photon field are discussed. The Dirac
string concept and the fiber bundle approach are avoided using the double-potential formalism of Cabibbo and
Ferrari. The transverse (T ) parts of the electric (Ae

T ) and magnetic (Am
T ) vector potentials relate in a simple

manner to our propagator theory if this is formulated in terms of the Huygens scalar propagator and the
transverse electric and magnetic current densities. A transformation of the transverse vector potentials, which
is nonlocal in space and time, allows one to express the transverse parts of the electric and magnetic fields
as curls of combinations of the original (Ae

T , Am
T ) and the transformed (Ae

T , Am
T ) transverse vector potentials.

The momentum of the particle-photon system is discussed, and it is shown that the electromagnetic parts of
the canonical electric (charge e) and magnetic (charge g) particle momenta are given by e( Ae

T + Am
T ) and

g( Am
T − Ae

T ), respectively. The angular momentum of the particle-photon system is analyzed and contact is
made to the well-known nonretarded Saha-Wilson orbital angular momentum for an (e, g) pair. The near field of a
magnetic monopole is studied based on the overlooked fact that the magnetic near field contains both longitudinal
(L) (with ∇ · BL = 0) and transverse vector field components. The sum of the two parts always is Einstein
retarded, with proper account of the limitation caused by the lack of complete spatial photon localization. Finally,
the relativistic electron-photon Hamiltonian in an external (prescribed) magnetic monopole field is discussed,
paying particular attention to a determination of the transformed transverse magnetic vector potential, Am

T , and
its positive-frequency part.

DOI: 10.1103/PhysRevA.98.052112

I. INTRODUCTION

In 1929 Weyl [1] showed that there exists a specific con-
nection between the nonintegrability of a space- and time-
dependent phase of a charged particle wave function and
the vector and the scalar potential of the electromagnetic
field. In modern notation, the gauge invariance of the poten-
tial (Lorenz) description of the Maxwell-Lorentz equations
with a gauge function χ remains an invariance in quantum
mechanics provided a unitary transformation exp[i(q/h̄)χ ]
is made on the particle (charge q) wave function In 1931,
Dirac [2] introduced the hypothesis of a new particle, the
magnetic monopole, and argued that if the new particle were
to fit into the conventional quantum mechanics of an electron
the product of the electron (e) and magnetic monopole (g)
charges must satisfy a quantization condition. In 1948, Dirac
[3] generalized his theory. The generalization was made pos-
sible by supposing the magnetic monopole to be at the end
of a semi-infinite (unphysical) string of magnetic dipoles (a
magnetic flux line). The string was needed in order to deal
with the singular magnetic field of a point monopole.

*okeller@physics.aau.dk

In the wake of Dirac’s renowned work the interest in
magnetic monopole’s possible structure [4,5] and their elec-
trodynamics [6,7] has waxed and waned but never fallen to
zero, despite the fact that there is no experimental evidence
of the monopole’s existence. In many studies the problem of
an electrically charged Dirac particle in the field of a fixed
magnetic monopole has been examined, often regarding the
monopole vector potential as a connection on a fiber bun-
dle [8–11]. The two different parametrizations of the vector
potential imply that the wave function must be regarded as
a section rather than an ordinary wave function. The fiber
bundle approach replaces the Dirac string concept [12,13].

A semiclassical derivation of the eg-quantization condition
was given by Saha [14,15] and Wilson [16]. The somewhat
obscure relation of the Saha-Wilson argument to Dirac’s was
clarified by Goldhaber [8].

In an important article Cabibbo and Ferrari [17] showed
that it was possible to avoid the pathological string concept
(singular vector potential) by means of a double-potential
formalism.

In previous studies of the electric-magnetic monopole in-
teraction, the role of the photons, always intermediating the
interaction, has not been addressed (the charge renormaliza-
tion of the electric and magnetic charge has been examined
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by Schwinger using quantum-field theory [18,19]). Since the
electron usually is assumed to be in the electromagnetic near
field (∼r−2 field) of the fixed magnetic monopole, longitu-
dinal and scalar photons are responsible for the dominating
part of the interaction [20]. This implies that the need for a
rigorous photon description often is less important in prac-
tice. However, the conceptual understanding of the near-field
interaction is important, yet quite complicated in the photon
picture [21].

The particular aspects of the present paper are the follow-
ing: (i) a transverse propagator formalism of photon wave
mechanics in symmetrized electrodynamics, (ii) an extension
of the double-potential formalism which, via a special space-
time nonlocal transformation of the vector potentials, allows
one to uphold a minimal coupling principle free of singulari-
ties in quantum electrodynamics, (iii) a study of the structure
of the momentum and angular momentum of the particle-
photon system in symmetrized electrodynamics, emphasizing
in particular the change in the electromagnetic part of the
canonical electron momentum caused by the presence of a
magnetic monopole in the electron’s near-field zone, (iv) a
calculation of the near field of a dynamic magnetic monopole,
which shows that this field is the sum of an Einsteinian
retarded part and a self-field part related to the lack of com-
plete spatial photon confinement, and (v) an examination of
the relativistic electron-photon Hamiltonian in a prescribed
(external) magnetic monopole field.

The present paper is organized in the following manner.
In Sec. II A, a few aspects of the well-known microscopic
Maxwell-Lorentz equations [22,23] extended to allow for
the presence of microscopic magnetic charges and current
densities are summarized in both three-vector and covariant
notation. Thereafter, the various vector fields are divided into
their longitudinal (L) and transverse (T ) parts [24]. Although
this division is not relativistically invariant, it is of crucial
importance for the subsequent part of this work. The L-T
division is briefly discussed in Secs. II B and II C. In Sec. II D,
an electromagnetic propagator formalism is established for the
transverse electrodynamics and the spatial photon localiza-
tion problem is discussed [25]. The propagator description is
particularly convenient as the individual terms in the integral
equations can be related separately to the transverse parts of
the electric and magnetic vector potentials. In Sec. III the
theory of photon wave mechanics in first quantization [25–28]
is extended to include the presence of magnetic monopole
dynamics. The first-quantized formalism can be extended to
second quantization as described in Ref. [21]. In Sec. III A,
the employed energy wave-function approach for transverse
photons is presented and, in Secs. III B and III C, the dy-
namical equations for the photon helicity eigenvectors and
the local law of energy flow in the photon field is discussed.
In Sec. IV A, the double-potential formalism of Cabibbo and
Ferrari [17] is briefly summarized and, in Sec. IV B, a space-
time nonlocal transformation of the transverse electric and
magnetic vector potentials is introduced. The transformation
allows one to uphold the usual minimal coupling substitu-
tion without singularities. In Secs. V A–V D, we analyze the
momentum of the coupled photon-particle (E + M) system,
starting from the expression given for the total field momen-
tum in the extended Maxwell-Lorentz theory. In particular,

we identify the electromagnetic parts of the canonical particle
momenta for electric and magnetic monopoles (Sec. V C),
and discuss the photon-field momentum in the first-quantized
theory. In Secs. VI A–VI D, we extend the Saha-Wilson ap-
proach for the angular momentum originating in the combined
longitudinal parts of the electric and magnetic fields [14–16].
The field parts of the canonical particle angular momentum
are identified (Sec. VI C), and an integral expression for the
angular momentum of the photon field given in the terms of
the photon energy wave function is derived (Sec. VI D). In
Sec. VII we discuss the near field of a magnetic monopole,
paying particular attention to the roles of longitudinal and
scalar photons, the importance of the Einsteinian retarded
transverse photon dynamics, and the limitation put on the
spatial localization of transverse photons. Disregarding the
spatial photon localization, it is shown that the total magnetic
field always propagates in an Einstein-retarded manner. The
conceptional problem of the Dirac approach is discussed. In
Sec. VIII, we discuss the relativistic electron-photon Hamil-
tonian as this appears in an external (prescribed) magnetic
monopole field. The main goal of the section is an explicit
determination of the nonlocally transformed transverse mag-
netic vector potential (Am

T ), needed in the canonical magnetic
monopole momentum. The established integral expression
for Am

T over the (ω, q) domain allows a direct extraction of
its analytical (positive-frequency) part. This part enters the
radiation Hamiltonian. In Sec. IX, concluding remarks are
given.

II. SYMMETRIZED ELECTRODYNAMICS AND
TRANSVERSE-PROPAGATOR FORMALISM

A. Extended Maxwell-Lorentz equations

If magnetic monopoles exist, the Maxwell-Lorentz equa-
tions for the microscopic electric (E) and magnetic (B) field
must be extended to the form [c = (ε0μ0)−1/2 being the
vacuum speed of light]

∇ · E = 1

ε0
ρe, (1)

∇ · B = 1

cε0
ρm, (2)

−∇ × E =∂B
∂t

+ cμ0Jm, (3)

∇ × B = 1

c2

∂E
∂t

+ μ0Je, (4)

where ρe and ρm are the microscopic electric (e) and magnetic
(m) charge densities and Je and Jm are the related current
densities. The prefactors to ρm and Jm have been chosen such
that the electric and the magnetic charge and current densities
have the same dimensionality. As a consequence of Eqs. (1)
and (4), and Eqs. (2) and (3), the electric and magnetic charges
satisfy separate equations of continuity, i.e.,

∇ · Je + ∂ρe

∂t
= 0, (5)

∇ · Jm + ∂ρm

∂t
= 0. (6)
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The set of extended field equations are form invariant under
the duality transformation [(E, B) ↔ (ENEW, BNEW)] through
the arbitrary (pseudorotation) angle �, viz.,

ENEW = E cos � + cB sin �, (7)

BNEW = B cos � − 1

c
E sin �, (8)

ρe
NEW = ρe cos � + ρm sin �, (9)

ρm
NEW = ρm cos � − ρe sin �, (10)

Je
NEW = Je cos � + Jm sin �, (11)

Jm
NEW = Jm cos � − Je sin �. (12)

The form of Eqs. (9) and (10) show that in symmetrized elec-
trodynamics it is a matter of convention to speak of a particle
possessing an electric charge, but not a magnetic charge (or
vice versa). However, if the magnetic and the electric charge
densities coexist in a universal ratio K (synonymous with the
demand that all particles have the same ratio of magnetic and
electric charge), indicated by

ρm

ρe
= K, (13)

the choice � = arctan K in the duality transformation leads
to ρm

NEW = 0. In consequence the set of extended Maxwell-
Lorentz equations is reduced to the form usually known
(accepted).

In passing it may be mentioned that the extended field
equations have proven to be of value in classical vectorial
diffraction theory even though the magnetic charge and cur-
rent densities are fictitious quantities in this case. Thus, for
the (ideal) special case of diffraction from an infinitely thin
perfectly conducting plane metal screen, S, with an aper-
ture (a hole), A, a duality transformation with � = π/2 is
of particular interest. The new (dual) electromagnetic field
(ENEW, BNEW) = (cB,−E/c) is called the complementary
field in diffraction theory. The name originates in the fact that
a rigorous form of Babinet’s principle may be established by
comparing the original diffraction problem with incident field
(E0, B0) with the diffraction of the incident field (E0

c , B0
c ) =

(cB0,−E0/c) from a “complimentary” screen, obtained by
replacing the aperture by a screen (A → S) and the screen
by an aperture (S → A). In the half-space behind the screens
the original field (E, B) and the complementary (subscript
c) field (Ec, Bc ) are related according to E − cBc = E0 and
B + cEc = B0 [29].

The central problem in classical diffraction from an aper-
ture in an infinitely thin, perfectly conducting, plane screen is
the determination of the field in the aperture region. Once this
has been calculated (approximately, in general) the diffracted
field everywhere in space is easily obtained. For the aperture
field calculation it is useful to introduce a fictitious magnetic
surface current density in the aperture domain [30,31].

In Eqs. (1)–(4) the set of Maxwell-Lorentz equations
was expressed in three-vector notation. In covariant notation
the symmetrized field equations are given in terms of the

covariant antisymmetric field tensor

{Fμν} ≡ 1

c

⎛
⎜⎝

0 −E1 −E2 −E3

E1 0 cB3 −cB2

E2 −cB3 0 cB1

E3 cB2 −cB1 0

⎞
⎟⎠, (14)

its dual partner

{Gμν} ≡ {Fμν (E → cB, B → −E/c)}

= 1

c

⎛
⎜⎝

0 −cB1 −cB2 −cB3

cB1 0 −E3 E2

cB2 E3 0 −E1

cB3 −E2 E1 0

⎞
⎟⎠, (15)

and the electric and magnetic covariant four-current densities
{J e

ν } = (−cρe, Je ), {Jm
ν } = (−cρm, Jm). Thus, with {∂μ} ≡

(−c−1∂/∂t,∇) one obtains

∂μFμν = −μ0J
e
ν , ν = 0–3, (16)

∂μGμν = −μ0J
m
ν , ν = 0–3. (17)

Above the usual summation convention for repeated super-
and subscripts, and a matrix tensor signature (−1, 1, 1, 1),
have been employed. In the subsequent analysis the three-
vector notation will appear particularly useful. In Sec. IV A
a double-potential formalism with electric ({Ae,μ}) and mag-
netic ({Am,μ}) four potentials is introduced. In terms of these
potentials Fμν = ∂νA

e
μ − ∂νA

e
μ and Gμν = ∂νA

m
μ − ∂νA

m
μ .

B. Longitudinal parts of the field equations: Dynamical particle
position variables

For what follows it is convenient to divide the extended
Maxwell-Lorentz equations into sets describing respectively
the curl-free [called longitudinal (L)] and divergence-free
[transverse (T )] electrodynamics. With the unique (up to a
space-independent constant of no physical importance) sep-
aration E = EL + ET , B = BL + BT of the fields and Je =
Je

L + Je
T , Jm = Jm

L + Jm
T of the current densities, one obtains

from Eqs. (1)–(4) the following set of field equations for the
longitudinal dynamics:

∇ · EL = 1

ε0
ρe, (18)

c∇ · BL = 1

ε0
ρm, (19)

c
∂

∂t
BL = − 1

ε0
Jm

L, (20)

∂

∂t
EL = − 1

ε0
Je

L. (21)

It appears from these equations that EL and BL depend
respectively on ρe and ρm alone. By combining Eqs. (18)
and (21) [Eqs. (19) and (20)] one obtains the equation of
continuity in Eq. (5) [Eq. (6)] for electric (magnetic) charge.
In the absence of magnetic monopoles ∇ · BL(=∇ · B) = 0.
In the framework of classical (extended) electrodynamics the
electric and magnetic monopoles are assumed to be point
particles. If one denotes the various (particle label: α) electric
and magnetic monopole charges by eα and gα , respectively,
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and the positions vectors of these by re
α (t ) and rm

α (t ), the
four-current densities become

{J e,μ} ≡ [cρe(r, t ), Je(r, t )]

=
∑

α

eα

(
c, ṙe

α (t )
)
δ
(
r − re

α (t )
)

(22)

and

{Jm,μ} ≡ [cρm(r, t ), Jm(r, t )]

=
∑

α

gα

(
c, ṙm

α (t )
)
δ
(
r − rm

α (t )
)
, (23)

where δ is the Dirac delta function. From Eqs. (18) and (19)
and the first component of Eqs. (22) and (23) one obtains the
following expressions for the longitudinal fields:

EL(r, t ) = 1

4πε0

∑
α

eα

r − re
α (t )∣∣r − re
α (t )

∣∣3 , (24)

BL(r, t ) = 1

4πε0c

∑
α

gα

r − rm
α (t )∣∣r − rm
α (t )

∣∣3 . (25)

From these well-known results it appears that the longitudinal
fields are just the instantaneous Coulomb (electric and mag-
netic) fields of the charge-density distributions. The elimina-
tion of the longitudinal field variables in favor of the particle
position coordinates implies that EL and BL in a quantum-
mechanical context are hidden in the (extended) Dirac (or
Schrödinger) equation: the particles do not “see” their own
longitudinal fields. The fact that

∇ · BL(r, t ) = 0, r �= rm
α (t ), (26)

except at the positions of the magnetic charges (as indicated)
where BL is infinite, made it possible for Dirac to establish a
certain quantum-mechanical description of the electrodynam-
ics of an electron in the presence of a magnetic monopole.
In order to keep the interaction Hamiltonian in its standard
(minimal coupling) form the physical singularity in the vector
potential A (B = ∇ × A) at the position of the monopole
Dirac handled by his now famous (Dirac) string concept [3].

The singularity in the Dirac point-particle model of the
magnetic monopole is avoided in the ’t Hooft–Polyakov
theory from 1974 [4,5]. In this theory so-called hedgehog
solutions were obtained. Such solutions are “lumps” of a
quantum field with finite size everywhere. If a lump is small
enough, it appears as a pointlike magnetic monopole [32].
In the ’t Hooft–Polyakov description the Maxwell electrody-
namics is extended to contain a gauge field and an isovector
Higgs field [12,33–38]. The ’t Hooft–Polyakov theory carries
electric charge only, but viewed asymptotically the hedgehog
solution has a radial magnetic field, corresponding to the
presence of a magnetic monopole. The usual definition of the
electromagnetic-field tensor (components) is replaced by

F ext
μν = ∂μAν − ∂νAμ − 1

e|φ|3 εabcφ
a (∂μφb )(∂νφ

c ), (27)

where {φa} is the isovector Higgs field (a = 1 − 3) and εabc is
the completely antisymmetric Levi-Civita tensor. The gauge
potential {Aμ} = φaAa

μ/|φ| represents a generalization of the
electric vector potential appearing in the potential formulation

of the standard Maxwell-Lorentz theory. When {φ} becomes
fixed in isospace, {F ext

μν } reduces the {Fμν} of Eq. (14), with
Fμν = ∂μAν − ∂νAμ and Aμ ≡ AF

μ, F being the index for
the fixed (F ) isovector Higgs field. In the t’ Hooft–Polyakov
theory the responsibility for the monopole is transferred from
the first (Dirac) part to the second (Higgs) one [Eq. (27)].
In a forthcoming paper, I shall show that a photon wave
mechanical theory based on potentials [21] may be extended
to include the isovector Higgs field.

A particle carrying both electric and magnetic charge
(dual-charged particle) was named a dyon by Schwinger [6]
and first studied in 1968 [39]. Work on a photon wave me-
chanical theory for dyons (with extension to the Higgs field)
is in progress.

C. Transverse parts of the field equations

Although the division of the vector fields into T and L

parts is not relativistically invariant the disadvantage of not
retaining the manifest covariance of the field most often in
photon and nonrelativistic electrodynamics is compensated
for by simplicity, e.g., in the canonical quantization procedure
raising photon wave mechanics to the second-quantized level.

The transverse electrodynamics is governed by the trans-
verse part of the Maxwell-Lorentz equations in Eqs. (3) and
(4). Thus

−∇ × ET = ∂

∂t
BT + cμ0Jm

T , (28)

∇ × BT = 1

c2

∂

∂t
ET + μ0Je

T . (29)

For the subsequent theoretical development it is important
to understand that the transverse (longitudinal) part of a given
current density is related in a spatially nonlocal but timely
local manner to the current density itself, viz.,

JT ,L(r, t ) =
∫ ∞

−∞
δT ,L(r − r′) · J(r′, t )d3r ′, (30)

where δT and δT are the transverse and longitudinal delta
functions, tensorial quantities (in dyadic representation) sat-
isfying the relation

δT (R) + δL(R) = Uδ(R), (31)

U being the 3 × 3 unit tensor. In Eq. (30) the integration is
over all space.

D. Propagator approach: Spatial field localization

A combination of the transverse set of extended Maxwell-
Lorentz equations [Eqs. (28) and (29)] leads to the following
wave equations for ET and cBT :

�ET = μ0
∂

∂t
Je

T + cμ0∇ × Jm
T , (32)

�(cBT ) = μ0
∂

∂t
Jm

T − cμ0∇ × Je
T , (33)

where � = ∇2 − c−2∂2/∂t2 is the d’Lambertian operator.
The physically acceptable general solution of these equations
can be obtained using the retarded (outgoing) Huygens scalar
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propagator

g(R, τ ) = 1

4πR
δ

(
R

c
− τ

)
(34)

in a scattering theory approach. Thus

ET (r, t ) = E0
T (r, t ) − μ0

∫ ∞

−∞
g(R, τ )

×
[

∂

∂t ′
Je

T (r′, t ′) + c∇′ × Jm(r′, t ′)
]
d3r ′dt ′,

(35)

cBT (r, t ) = cB0
T (r, t ) − μ0

∫ ∞

−∞
g(R, τ )

×
[

∂

∂t ′
Jm

T (r′, t ′) − c∇′ × Je(r′, t ′)
]
d3r ′dt ′,

(36)

where E0
T and B0

T are the electric and magnetic components of
the incoming field, and R = r − r′ (R = |R|) and τ = t − t ′.
In writing down the solutions we have used that ∇ × JT =
∇ × J (J = Je or Jm). The integrations in Eqs. (35) and (36)
are over all space and time.

For what follows it is useful to write Eqs. (35) and (36)
in a form involving in the integrals only time derivatives of
the relevant current densities. The new form also makes the
limitation in the possibility for precise photon localization
in space manifest. We reach our goal by making use of the
following well-known results [40]:

∫ ∞

−∞
g(R, τ )

∂

∂t ′
JT (r′, t ′)d3r ′

=
∫ ∞

−∞
GT (R, τ ) · ∂

∂t ′
J(r′, t ′)d3r ′ + WSF

T (r, t ) (37)

and ∫ ∞

−∞
g(R, τ )∇′ × J(r′, t ′)d3r ′

= −1

c

∫ ∞

−∞
GM (R, τ ) · ∂

∂t ′
J(r′, t ′)d3r ′, (38)

where J = Je or Jm. On the right sides of these equations
appear the transverse (subscript T ) (electric) field propagator,
GT (R, τ ), and the magnetic (subscript M) field propagator,
GM (R, τ ), both tensorial quantities. The vector WSF

T (r, t )
represents the transverse self-field (superscript SF ) contribu-
tion to the scattered (electric or magnetic) field. By utilizing
the two relations above, Eqs. (35) and (36) can be rewritten as
follows:

ET (r, t ) = E0
T (r, t ) + ESF

T (r, t ) − μ0

∫ ∞

−∞

[
GT (R, τ )

× ∂

∂t ′
Je(r′, t ′) − GM (R, τ )· ∂

∂t ′
Jm(r′, t ′)

]
d3r ′dt ′

(39)

and

cBT (r, t ) = cB0
T (r, t ) + cBSF

T (r, t )

− μ0

∫ ∞

−∞

[
GT (R, τ ) · ∂

∂t ′
Jm(r′, t ′)

+ GM (R, τ ) · ∂

∂t ′
Je(r′, t ′)

]
d3r ′dt ′. (40)

In spherical coordinates centered on the singular point
R = 0 the explicit expression for GT (R, τ ) and GM (R, τ ) are
particularly simple, viz. [40],

GT (R, τ ) = 1

4πR
δ

(
R

c
− τ

)
(U − eReR )

− c2τ

4πR3
�(τ )�

(
R

c
− τ

)
(U − 3eReR ) (41)

and

GM (R, τ ) =
[

1

4πR
δ

(
R

c
− τ

)

+ c

4πR2
�

(
τ − R

C

)]
U × eR, (42)

where � is the Heaviside unit step function and eR = R/R is a
unit vector in the radial direction. The GM tensor only behaves
as a genuine magnetic propagator in the absence of persistent
electric and magnetic currents [25]. Such currents are of no
interest in this work, and we thus assume they are absent.
The physics hidden in the near (R−3) and mid (R−2) -field
parts of the electric and magnetic propagators are discussed in
detail elsewhere [40] and not to be repeated here. The terms
proportional to δ(R/c − τ ) relate to the far-field (R−1) parts
of the electric and magnetic fields.

The transverse self-field contribution, WSF
T (r, t ), depends

on the contraction geometry used in the propagator formalism
around the singular point [40]. In the spherical contraction
scheme one has

ESF
T (r, t ) = − Pe

T (r, t )

3ε0
, (43)

cBSF
T (r, t ) = − Pm

T (r, t )

3ε0
, (44)

where PT (with superscript e or m) is the transverse part of a
generalized polarizability, P, related to the current density via
the definition

J(r, t ) ≡ ∂P(r, t)

∂t
. (45)

The self-fields are nonvanishing only in the so-called rim
(near-field) zones of the electric and magnetic current density
distributions. For a point source (located at r′) the rim zone
has an extension given by the |r − r′|−3 tail; cf. the explicit
expression for δT (or δL) in spherical contraction [40]. The
extension of the rim zone represents the initial (best possible)
spatial confinement of a photon emitted from a given source.
The rim zone is of utmost importance for understanding the
field-matter momentum problem in the presence of magnetic
monopoles, and for our suggested manner of introducing
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generalized canonical particle momenta for electric and mag-
netic monopoles in near-field contact; see Sec. V C.

III. PHOTON WAVE MECHANICS IN FIRST
QUANTIZATION

A. Energy wave-function approach

The expressions given for ET (r, t ) and cBT (r, t ) in
Eqs. (35) and (36) form the basis for a propagator description
of photon energy wave mechanics [21,25,27] in the so-called
photon perspective [28]. In this perspective the photon source
is identified with (the time derivatives of) the transverse
vector-field parts, Je

T (r, t ) and Jm
T (r, t ), of the electric and

magnetic current densities distributions. Starting from the two
transverse Riemann-Silberstein vectors

F±(r, t ) =
√

ε0

2
[ET (r, t ) ± icBT (r, t )], (46)

which relate to electromagnetic fields composed of positive
(F+) and negative (F−) helicity species, one projects out their
analytical (positive-frequency) parts [indicated by superscript
(+) below], i.e.,

F(+)
± (r, t ) =

∫ ∞

0
F±(r; ω)e−iωt dω

2π
, (47)

where the F±(r; ω)’s are the Fourier integral transforms of the
F±(r, t )’s. In the electromagnetic interaction of an incoming
photon field with electric and magnetic charge distributions,
we subsequently characterize (in spinorial notation) the state
of the photon field by the six-component object

�(r, t ) =
(

F(+)
+ (r, t )

F(+)
− (r, t )

)
. (48)

The name Riemann-Silberstein vector has its roots in Rie-
mann and Silberstein’s cast of the Maxwell equations into
complex form; see Bateman [41] (and also Refs. [25]
and [27]).

To underline the close relationship between the wave
mechanical theories of massive and massless elementary
particles photon wave functions are connected to the positive-
frequency part of the electromagnetic field. The negative-
frequency part of the spectrum then relates to antiphotons.
Since the photon and its antiparticle are identical (because the
information carried by the positive and negative frequencies
in the Maxwell-Lorentz equations are identical) there is of
course no absolute need for connecting a photon wave me-
chanical formalism alone to the positive-frequency part of the
electromagnetic spectrum.

In our scattering theory approach a prescribed incident
free-photon wave function,

�0(r, t ) =
(

F0(+)
+ (r, t )

F0(+)
− (r, t )

)

=
√

ε0

2

(
E0(+)

T (r, t ) + icB0(+)
T (r, t )

E0(+)
T (r, t ) − icB0(+)

T (r, t )

)
, (49)

gives rise to a scattered (superscript s) photon state

�s (r, t ) = �(r, t ) − �0(r, t ) (50)

=
(

Fs(+)
+ (r, t )

Fs(+)
− (r, t )

)
. (51)

The explicit expressions for the analytic Riemann-Silberstein
vectors entering �s (r, t ) are readily obtained from the analyt-
ical parts of Eqs. (35) and (36). Hence

Fs(+)
± (r, t ) = − μ0

√
ε0

2

∫ ∞

−∞
g(R, τ )

×
(

∂

∂t ′
∓ i∇′×

)
J (+)

± (r′, t ′)d3r ′dt ′, (52)

where

J (+)
± (r, t ) =

∫ ∞

0
[Je(r; ω) ± iJm(r; ω)]e−iωt dω

2π
, (53)

Je(r; ω) and Jm(r; ω) being the Fourier integral transforms of
Je(r, t ) and Jm(r, t ). With the help of Eq. (38) it is possible to
express Eq. (52) in the following compact form:

Fs(+)
± (r, t ) = − μ0

√
ε0

2

∫ ∞

−∞
G±(R, τ )

· ∂

∂t ′
J (+)

± (r′, t ′)d3r ′dt ′, (54)

with generalized propagators

G±(R, τ ) = g(R, τ )U ± iGM (R, τ ). (55)

The result in Eq. (54) forms a good starting point for the
second quantization of the photon energy wave function for-
malism in the Coulomb gauge, in analogy with the procedure
employed in the absence of magnetic monopoles [28,42].
Perhaps, it is possible to establish a second-quantized theory
starting from Eqs. (39) and (40). In such an approach it is
the difference fields ET − ESF

T and BT − BSF
T which upon

quantization relate to the photons. In the absence of magnetic
monopoles (BSF

T = 0) it is possible to establish such a the-
ory. However, a change from the canonical field momentum
operator −ε0ÊT to a new −ε0(ÊT − ÊSF

T ) requires that the
Columb gauge representation is replaced by the so-called G
representation [42].

In the present scattering theory it is implicitly assumed that
the induced current densities Je(r, t ) and Jm(r, t ) both vanish
outside the finite-time interval (0,T ).

Upon completion of the scattering process (t > T ) the
scattered photon state takes some (asymptotic) form, say

�s (r, t ) = �s (r, t (> T )). (56)

The final photon state

�(r, t ) = �0(r, t ) + �s (r, t ) (57)

as well as the incident photon state are free-photon states,
which implies that they have constant energies (E and E0),
given in the photon energy wave function approach by∫ ∞

−∞
[�0(r, t )]† · �0(r, t )d3r = E0 (58)
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and ∫ ∞

−∞
�†(r, t ) · �(r, t )d3r = E, (59)

where † stands for Hermitian conjugation. In the first-
quantized description the free-photon energy equals the en-
ergy in the classical electromagnetic field.

In the low-frequency quantum optical regime it is often
possible in elastic scattering processes to assume (approxi-
mately) that the initial and the final photon state have the same
energy. In such cases E = E0, and a combination of Eqs. (58)
and (59) then shows that∫ ∞

−∞
[�s (r, t )]† · �s (r, t )d3r +

∫ ∞

−∞
{[�0(r, t )]† · �s (r, t )

+ [�s (r, t )]† · �0(r, t )}d3r = 0. (60)

In principle the condition in Eq. (60) allows one to determine
a common (up to this point unknown) overall amplitude of
the prevailing generalized current density J ± = Je ± iJm.
If the incoming part of the outgoing state can be neglected,
the scattered state satisfies the condition

∫ ∞
−∞(�s )† · �sd3r =

E0. In Ref. [28] a model calculation of the amplitude of
J ≡ Je(Jm = 0) for a single atom emitting a sinusoidal wave
train of finite time length has been given.

B. Dynamical equations for the helicity eigenvectors

Combining Eqs. (28) and (29) it appears that the transverse
Riemann-Silberstein vectors [Eq. (46)] satisfy the dynamical
equations

ih̄
∂

∂t
F±(r, t ) = ± ch̄∇ × F±(r, t )

− ih̄√
2ε0

[
Je

T (r, t ) ± iJm
T (r, t )

]
, (61)

where h̄ is Planck’s constant divided by 2π . In the frame-
work of the first-qunatized theory, h̄ is “just” a multiplicative
constant. In the absence of magnetic monopoles, Eq. (61) is
reduced to a well-known form, used previously as a starting
point for studies of the interaction of photons with atoms [28],
mesoscopic particles [40], and continuous (condensed-matter)
media [43].

The vectorial character of F± incorporates the spin (s) of
the photon (and antiphoton): a spin one can be represented
by a vector in a three-dimensional complex vector space. The
appearance of the photon spin in the dynamical equations is
manifest when the analytical part of Eq. (61) is written in the
form

ih̄
∂

∂t
F(+)

± (r, t ) = ±c(�̂ · p̂)F(+)
± (r, t ) − ih̄√

2ε0
J (+)

± (r, t ),

(62)

where �̂ = ŝ/h̄ is the dimensional-less spin-one operator of
the photon [in the (3 × 3)-matrix representation the Cartesian
components of �̂ are given by (�̂k )ij = εijk/i, where εijk is
the completely antisymmetric Levi-Civita tensor], and p̂ =
(h̄/i)∇ is the momentum operator in the r representation. The
scalar product �̂ · p̂ connects via

�̂ · p̂ = p̂ĥ (63)

to the photon helicity operator ĥ (the plane-wave components
of F(+)

+ and F(+)
− are eigenstates of ĥ with eigenvalues +1 and

−1, respectively). In r space

p̂ = (p̂ · p̂)1/2 = h̄

i

√
∇2 (64)

in a symbolic notation dating back to the Landau-Peierls
quantum theory of the photon [44]. The operator is defined
via its action in p space and it can be shown that

ĥF(+)
± (r, t ) = ±F(+)

± (r, t ), (65)

so that the two helicity species are eigenvectors of the helicity
operator.

C. Local energy conservation in the photon field

From the dynamical equations for the two helicity species
one can derive a continuity equation for the photon energy
density

�† · � = (F(+)
+ )∗ · F(+)

+ + (F(+)
− )∗ · F(+)

−

=
∑

s=+,−
(F(+)

s )∗ · F(+)
s . (66)

Thus an expression for the time derivative of the modulus
squared of the wave function, viz.,

∂

∂t
(�† · �)

=
∑

s=+,−

{[
∂

∂t
(F(+)

s )∗
]

· F(+)
s + (F(+)

s )∗ · ∂

∂t
F(+)

s

}
, (67)

is obtained eliminating ∂ (F(+)
s )∗/∂t and ∂F(+)

s /∂t by means of
the analytical part of Eqs. (61) and their complex conjugates.
As the reader may verify, one arrives at the following results
for the two helicity species:

∂

∂t
[(F(+)

± )∗ · F(+)
± ]

= ±ic∇ · [(F(+)
± )∗ × F(+)

± ]

− 1√
2ε0

[(F(+)
± )∗ · J (+)

± + F(+)
± · (J (+)

± )∗], (68)

with J (+)
± = Je(+) ± iJm(+) [see Eq. (53)]. By combining

Eqs. (66)–(68) one gets

∂

∂t
(�† · �)

= ic∇ · [(F(+)
+ )∗ × F(+)

+ − (F(+)
− )∗ × F(+)

− ]

− 1√
2ε0

∑
s=+,−

[(F(+)
s )∗ · J (+)

s + F(+)
s · (J (+)

s )∗]. (69)

The right side of Eq. (69) can be rewritten in compact spinorial
notation. Since

ĥ� = ĥ

(
F(+)

+
F(+)

−

)
=

(
F(+)

+
−F(+)

−

)
, (70)
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one has

�† × (ĥ�) = [(F(+)
+ )∗, (F(+)

− )∗] ×
(

F(+)
+

−F(+)
−

)

≡ (F(+)
+ )∗ × F(+)

+ − (F(+)
− )∗ × F(+)

− . (71)

Furthermore, by introduction of the six-component current
density

J =
(
J (+)

+
J (+)

−

)
, (72)

one realizes that

�† · J + J † · � =
∑

s=+,−
[(F(+)

s )∗ · J (+)
s + F(+)

s · (J (+)
s )∗].

(73)

By inserting Eqs. (71) and (73) into Eq. (69) one finally
obtains

∂

∂t
(�† · �) = − ∇ ·

[c

i
�† × (ĥ�)

]

− 1√
2ε0

(�† · J + J † · �). (74)

Equation (74) is the sought for continuity equation for the
photon energy density, �† · �. Thus

S� = c

i
�† × (ĥ�) (75)

is the energy current density of the photon energy wave
function and the term (�† · J + J † · �)/

√
2ε0 represents the

density of work done by the photon field on the electric and
magnetic monopoles per unit time.

IV. DOUBLE-POTENTIAL FORMALISM

In Dirac’s electromagnetic theory describing (among other
things) the quantum problem of an electrically charged ele-
mentary particle (≈ electron) placed in the field of a (fixed)
magnetic monopole a singular vector potential (A) enters. In
order to uphold the usual minimal coupling substitution ∇ →
∇ − (ie/h̄)A, e being the particle charge, it is necessary to
suppose that the pole is attached to (placed at the end of) a
physically unobservable so-called Dirac string. On the string,
stretching off to infinity, the vector potential is singular. It
was shown by Cabibbo and Ferrari [17] that the pathological
string description can be avoided in an elegant manner by
introducing a second four potential. In Secs. V–VIII, we shall
realize that this double-potential formalism is very useful in
our photon wave mechanical description of photon-coupled
electric and magnetic monopoles. In particular, an extra trans-
formation of the double four-potentials, which is nonlocal in
space and time, in a formal sense, leads to expressions for the
conjugate particle momentum and angular momentum which
take standard form.

A. Electric and magnetic four potentials

In the double-potential formalism the electric and magnetic
fields are given by the dual forms

E = − ∂

∂t
Ae − ∇φe − c∇ × Am, (76)

B = − 1

c

∂

∂t
Am − 1

c
∇φm + ∇ × Ae, (77)

where

{Ae,μ} =
(

φe

c
, Ae

)
(78)

and

{Am,μ} =
(

φm

c
, Am

)
(79)

are the electric (e) and magnetic (m) four potentials. In the
absence of magnetic monopoles, Eqs. (76) and (77) express E
and B in terms of the well-known electric vector and scalar
potentials. By combining Eqs. (76) and (77) it appears that
the total (transverse plus longitudinal) Riemann-Silberstein
vectors are functions only of the complex four potentials

{Ae,μ ± iAm,μ} =
[

1

c
(φe ± iφm), Ae ± iAm

]
. (80)

A division of Eqs. (76) and (77) into their longitudinal and
transverse parts gives, respectively,

EL = − ∂

∂t
Ae

L − ∇φe, (81)

cBL = − ∂

∂t
Am

L − ∇φm, (82)

and

ET = − ∂

∂t
Ae

T − c∇ × Am
T , (83)

cBT = − ∂

∂t
Am

T + c∇ × Ae
T . (84)

The Riemann-Silberstein vectors are given by√
2

ε0
F± = − ∂

∂t

(
Ae

T ± iAm
T

) ± ic∇ × (
Ae

T ± iAm
T

)
. (85)

It appears from Eqs. (83) and (84) that a mixing of the electric
and magnetic vector potentials is needed in the potential
form. Individual gauge transformations on the electric and
magnetic four-potentials do not change the transverse part of
the potentials: Ae

T and Am
T are gauge-invariant quantities. No

mixing of e and m potentials occurs in the longitudinal part of
the fields; see Eqs. (81) and (82). In the Coulomb (subscript
C) gauge, where ∇ · Ae(=∇ · Ae

L) = ∇ · Am(=∇ · Am
L ) = 0,

one has

EL = − ∇φe
C, (86)

cBL = − ∇φm
C , (87)

since Ae
L = Am

L = 0.
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B. Nonlocal transformation of transverse vector potentials

For the subsequent analysis of the momentum (Sec. V) and
angular momentum (Sec. VI) of photon-coupled electric and
magnetic monopoles it will be useful to replace the gauge-
invariant transverse vector potentials Ae

T and Am
T by new trans-

verse ones, denoted by Ae
T and Am

T . The two sets are related
by a certain transformation which is nonlocal in space-time.
The usefulness of the transformation becomes manifest when
applied for instance to the (relativistic) quantum theory of
an electron coupled to a time-dependent magnetic monopole
source (see Sec. VIII).

Let the old and the new vector potentials be given by the
Fourier integral transformations

Aα
T (r, t ) = (2π )−4

∫ ∞

−∞
Aα

T (q, ω)ei(q·r−ωt )d3q dω, (88)

Aα
T (r, t ) = (2π )−4

∫ ∞

−∞
Aα

T (q, ω)ei(q·r−ωt )d3q dω, (89)

with α = e or m, and let us then connect the potentials via the
following relation between the Fourier amplitudes:

Aα
T (q, ω) = cq

ω
q̂ × Aα

T (q, ω), α = e or m, (90)

where q̂ = q/q is a unit vector in the direction of the wave
vector (q). Since we have demanded that the new potentials
must be transverse [implying that q̂ · Aα

T (q, ω) = 0], we ob-
tain from Eq. (90) the inverse connection

Aα
T (q, ω) = − ω

cq
q̂ × Aα

T (q, ω). (91)

By writing Eq. (90) in the form

i
ω

c
Aα

T (q, ω) = iq × Aα
T (q, ω), (92)

and making use of the fact that the multiplication by −iω and
iq in the four-dimensional Fourier space corresponds respec-
tively to the operations ∂/∂t and ∇ in the space-time domain,
it is obvious that the old [Aα

T (r, t )] and new [Aα
T (r, t )]

transverse vector potentials are connected as follows:

−1

c

∂

∂t
Aα

T (r, t ) = ∇ × Aα
T (r, t ). (93)

By utilizing Eq. (93) in Eqs. (83) and (84) the transverse parts
of the electric and magnetic fields can be expressed in the
mixed potential forms

c−1ET (r, t ) =∇ × [
Ae

T (r, t ) − Am
T (r, t )

]
, (94)

BT (r, t ) = ∇ × [
Ae

T (r, t ) + Am
T (r, t )

]
. (95)

The space-time nonlocal transformation of the potentials thus
has enabled us to express ET /c and BT as curls of simple
combinations of the old and new transverse potentials.

V. MOMENTUM OF PARTICLE (E + M)-PHOTON
SYSTEM

A. Total field momentum

Within the framework of the extended microscopic first-
quantized Maxwell-Lorentz theory the total field momentum

is given by

P(t ) = ε0

∫ ∞

−∞
E(r, t ) × B(r, t )d3r. (96)

To analyze the structure of P we divide the E and B fields
in Eq. (96) into their longitudinal and transverse vector field
parts, Hence

P(t ) = PLL(t ) + PLT (t ) + PT L(t ) + PT T (t ), (97)

where

PIJ (t ) = ε0

∫ ∞

−∞
EI × BJ d3r. (98)

The (IJ ) subscript in Eq. (98) refers to one of the com-
binations (LL), (LT ), (T L), and (T T ); cf. Eq. (96). The
division in Eq. (97) is analogous to one often used in
the absence of magnetic monopoles [24,40]. In such studies
the total momentum only consists of two parts, viz.,

P(t |ρm = 0) = PLT (t, ρm = 0) + PT T (t, ρm = 0), (99)

the reason stemming from the fact that the magnetic field has
no longitudinal part when ρm = 0; see Eq. (19).

B. Proof that the LL part is zero

To prove the assertion above we transfer the relevant
integral over direct space to an integral over wave-vector (q)
space using the Parseval-Plancherel identity. Thus

PLL(t ) = ε0

∫ ∞

−∞
EL(r, t ) × BL(r, t )d3r

= ε0

(2π )3

∫ ∞

−∞
E∗

L(q; t ) × BL(q; t )d3q. (100)

Since E∗
L(q; t ) = q̂q̂ · E∗

L(q; t ) and BL(q; t ) = q̂q̂ · BL(q; t ),
one has E∗

L(q; t ) × BL(q; t ) ∝ q̂ × q̂ = 0. In consequence,

PLL(t ) = 0, (101)

as claimed. Although there is no field momentum associated
to the product of the longitudinal fields, we shall realize in
Sec. VI that the vector product of these fields do give rise
to a net angular momentum of the (e,m)-monopole system,
even in the absence of transverse (real) photons. As shown
for a static system of an electric charge and a magnetic
monopole by Saha [14,15] and Wilson [16], one may upon
quantization of the semiclassical (first-quantized) results of
Wilson in units of h̄/2 recover the famous Dirac quantiza-
tion for the product of the electric and magnetic monopole
charges [2,3].

C. Electromagnetic parts of canonical particle momenta

It is known that PLT (t ) in the absence of magnetic
monopoles can be identified as the electromagnetic mo-
mentum associated to the individual electric monopoles
[24,40]. In order to analyze the situation in the presence
of magnetic monopoles, it is useful to transfer the rele-
vant integral over r space [Eq. (98)] to an integral over q
space. With the help of the Parseval-Plancherel identity one
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obtains

PLT (t ) = ε0

∫ ∞

−∞
EL(r, t ) × BT (r, t )d3r

= ε0

∫ ∞

−∞
E∗

L(q, t ) × BT (q, t )
d3q

(2π )3
. (102)

Since the Maxwell equation in (18) takes the form iq ·
EL(q; t ) = ρe(q; t )/ε0 in the wave-vector domain one gets

EL(q; t ) = q̂q̂ · EL(q; t ) = q̂
iε0q

ρe(q; t ), (103)

where q̂ = q/q as before is a unit vector in the direction of
EL(q; t ). An expression for the electric charge density in q
space is readily obtained from the first component of Eq. (22).
Hence

ρe(q; t ) =
∑

α

eα

∫ ∞

−∞
δ
(
r − re

α (t )
)
e−iq·rd3r

=
∑

α

eα exp[−iq · re
α (t )]. (104)

The usefulness of the nonlocal transformation of the trans-
verse vector potentials introduced in Sec. IV now shows up
after a little algebra, Thus, if one inserts a combination of
Eqs. (103) and (104) and the q-space form of Eq. (95), i.e.,

BT (q; t ) = iqq̂ × [
Ae

T (q; t ) + Am
T (q; t )

]
, (105)

into Eq. (102) one obtains

PLT (t ) = −
∑

α

eα

∫ ∞

−∞
q̂

× {
q̂ × [

Ae
T (q; t ) + Am

T (q; t )
]}

eiq·re
α (t ) d3q

(2π )3

=
∑

α

eα

∫ ∞

−∞

[
Ae

T (q; t ) + Am
T (q; t )

]
eiq·re

α (t ) d3q

(2π )3
.

(106)

The last expression in Eq. (106) is just the Fourier integral
representative of

PLT (t ) =
∑

α

eα

[
Ae

T

(
re
α (t ), t

) + Am
T

(
re
α, t

)]
. (107)

The result in Eq. (107) shows that PLT (t ) may be expressed as
a function of the various (instantaneous) position coordinates
of the electric monopoles, re

α (t ), including also an explicit
time dependence of the transverse vector potentials at these
positions. The fact that only the set of position coordinates
[{re

α (t )}] enters Eq. (107) implies that one may characterize
PLT (t ) as the electromagnetic momentum associated to the
electric monopole particles. If �e

α denotes the mechanical
momentum of particle number α, the quantity

pe
α = �e

α + eα

[
Ae

T

(
re
α (t ), t

) + Am
T

(
re
α (t ), t

)]
(108)

represents the total momentum of this particle, also called
the canonical momentum. A graphical representation of the
physics of Eq. (108) is given in Fig. 1.

In retrospect, it appears that it is our nonlocal transforma-
tion of the transverse (and gauge-invariant) vector potential

FIG. 1. Electromagnetic momentum of an electron (e) in the field
of a nonuniformly moving magnetic monopole (g). The mechanical
momentum of the particles are denoted π e and πm. In the upper
part of the figure is shown the e-self-field contribution eAe

T (re ) and
the spatially nonlocal g contribution obtained as a weighted spatial
average e〈− 1

c

∂

∂t
Am

T (r)〉(re ) over the near-field zone of the electron.
The effective range of this zone is indicated by the big circle. Upon
a space-time nonlocal transformation, the effect of the magnetic
monopole appears as a magnetic self-field contribution eAm

T (re ), as
shown in the lower part of the figure. The e and g self-field contri-
butions are proportional to e and eg, respectively. The form of the
canonical electron momentum, viz., pe = π e + e[Ae

T (re ) + Am
T (re )]

allows a minimal coupling procedure in quantum electrodynamics.
For notional simplicity the reference to time has been omitted from
the various arguments.

[Am
T (r, t ) → Am

T (r, t )] which has enabled us to bring the
contribution from the magnetic monopoles to PLT (t ) into a
form analogous to the one known in the absence of magnetic
monopoles [24,40]. In a quantum physical setting the momen-
tum pe

α translates into a momentum operator (h̄/i)∇e
α in the

configurational space representation, and thereby one is led to
a Hamiltonian formalism free of singularities; see the remarks
in Sec. VIII.

By now it is obvious that the quantity

PT L(t ) = ε0

∫ ∞

−∞
ET (r, t ) × BL(r, t )d3r (109)

may be identified as the electromagnetic momentum associ-
ated to the system of magnetic monopoles. If one makes use
of the expression give for ET (r, t ) in Eq. (94), and notes that
ET × BL = −BL × ET , a moment of reflection shows that
PT L(t ) can be written in the following form:

PT L(t ) =
∑

α

gα

[
Am

T

(
rm
α (t ), t

) − Ae
T

(
rm
α (t ), t

)]
. (110)

The quantity

pm
α = πm

α + gα

[
Am

T

(
rm
α (t ), t

) − Ae
T

(
rm
α (t ), t

)]
, (111)

052112-10



ELECTRODYNAMICS WITH MAGNETIC MONOPOLES: … PHYSICAL REVIEW A 98, 052112 (2018)

hence is the total (canonical) momentum of magnetic
monopole particle number α, πm

α denoting the mechan-
ical momentum of this particle. The electric monopole
adds a momentum contribution −gαAe

T (rm
α , t ) to the one

[gαAm
T (rm

α (t ), t )] stemming from a system consisting of mag-
netic monopoles only.

Since the contribution to Am
T (re

α, t ) from magnetic
monopole particle number β is proportional to gβ it appears
that the “new” term to the canonical momentum pe

α originat-
ing in particle β is proportional to the charge product eαgβ .
The same of course is the case for pm

α , [gαeβ].

D. Photon-field momentum

For the massless photon the relation between the momen-
tum density, PT T (t ), and the energy current density, S�(r, t ),
necessarily is given by

S� (r, t ) = c2PT T (r, t ). (112)

The momentum of the photon field

PT T (t ) = ε0

∫ ∞

−∞
ET (r, t ) × BT (r, t )d3r

=
∫ ∞

−∞
PT T (r, t )d3r (113)

now can be related to the photon energy wave function using
the expression for S� (r, t ) given in Eq. (75). Hence

PT T (t ) = 1

ic

∫ ∞

−∞
�†(r, t ) × [ĥ�(r, t )]d3r. (114)

The result in Eq. (114) also can be obtained in a more
tedious manner starting from the first member of Eq. (113),
expressing ET and BT in terms of F+ and F− [Eqs. (46)],
and utilizing afterwards Eqs. (47) and (48). Although we have
made use of various density concepts (�† · �, PT T , S�)
it must be remembered that these quantities have no strict
physical meaning because of our inability to localize a photon
precisely in space-time [25].

The momentum of the final state [�(r, t )], viz.,

Pout
T T (t ) = 1

ic

∫ ∞

−∞
�†(r, t ) × [ĥ�(r, t )]d3r, (115)

is time independent due to momentum conservation. The
incoming free-photon state [�0(r, t )] likewise possesses a
time-independent momentum, Pin

T T . The difference Pin
T T −

Pout
T T accounts for the final transfer of momentum to the

system of electric and magnetic monopoles. It is instructive
to prove by an explicit calculation that dPout

T T /dt = 0. Using
the Parseval-Plancherel relation Pout

T T can be expressed as an
integral over q space, viz.,

Pout
T T = 1

ic

∫ ∞

−∞
�†(q; t ) × [ĥ�(q, t )]

d3q

(2π )3
, (116)

where the upper [F(+)
+ (q; t )] and lower [F(+)

− (q; t )] spino-
rial components of �(q; t ) satisfy the dynamical free-space
equations

ih̄
∂

∂t
F(+)

± (q; t ) = ±ich̄q × F(+)
± (q; t ), (117)

cf. Eq. (61). The general solutions to Eqs. (117) are well
known [25,27], and from these it follows that

�(q; t ) =
(

F(+)
+ (q)ê+(q̂)

F(+)
− (q)ê−(q̂)

)
exp(−icqt ), (118)

where ê±(q̂) are helicity unit vectors (the unit vectors q̂ =
q/q and e+ and e− form a right-handed triad). The time
dependence of �(q; t ) immediately shows that the integrand
of Eq. (116) is time independent and therefore Pout

T T (and Pin
T T )

is constant in time.

VI. ANGULAR MOMENTUM OF PARTICLE-PHOTON
SYSTEM

A. Total field angular momentum

It appears from the symmetrized set of Maxwell-Lorentz
equations that the total angular momentum I of the electro-
magnetic field with respect to a reference point r0 is given by
the integrated moment of the momentum density, ε0E × B,
about r0, i.e.,

I(t |r0) = ε0

∫ ∞

−∞
(r − r0) × [E(r, t ) × B(r, t )]d3r. (119)

In analogy with the structural division made for the field
momentum in Sec. V, I(t ) is decomposed as follows:

I(t |r0) =
∑
I,J

IIJ (t |r0), (120)

where

IIJ (t |r0) = ε0

∫ ∞

−∞
(r − r0) × [EI (r, t ) × BJ (r, t )]d3r.

(121)

As before, the (IJ ) subscript runs over the four combinations
(LL), (LT ), (T L), and (T T ). Since

IIJ (t |r0) = IIJ (t |0) − r0 × PIJ (t ), (122)

it is sufficient to analyze the various contributions to the
angular momentum about the origin of our coordinate system,
viz.,

IIJ (t |0)[≡ IIJ (t )] = ε0

∫ ∞

−∞
r × [EI (r, t ) × BJ (r, t )](d )3r.

(123)

In the absence of magnetic monopoles only the ILT and the
IT T parts survive.

B. Dynamic Saha-Wilson part

Let us consider first the case of a single pair of monopoles
with charge e and g. Since PLL(t ) = 0 the angular momentum
ILL(t ) is independent of the choice of reference point (r0).
Conveniently, we calculate ILL(t ) about the instantaneous
position of the magnetic monopole; r0 = rm(t ). By inserting
the relevant Coulomb expressions for EL and BL [Eqs. (24)
and (25)], the LL part of the angular momentum, i.e.,

ILL(t ) = ε0

∫ ∞

−∞
r × [EL(r, t ) × BL(r, t )]d3r, (124)
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becomes

ILL(t ) = eg

(4π )2ε0c

∫ ∞

−∞
r ×

[
[r − Rge(t )] × r

|r − Rge|3r3

]
d3r

= eg

(4π )2ε0c

∫ ∞

−∞

[
r − Rge(t )

|r − Rge|3
]

·
[

U − erer

r

]
d3r,

(125)

where Rge(t ) = re(t ) − rm(t ) [= re(t ), here] and er = r/r .
Using the relation

(a · ∇)er = a · (U − erer )
1

r
, (126)

with a = r − Rge(t )/|r − Rge(t )|3 in Eq. (125), a subsequent
partial integration gives

ILL(t ) = − eg

(4π )2ε0c

∫ ∞

−∞
er∇ ·

[
r − Rge(t )

|r − Rge|3
]
d3r. (127)

Since

∇ ·
[

r − Rge(t )

|r − Rge|3
]

= 4πδ(r − Rge(t )), (128)

one finally obtains

ILL(t ) = eg

4πε0c
R̂eg (t ), (129)

where R̂eg (t )[= −R̂ge(t )] = Reg (t )/Reg (t ) is a unit vector
pointing from the electric monopole towards the magnetic
monopole. The result in Eq. (129) is a generalization of the
result obtained originally by Saha [14,15] and Wilson [16]
for a static system (time independent Reg). The expression in
Eq. (129) is not new, and has been used in classical studies of
the scattering of a charge e in the field of a fixed monopole
of charge g [8]. The angular momentum ILL(t ) may not be
attached to either of the monopole particles. It depends on
both and is nonvanishing even in the static case.

Since the usual orbital angular momentum, L = Reg ×
μṘeg (μ being the reduced mass of the two-particle system)
has no component along R̂eg , quantization of the total orbital
angular momentum along the connection line of the particles
leads to the charge quantization condition

1

4πε0

eg

h̄c
= n, n = 0,±1,±2, . . . . (130)

With the admission of half-integer (n + 1/2) values, the result
in Eq. (130) is identical to Dirac’s ingenious finding. In the
purely orbital case it seems plausible to limit n to integer
values.

The result in Eq. (130) readily may be generalized to an
assembly of monopoles. Hence

ILL(t ) = 1

4πε0c

∑
α,β

eαgβR̂eαgβ
(t ) (131)

in an obvious notation.

C. Field parts of the canonical particle angular momentum

The angular momentum

ILT (t ) = ε0

∫ ∞

−∞
r × [EL(r, t ) × BT (r, t )]d3r

= ε0

∫ ∞

−∞
r × (

EL(r, t )

× {∇ × [
Ae

T (r, t ) + Am
T (r, t )

]})
d3r (132)

is calculated in a manner completely identical to the one used
previously in the absence of magnetic monopoles [Am

T (r, t ) =
0]; see Refs. [24,40]. As expected, the result

ILT =
∑

α

eαre
α (t ) × [

Ae
T

(
re
α (t ), t

) + Am
T

(
re
α (t ), t

)]
(133)

can be written as a function of the instantaneous position
coordinates of the electric monopoles and the transverse
vector potential prevailing at these positions. The result for
ILT (t ) is gauge invariant. The sum of the mechanical angular
momentum of the electrons and the electromagnetic angular
momentum is given by∑

α

re
α (t ) × π e

α (t ) + ILT (t ) =
∑

α

re
α (t ) × pe

α (t ), (134)

where pe
α (t ) is the canonical momentum of particle number α;

see Eq. (108).
The field angular momentum

IT L(t ) = ε0

∫ ∞

−∞
r × [ET (r, t ) × BL(r, t )]d3r (135)

is readily calculated if one rewrites it in the form

IT L(t ) = ε0

∫ ∞

−∞
r × (

cBL(r, t )

× {∇ × [
Am

T (r, t ) − Ae
T (r, t )

]})
d3r. (136)

To obtain Eq. (136) we have used ET × BL = −BL × ET and
Eq. (93). Since cBL(r, t ) and EL(r, t ) are given by form-
identical magnetic and electric Coulomb field expressions
[see Eqs. (24) and (25)], it is obvious that the same type of
calculation which led us from Eq. (132) to Eq. (133) now gives

IT L =
∑

α

gαrm
α (t ) × [

Am
T

(
rm
α (t ), t

) + Ae
T

(
rm
α (t ), t

)]
.

(137)

The gauge-invariant result in Eq. (137) is just the field angular
momentum of the system of magnetic monopoles. Grouped
together with the total mechanical angular momenta of the
magnetic monopoles one obtains immediately∑

α

rm
α (t ) × πm

α (t ) + IT L(t ) =
∑

α

rm
α (t ) × pm

α (t ), (138)

where pm
α (t ) is the canonical momentum of magnetic

monopole number α; see Eq. (111).

D. Photon-field angular momentum

The angular momentum of the photon field, i.e.,

IT T (t ) = ε0

∫ ∞

−∞
r × [ET (r, t ) × BT (r, t )]d3r, (139)

052112-12



ELECTRODYNAMICS WITH MAGNETIC MONOPOLES: … PHYSICAL REVIEW A 98, 052112 (2018)

can be expressed in terms of the energy current density of the
photon energy wave function. Hence

IT T (t ) = 1

ic

∫ ∞

−∞
r × [�†(r, t ) × [ĥ�(r, t )]]. (140)

The reader may prove this to herself, taking a glance at
Eqs. (112)–(114). The angular momentum of the outgoing
free-photon state [�(r, t )] is time independent due to angular
momentum conservation. An explicit proof can be given cal-
culating dIT T (t )/dt from Eq. (139); see, e.g., Refs. [24,40].

VII. NEAR FIELD OF A MAGNETIC MONOPOLE

In the perspective of photon wave mechanics we now
discuss the magnetic field in the near-field zone of a single
magnetic monopole of charge g. The longitudinal and trans-
verse parts of the magnetic field are given by Eqs. (25) and
(40) reducing the number of monopoles to one.

Let us first consider the field of a monopole fixed at the
origin of our coordinate system. In this static (ST) case the
magnetic field has a longitudinal component only (B = BST

L ).
Thus

cBST
L (r) = g

4πε0

r
r3

= − g

4πε0
∇ 1

r
, (141)

with ∇ × BST
L (r) = 0. Except at the monopole position, the

longitudinal field satisfies the condition

∇ · BST
L (r) = 0, r �= 0. (142)

The static field is not a genuine transverse vector field as c∇ ·
BST

L (r) = (g/ε0)δ(r): the transversality condition is satisfied
in all space except at r = 0. In Dirac’s discussion of the
quantum mechanics of an electron, Eq. (142) was used as a
basis for the introduction of a singular vector potential ADirac

to represent the field of a fixed monopole:

BST
L (r) = ∇ × ADirac(r), r �= 0. (143)

Thus ADirac(r) corresponds not to an isolated monopole
charge, but rather to a semi-infinite line of magnetic dipoles
ending at the monopole (Dirac string).

In studies of the Dirac equation for an electrically charged
particle in a fixed magnetic monopole field one usually
parametrizes the vector potential in two different ways, cor-
responding to two overlapping but not identical regions. In
such a fiber bundle formulation the Dirac string is avoided, but
the wave function becomes a section rather than an ordinary
function.

In a quantum physical setting the monopole is never com-
pletely at rest, and the electric-magnetic monopole interac-
tion is due to photon exchange with canonical electric and
magnetic monopole momenta given by Eqs. (108) and (111),
respectively. Let us therefore consider the L and T parts of
the magnetic monopole field as time-dependent (dynamic)
quantities.

The longitudinal component [BL(r, t )] of the dynamic
magnetic field satisfies Eqs. (19) and (20). A replacement
of BL by the relevant combination of magnetic potentials
[Eq. (81)] in these equations results in the following coupled

equations between the magnetic vector (Am
L ) and scalar (φm)

potentials:

−∂2Am
L

∂t2
− ∇

(
∂φm

∂t

)
= − 1

ε0
Jm

L, (144)

− ∂

∂t

(∇ · Am
L

) − ∇2φm = 1

ε0
ρm. (145)

The Lorenz gauge condition,

∇ · Am
L + 1

c2

∂φm

∂t
= 0, (146)

transfers Eqs. (144) and (145) to the uncoupled wave equa-
tions

�Am
L = − 1

ε0
Jm

L, (147)

�φm = − 1

ε0
ρm. (148)

In obtaining Eq. (147) we have used the vector identity
0 = ∇ × (∇ × Am

L ) = ∇∇ · Am
L − ∇2Am

L . On the basis of
Eqs. (147) and (148) longitudinal (L) and scalar (S) magnetic
(m) photons can be introduced in analogy to electric (e) L and
S photons in both first and second quantization [20,21,24,45].
The m-photon types play a particularly important role in
the interaction process between magnetic monopoles in near-
field contact. An electric and a magnetic monopole cannot
exchange m photons nor e photons.

Let us next turn our attention towards the sum of the longi-
tudinal [BL(r, t )] and propagating transverse near [BNF

T (r, t )]
fields. From Eq. (20) one obtains

cBL(r, t ) = − 1

ε0

∫ t

−∞
Jm

L (r, t ′)dt ′ = − 1

ε0
Pm

L (r, t ), (149)

since Jm
L = ∂Pm

L/∂t [see the definition in Eq. (45)] and
Pm

L (r,−∞) = 0 (assuming no permanent source polariza-
tion). The transverse part of the near field is given by

cBNF
T (r, t ) = −μ0

∫ ∞

−∞
GNF

T (R, τ ) · ∂

∂t ′
Jm(r′, t ′)dt ′d3r ′,

(150)

with

GNF
T = − c2τ

4πR3
�(τ )�

(
R

c
− τ

)
(U − 3eReR ), (151)

as it appears from Eqs. (40) and (41), respectively. The
integral expression for cBNF

T can be simplified carrying out
the integral over time. Thus∫ ∞

−∞
(t − t ′)�(t − t ′)�

(
R

c
− t + t ′

)
∂

∂t ′
Jm(r′, t ′)dt ′

=
∫ t

t−R/c

(t − t ′)
∂

∂t ′
Jm(r′, t ′)dt

= −R

c
Jm

(
t − R

c

)
+

∫ t

t−R/c

Jm(r′, t ′)dt ′. (152)
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The last member of Eq. (152) was obtained by a partial
integration. Using Eq. (45) one gets∫ ∞

−∞
τ�(τ )�

(
R

c
− τ

)
∂

∂t ′
Jm(r′, t ′)dt ′

= Pm(r′, t ) − Pm

(
r′, t − R

c

)
− R

c
Jm

(
r′, t − R

c

)
.

(153)

Gathering the information in Eqs. (150), (151), and (153) one
reaches the following expression:

cBNF
T (r, t ) = 1

ε0

∫ ∞

−∞

1

4πR3
(U − 3eReR )

·
[

Pm(r′, t ) − Pm

(
r′, t − R

c

)

−R

c
Jm

(
r′, t − R

c

)]
d3r ′. (154)

The term in Eq. (154) which involves Pm(r′, t ) can be rewrit-
ten making use of the expression for the longitudinal delta
function (a dyadic quantity), as this is given in spherical
contraction viz. [24,25],

δL(R) = 1

3
δ(R)U + 1

4πR3
(U − 3eReR ). (155)

Hence one obtains

1

ε0

∫ ∞

−∞

1

4πR3
(U − 3eReR ) · Pm(r′, t )d3r ′

= 1

ε0

∫ ∞

−∞
δL(r − r′) · Pm(r′, t )d3r ′ − 1

3ε0
Pm(r, t )

= 1

ε0
Pm

L (r, t ) − 1

3ε0
Pm(r, t ). (156)

The first term in the last member of Eq. (156) is equal to
−cBL(r, t ); see Eq. (149). Altogether, the following result is
obtained for the sought after sum:

c
[
BL(r, t ) + BNF

T (r, t )
] = − 1

3ε0
Pm(r, t )

− 1

4πε0

∫ ∞

−∞

1

R3
(U − 3eReR )

·
[

Pm

(
r′, t − R

c

)
+ R

c
Jm

(
r′, t − R

c

)]
d3r ′. (157)

It appears form Eq. (157) that the sum BL(r, t ) + BNF
T (r, t )

satisfies the Einstein causality criterion outside the magnetic
monopole domain, where Pm(r, t ) = 0. The retarded nature
of

BL(r, t ) + BNF
T (r, t ) = [

BL + BNF
T

](
r, t − R

c

)
(158)

in the rim zone is remarkable perhaps, since BL is nonretarded
and BNF

T is nonvanishing in front of the light cone (R > cτ );
cf. Eq. (151).

In the near-field zone one also has a self-field contribution
to the magnetic field, given by Eq. (44) in spherical con-
traction. The term cBSF

T = −Pm
T /(3ε0) relates to the spatial

confinement problem for a transverse photon emitted from

a magnetic current density distribution Jm
T (r, t ) [in complete

analogy to the previously analyzed electric case, Je
T (r, t )

(Ref. [42])]. Since Pm
T = −Pm

L outside the particle domain
[δT (R) = −δL(R) for R �= 0; see Eq. (31)], the confinement
region for the photon has the same range as that of BL + BNF

T .

VIII. ELECTRON-PHOTON HAMILTONIAN IN AN
EXTERNAL MAGNETIC MONOPOLE FIELD

Let us consider the photon mediated interaction between
a single electron-magnetic monopole pair. It is assumed that
the electromagnetic field of the magnetic monopole has a
prescribed time dependence, so that only the electron and
photon time evolutions are described by dynamical variables.
For simplicity, it is further assumed that the monopoles are not
in near-field contact. The interacting Dirac and photon fields
hence are described by the relativistic Hamiltonian

H = HP + HR + HI . (159)

The particle Hamiltonian (HP )

HP = cα · (pe − eAm
T

) + βmc2 (160)

includes the external transverse magnetic monopole field. In
the standard choice, the four quantities α = (α1, α2, α3) and
β are represented by the four-dimensional Dirac matrices
[12,45]. The inclusion of the nonlocally transformed magnetic
monopole vector potential in HP originates in the fact that
only the electron position coordinate is a dynamical variable
in A. The radiation (R) (transverse photon) Hamiltonian (HR)
is given by

HR =
∫ ∞

−∞
�† · �d3r (161)

in photon wave mechanics and the interaction (I ) Hamiltonian
(HI ) has the form

HI = −ceα · Ae
T . (162)

The main goal in this section is a determination of
Am

T (r, t ). It appears from Eq. (36) that the magnetic part
(Bm

T ) of the transverse magnetic field (BT ) is given by the
propagator integral expression

cBm
T (r, t ) = −μ0

∫ ∞

−∞
g(R, τ )

∂

∂t ′
Jm

T (r′, t ′)d3r ′dt ′. (163)

A partial integration in time (with vanishing contributions in
the limits t ′ = ±∞) and use of the relation ∂g/∂t ′ = −∂g/∂t

gives

cBm
T (r, t ) = −μ0

∂

∂t

∫ ∞

−∞
g(R, τ )Jm

T (r′, t ′)d3r ′dt ′. (164)

Since cBm
T = −∂Am

T /∂t [see Eq. (84)] one obtains

Am
T (r, t ) = μ0

∫ ∞

−∞
g(R, τ )Jm

T (r′, t ′)d3r ′dt ′. (165)

In order to relate Am
T to Am

T we use the nonlocal trans-
formation discussed in Sec. IV B. By means of the folding
integral theorem, one has from Eq. (165)

Am
T (q, ω) = μ0g(q, ω)Jm

T (q, ω), (166)
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where [40]

g(r, ω) = c2

(cq )2 − ω2
(167)

is the Huygens scalar propagator in the (ω, q) domain. Insert-
ing Eq. (166) in Eq. (92) gives

Am
T (q, ω) = −μ0ω

cq
g(q, ω)q̂ × Jm

T (q, ω). (168)

The Fourier integral expression in Eq. (90) finally takes the
explicit form

Am
T (r, t ) = μ0c

∫ ∞

−∞

ω

q

q̂ × Jm
T (q, ω)

ω2 − (cq )2
ei(q·r−ωt ) dω d3q

(2π )4
.

(169)

For specific Jm
T (q, ω) functions it may be possible to carry

out the ω integration by a residue calculation, with a retarded
propagating form originating in the first-order pole located at
ω = cq(> 0).

The analytical part of Am
T (r, t ) appears in the radia-

tion Hamiltonian; cf. Eqs. (46)–(48), (66), and (94). This
part of Am

T (r, t ) is obtained by a limitation of the ω in-
tegral in Eq. (169) to positive frequencies [

∫ ∞
−∞(. . .)dω →∫ ∞

0 (. . .)dω]. Also the analytical part of Ae
T (r, t ) enters HR .

IX. CONCLUDING REMARKS

The scattering of a charged Dirac particle by an assumed
fixed magnetic monopole involves a number of complicated
problems related to relativistic electron dynamics, but the
role of the photon in electric (e) and magnetic (g) monopole
interactions seldom is discussed. In order to obtain a good
physical understanding of fundamental aspects of the e-g
interaction it is necessary to study the coupled photon-particle
(e + g) electrodynamics. Even in Coulomb-like (r−2)
interactions the photon plays a conceptually important
role, despite the Einsteinian retardation being extremely
small.

In the renowned quantum approach of Dirac it is attempted
to treat the longitudinal (L) magnetic Coulomb field of the
monopole (BL) as a transverse quantity, ∇ · BL = 0. To qual-
ify as a genuine transverse (T) vector field, the condition
∇ · (BT + BL) = ∇ · BL = 0 must be satisfied in the entire
space. The condition fails in one point, viz., at the posi-
tion of the magnetic point monopole. Once the inevitable
present dynamical behavior of the monopole is taken into
account the magnetic monopole near field has both L and T

components and the total field is retarded. In the near-
field zone an apparently nonretarded field component arises
from the spatial photon localization problem. No propa-
gation effects can be associated to this quantum local-
ization phenomenon, however. For e and g poles out-
side each other’s near-field zone the electromagnetic in-
teraction solely is related to exchange of transverse
photons.

In between classical and quantum electrodynamics stands
photon wave mechanics, i.e., the first-quantized theory of
the photon. This theory can be upgraded to second quanti-
zation and a number of phenomena difficult to implement in
quantum electrodynamics are easily studied in photon wave
mechanics. In the present work photon wave mechanics has
been combined with a transverse electromagnetic propagator
description. The combined theory is particularly convenient
when the e-g interaction is treated on basis of a double-
potential formalism, since compact and simple integral (prop-
agator) expressions relate the transverse electric and magnetic
vector potentials to their (e, g)-particle source current density
distributions.

A space-time nonlocal transformation of the transverse
electric and magnetic vector potentials constitute a key result
of the present paper since it leads to expressions for the
electromagnetic parts of the particle canonical momentum
and angular momentum. These expressions, via the forms
p · (Ae

T + Am
T ) and p · (Am

T − Ae
T ), allow one to uphold the

minimum coupling principle in quantum electrodynamics
with magnetic monopoles.
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