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Quality Control in Remote Speech Data Collection
Amir Hossein Poorjam, Student Member, IEEE, Max A. Little, Member, IEEE, Jesper Rindom Jensen, Member,

IEEE, and Mads Græsbøll Christensen, Senior Member, IEEE

Abstract—There is the need for algorithms that can auto-
matically control the quality of the remotely collected speech
databases by detecting potential outliers which deserve further
investigation. In this paper, a simple and effective approach for
identification of outliers in a speech database is proposed. Using
the deterministic minimum covariance determinant (DetMCD)
algorithm to estimate the mean and covariance of the speech
data in the mel-frequency cepstral domain, this approach iden-
tifies potential outliers based on the statistical distance of the
observations in the feature space from the central location of the
data that are larger than a predefined threshold. The DetMCD
is a computationally efficient algorithm which provides a highly
robust estimate of the mean and covariance in multivariate
data even when 50% of the data are outliers. Experimental
results using 8 different speech databases with manually inserted
outliers show the effectiveness of the proposed method for outlier
detection in speech databases. Moreover, applying the proposed
method to a remotely collected Parkinson’s voice database shows
that the outliers that are part of the database are detected with
97.4% accuracy, resulting in significantly decreasing the effort
required for manually controlling the quality of the database.

Index Terms—Outlier detection, quality control, robust esti-
mation, speech database, remote data collection.

I. INTRODUCTION

Development of many speech-based systems such as
speech and language recognition, speaker characterization and
biomedical speech analysis requires a large amount of high-
quality training data to accurately model the characteristics of
the speech signals [1]–[6]. In many cases, such databases do
not exist, and therefore, speech samples should be collected
prior to development of a system. The acquisition of speech
data, in a broad sense, can be separated into two categories,
namely supervised and unsupervised data collection. In super-
vised speech data collection, participants are typically required
to be present on-site to record their voice in specific experi-
mental conditions. The process of data collection is supervised
and controlled by an expert to train participants, verify the
equipment is correctly configured, check that recordings are
complete, and repeat the procedure if a recording does not
satisfy the requirements [7]. While high quality samples can
be collected under controlled conditions, creating large speech
databases this way is challenging and impractical in most
cases.
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With unsupervised speech data collection on the other
hand, a speech database is created remotely to bypass the
logistical limitations of controlled approaches. In this method,
participants are typically provided with a web-based interface,
a dedicated line to make a phone call or an application
running on remote devices such as smartphones, tablets or
personal computers accompanied by instructions on how to
record and submit voice recordings. Participants can contribute
to speech data collection at any time and in any location.
SWITCHBOARD is an example of a large multispeaker
database of more than 250 hours of conversational speech
collected automatically over telephone lines by 500 speakers
from around the US [8]. The LibriVox project [9] is another
example large speech database which contains more than 1,000
hours of recordings collected by volunteers reading chapters
of books and submitting the recordings to a web server using
a web-based interface. Lane et al. developed two tools to
collect speech data remotely using mobile devices and via a
web-based interface [10]. Using an online educational game
called Voice Scatter, Gruenstein et al. [11] collected more than
27 hours of speech data remotely from 1193 speakers in 22
days through a web-based interface. Nagrani et al. [12] used
a multi-stage approach to automatically collect a large scale
speaker recognition database, called VoxCeleb, from YouTube
videos of 1,251 celebrities. Although remote data collection
is easier and results in a larger population sample compared
to supervised collection, the quality of the recordings is often
poor and the homogeneity of the recordings in the database
is not guaranteed, because speech samples can be recorded
in a wide range of environments using different recording
devices. In this case, the amount of usable recordings depends
upon how well participants are trained before starting the
recording procedure [10]. Even though the quality of record-
ings can be controlled prior to submission by playing back
the recorded samples and repeating the recording procedure
in case the speech signals do not satisfy requirements [13],
some participants still submit defective recordings due to
lack of training, misinterpretation of protocols or negligence.
Moreover, not all interfaces facilitate playing back the audio
signals prior to submission [14], [15]. The presence of in-
consistent and/or low-quality samples in a speech database
can significantly degrade the performance of speech-based
applications. Therefore, speech databases typically need to be
analyzed and cleaned before being processed. Controlling the
quality of recordings is one of the major challenges in speech
database collection and it is typically performed by experts. As
human inspection is often infeasible for large databases which
contain hundreds of hours of recordings, there is the need for
automatic methods to recognize low-quality samples in speech
databases. The European Language Resources Association



1932-4553 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2019.2904212, IEEE Journal
of Selected Topics in Signal Processing

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, JANUARY 18, 2019 2

(ELRA) considers the signal-to-noise ratio (SNR), clipping
rate and mean amplitude of the recordings as measures for a
quick quality control of the audio signals in a speech database
[16]. However, the performance of these measures is limited
when searching for recordings that are of high-quality but
varying in terms of content and recordings with very short
duration speech activities. Moreover, we have shown in [17]
that most existing SNR estimation methods only work for
normal speech signals and cannot provide accurate estimation
for special speech types such as whispered or disordered
voices.

The process of post-hoc quality control in speech databases
can be considered as an outlier detection problem in which
the samples that, in some sense, are “far” from the majority
of the data that have been collected for a particular purpose are
considered as outliers. However, the definition of outliers in
speech databases differs across applications. In this paper, we
aim to identify outliers which are produced during the remote
data collection process such as errors due to technical prob-
lems in recording equipment, participants’ mistakes during
recording or recording in very noisy acoustic environments.
We propose a simple and efficient approach to finding low-
quality and inconsistent samples in a speech database by
identifying statistical outliers. In this method, a deterministic
minimum covariance determinant algorithm (DetMCD) [18]
is used to provide robust estimation of mean and covariance
of the mel-frequency cepstral coefficients (MFCCs) extracted
from recordings. Outliers, which may deserve additional in-
spection, are then determined by selecting samples whose ro-
bust statistical distance in feature space from the robust central
location of the data is larger than a predefined threshold.

The paper is organized as follows. In Section II, the outlier
detection problem in a speech database is formulated and
the algorithms in our proposed method are explained. The
proposed method is elaborated in Section III. Section IV
introduces the experimental setup and describes the databases
used in this study. In Section V, the experimental results are
presented. Finally, Section VI summarizes the paper.

II. BACKGROUND

A. Problem Formulation
Controlling the quality of recordings in a speech database

can be considered as the identification of the potential out-
liers in a database. In general, depending on the amount of
additional information provided for the recordings, a speech
database can be used for many different applications such
as speech recognition, emotion classification, voice disorder
diagnosis, speaker recognition, language recognition and envi-
ronmental sniffing. Consequently, outliers in a specific speech
database can differ across applications. However, in this paper,
our main concern is to identify outliers occurring during the
remote data collection process.

Errors in large speech databases can occur at every step
of the remote data collection process. An understanding of
the types of errors occurring during data collection facilitates
the development of an appropriate automatic data clean-up
method. Although not exhaustive, the major types of errors
fall into one or more of the following categories:

• Empty or very short speech activity: This type of error,
in which there is no or a very short speech activity in
a signal (comparing to the signal length), can happen
due to technical problems in recording equipment or
participants’ mistakes during recording. In this case, the
speech sample is useless since no relevant information
can be captured from the sample.

• Low-quality samples: This type of error can occur due to
poor or misconfigured recording equipment, recording in
a noisy or reverberant acoustic environment, and common
processing through nonlinear elements such as an audio
codec or hard clipping.

• Wrong context: Recordings in this case can even be of
high-quality but they do not comply with the context of
the database. For example, the presence of a non-speech
sound or a recording of whispered speech are considered
as incorrect data in a normal voice speech database. This
error can typically originate from participants’ mistakes
due to misinterpretation of the speech/voice task, sub-
mitting an incorrect speech sample or saving a submitted
recording in the wrong repository on the web-server.

For outlier detection in a speech database, we are given a
set of data, Z = {zi}ni=1, where zi denotes the ith recording
in the database. The goal is to identify as many low-quality
and inconsistent samples as possible which are outliers with
respect to the majority of samples in the database. Depending
on the application, a flagged outlier can either be kept in the
database if it has been a false alarm, be enhanced and kept
in the database if it is degraded [19], or be excluded from
the database if it is not possible to retrieve useful information
from the signal.

B. Robust Mean and Covariance Estimators

Given an n × m matrix Z = [z1, . . . ,zn]T with the
ith observation zi = [zi1, . . . , zim]T of dimension m, the
center and scatter of the data set are typically estimated
by calculating the sample mean and the sample covariance.
However, these estimates are highly affected by the presence
of outliers in a data set. They have a breakdown value—the
smallest percentage of outliers which can have an arbitrarily
large impact on the estimator—of 1/n which means that even
a single outlier can modify both estimates arbitrarily.

To make the multivariate mean and covariance estimators
robust against outliers, Rousseeuw proposed to find a subset
of k observations, where n

2 ≤ k ≤ n, which has the minimum
volume ellipsoid (MVE) [20]. This subset is then used to
estimate the robust mean and covariance of the data set.
Although the MVE has a high breakdown value, ≈ 50%, its
slow convergence rate makes this algorithm inefficient. The
minimum covariance determinant (MCD) method [21] is an
alternative which provides a highly robust estimate of the mean
and covariance in multivariate data. This approach looks for a
subset of k samples for which the covariance matrix has the
lowest determinant. The mean and the covariance of this subset
is then used as the estimate of mean and covariance of the data
set. Even though it provides higher accuracy than the MVE and
has a breakdown value of 50% when k = b(m+ n+ 1) /2c
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[22], the MCD is computationally inefficient. In the Fast-
MCD algorithm [22], Rousseeuw and van Driessen proposed
an approximation to the MCD by incorporating a fast re-
sampling algorithm to select a large number of random subsets
and applying concentration steps to select subsets whose
covariances have the smallest determinant. Since Fast-MCD
starts by drawing initial random subsets, the results are not
necessarily the same at multiple runs of the algorithm. As an
alternative approximation to MCD, Hubert et al. proposed a
deterministic algorithm (DetMCD) [18] to compute the MCD
estimator. This algorithm starts from only a few well chosen
initial estimates which are used to form six initial robust
subsets. Then, the concentration steps are applied to these
subsets until convergence. Since our proposed method is based
on the DetMCD algorithm, we describe this algorithm in more
detail below.

In DetMCD, each column of the data matrix Zj
(j=1, . . . ,m) is first subtracted by its median and divided
by the scale estimator Qn(Zj)=2.2219×{|zcj − zdj |; c<d}(p)
which is the pth order statistic of the

(
n
2

)
interpoint distances

[23], where p=
(
h
2

)
and h=[n/2]+1. This standardization

makes the algorithm location and scale equivariant. Given the
standardized data matrix X with rows xTi (i = 1, . . . , n)
and columns Xj (j = 1, . . . ,m), six initial estimates Sl
(l = 1, . . . , 6) of the correlation or covariance matrix of X
are constructed [18] as follows:
• S1 = corr(W ) with Wj = tanh(Xj), where Wj (j =

1, . . . ,m) are the columns of W .

• S2 = corr(R) where R, with columns Rj (j=1, . . . ,m),
is the rank of X . The matrix S2 is the Spearman
correlation matrix of X .

• S3 = corr(T ) with Tj = Φ−1
(
(Rj− 1

3 )/(n+ 1
3 )
)
, where

Φ(·) is the normal cumulative distribution function, and
Tj (j = 1, . . . ,m) are the columns of T .

• S4 = 1
n

∑n
i=1 kik

T
i with ki

def
= xi/‖xi‖ for all i.

• S5 = cov(Y ), where Y is the dn/2e standardized
observations xi with smallest norm.

• S6 is the raw orthogonalized Gnanadesikan-Kettenring
(OKG) estimator [24].

Then, for each of these estimates Sl, the Mahalanobis
distance of the observations are calculated as:

MDil = D
(
xi, µ̂l, Σ̂l

)
=

√
(xi − µ̂l)T Σ̂−1l (xi − µ̂l),

(1)
where the covariance and the center of X are estimated using

Σ̂l = ELET , (2)

µ̂l = Σ̂
−1/2
l

(
comed

(
XΣ̂

−1/2
l

))
, (3)

in which E is the orthogonal matrix of eigenvectors of Sl,
L=diag

(
Q2
n(V1), . . . , Q2

n(Vm)
)

with V =XE, and comed(·)
denotes the coordinate-wise median.

In the next step, the mean and covariance matrix of the
k0 = dn/2e observations with smallest MDil are computed
for each initial estimate l, and the new statistical distances

(denoted as MD∗il) for all n observations are calculated. Then,
k observations with smallest MD∗il are selected for each l =
1, . . . , 6 and the concentration step is applied to them until
convergence.

In the concentration step, the statistical distances
dold(i)=D(zi, µ̂old, Σ̂old) for all n observations are computed
given the initial estimates of the mean µ̂old and covariance
matrix Σ̂old. By sorting these distances, a permutation τ for
which dold(τ1) ≤ dold(τ2) ≤ · · · ≤ dold(τn) is obtained. The
new estimates of the mean µ̂new and covariance matrix Σ̂new

are respectively computed as

µ̂new =
1

k

∑
i∈K

zi, (4)

Σ̂new =
1

k − 1

∑
i∈K

(
zi − µ̂new

)(
zi − µ̂new

)T
, (5)

where K = {τ1, τ2, . . . , τk}. It was proved in [22] that
the determinant of Σ̂new is smaller than or equal to the
determinant of Σ̂old with equality only if Σ̂new = Σ̂old, which
means that the sequence of determinants converges in a finite
number of steps.

Finally, a weighting step is applied to increase the statistical
efficiency of the estimated mean and covariance matrix as:

µ̃ =

∑n
i=1 ρ(d2i )zi∑n
i=1 ρ(d2i )

, (6)

Σ̃ =
1∑n

i=1 ρ(d2i )− 1

n∑
i=1

ρ(d2i )(zi − µ̃)(zi − µ̃)T , (7)

with weights

ρ(d2i ) =

{
1 d2i ≤ χ2

m,α

0 otherwise,
(8)

where χ2
m,α is the α-quantile of the Chi-square distribution

with m degrees of freedom.
The permutation invariant property of DetMCD makes the

results independent of the order of the observations in the
data set. Using DetMCD, it is recommended to have subsets
of k ≈ 0.5n when the data set is expected to contain many
outliers and k ≈ 0.75n otherwise [18].

C. Robust Statistical Distance

Outliers in a data set can be considered as the observations
that, in some sense, are “far” from the rest of the data. The
Mahalanobis distance, which is defined in (1), is a widely used
metric for measuring the distance between an observation and
the center of a distribution that takes the covariance of the
distribution into account. The Mahalanobis distance is a useful
metric for detecting a single outlier in a data set [25]. However,
it is not robust against outliers, particularly when multiple
outliers are present in a data set, since the sample mean and
the sample covariance estimates in (1) are sensitive to outliers.
Replacing these estimates in the Mahalanobis distance by the
robust estimates of mean µ̃ and covariance Σ̃, computed in
(6) and (7) respectively, the robust distance is defined as:

RDi = D
(
zi, µ̃, Σ̃

)
=

√
(zi − µ̃)

T
Σ̃−1 (zi − µ̃). (9)
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III. THE PROPOSED METHOD

The block diagram of the proposed method for detecting
potential outliers in speech databases is illustrated in Fig.1. To
identify outliers, we need features to reflect changes in signal
characteristics at the recording level. In this paper, we propose
to use mel-frequency cepstral coefficients (MFCCs) since not
only do they convey information about speech context [26], but
it has also been demonstrated that the presence of noise and
distortion in speech signals predictably modify the distribution
of the MFCCs by changing the covariance of MFCCs and
shifting the mean to different regions in the feature space [17],
[27]. Moreover, we have shown in [17] that if the MFCCs of
a recording are averaged over frames, the amount of change
in the mean and covariance matrix of the MFCCs is related
to the level of overall noise and distortion in the recording
regardless of the speech type. Thus, assuming that the majority
of recordings in a speech database are of, more or less,
the same quality and there is no context variability among
them, we expect the corresponding MFCCs to have a smaller
distance from the central location of the data compared to the
MFCCs of the potential outliers, which we assume to have a
different distribution to the rest of the data. To this end, the
MFCCs extracted from the frames of a recording are averaged
to form a fixed-length, low-dimensional vector per recording.
Using the DetMCD algorithm to estimate the robust mean and
covariance of the data, the robust statistical distance, RD, for
all observations in the data set is calculated using (9). Then,
the observations with a robust distance larger than a predefined
threshold are expected to be the potential outliers that deserve
additional inspection.

Setting a threshold is to some extent arbitrary, database-
dependent and requires domain knowledge. However, since
the asymptotic distribution of the robust distances is the Chi-
square (χ2

m) distribution with m degrees of freedom [28], the
RD values larger than the threshold, defined as

θ =
√
χ2
m,0.975 , (10)

can be considered as potential outliers. Here χ2
m,α is the

α-quantile of the Chi-square distribution. The cut-off value
depends on α and the number of variables m. Choosing a
small value for α leads to flagging too many observations as
outlying (false positives or type I errors). On the other hand,
setting α to a value very close to one results in missing the
potential outliers (false negatives or type II errors). We propose
to set α = 0.975. The impact of the number of variables on
the performance of the algorithm is investigated in Section V.

IV. EXPERIMENTAL SETUP

The proposed approach has been validated on eight
databases of three different speech types, namely normal
speech, whispered speech and pathological voice. Specifically,
for normal speech, the LibriSpeech database [9], the TIMIT
continuous speech database [7], a noisy speech database [29],
and a noisy reverberant speech database [30] have been
used. The LibriSpeech database is based on the LibriVox
project1 containing more than 1,000 hours of audio books

1 https://librivox.org

 

 

Speech 

Database 

Robust 
Estimation 
(DetMCD) 

μ 

Robust 
Distance 

θ 

Σ 
~ 

Feature 
Extraction 

(MFCC) 

R
D

 

Observations 

~ 

Fig. 1. Block diagram of the proposed method for identification of potential
low-quality and inconsistent outliers in a speech database.

read in English by both male and female speakers. The TIMIT
continuous speech database has been developed for evaluation
of automatic speech recognition systems and contains 6,300
utterances uttered by 630 English speakers of both genders.
The noisy speech and noisy reverberant speech databases were
created based on the clean recordings of the Voice Bank
corpus [31] and designed to train and test speech enhance-
ment methods and text-to-speech models. To create the noisy
database, clean recordings of 14 male speakers and 14 female
speakers were contaminated by ten different types of noise
at 10 dB and 15 dB. For the noisy reverberant database, the
clean recordings of 14 male speakers and 14 female speakers
were made reverberant by convolving them with room impulse
responses of three different databases, and adding them to the
noisy signals at 10 dB and 15 dB. The last two databases have
been selected because there is a growing demand for collecting
noisy and revereberant speech databases that are similar to live
recordings with a microphone.

Whispering is often used for quiet or private communica-
tion. To evaluate the performance of the proposed algorithm
on the whispered speech databases, we considered the CHAIN
database [32] and the CSTR NAM TIMIT Plus database
[33]. The CHAIN database contains whispered speech samples
uttered by 36 English speakers of both genders. The CSTR
NAM TIMIT Plus database consists of 420 sentences read
with a whispered voice and recorded using an omni-directional
headset-mounted condenser microphone. The recordings of
both databases have been collected in noise free environments.

Due to the development of advanced machine learning
techniques, many voice disorders can be deteced using voice
signals [5], [34], [35]. To develop accurate and reliable al-
gorithms for detection of disorders from voice signals a very
large number of good- and consistent-quality voice recordings
are required. In this study, we considered two voice databases
from Parkinson’s disease patients as examples of remotely
collected pathological voice databases. The first database,
generated through collaboration between Sage Bionetworks,
PatientsLikeMe and Dr. Max Little as part of the Patient Voice
Analysis study2, includes telephone recordings of the sustained
vowel /a/ uttered by 750 patients of both genders. The second
database consists of more than 65,000 samples of the sustained
vowel /a/ recorded via smartphones by healthy and patient
speakers of both genders. This database has been developed
through the mPower mobile Parkinson Disease study [15] in

2 Obtained through Synapse ID [syn2321745]
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TABLE I
SUMMARY DETAILS OF THE DATABASES

Database Speech Type Duration (Min./Avg./max.) Sampling Rate Gender Collection Method
LibriSpeech Normal Speech 9.6 / 15 / 34 sec. 16 kHz Male/Female Remotely by Mic.
TIMIT Continuous Speech Normal Speech 5 / 5.5 / 7.8 sec. 16 kHz Male/Female On-site by Mic.
Noisy Speech Normal Speech 5 / 6.5 / 12 sec. 48 kHz Male/Female On-site by Mic.
Noisy Reverberant Speech Normal Speech 2.3 / 8 / 15 sec. 48 kHz Male/Female On-site by Mic.
CHAIN Whispered Speech 1.5 / 7.5 / 57.5 sec. 44.1 kHz Male/Female On-site by Mic.
CSTR NAM TIMIT Plus Whispered Speech 3.5 / 5.8 / 16.5 sec. 96 kHz Female On-site by Mic.
Telephone Parkinson’s Database Pathological Voice 3.1 / 16.5 / 29.5 sec. 8 kHz Male/Female Remotely by Telephone
Smartphone Parkinson’s Database Pathological Voice 9.9 / 10 / 10.1 sec. 44.1 kHz Male/Female Remotely by Smartphone

which participants from the US submit their voice using a
mobile application when they have access to the internet. To
distinguish between these two databases, we refer to the former
as the telephone Parkinson’s database and to the latter as the
smartphone Parkinson’s database in the rest of paper. Summary
details of the databases are presented in Table I.

In order to evaluate the performance of the proposed
method, ground truth labelling is needed. To this end, 200
consistent-quality recordings have been selected from each
database and the following recordings, as examples of the most
common outliers in speech databases, have been added to each
database: (1) a silent signal, recorded in a very quiet room,
with the same duration as the average duration of the record-
ings in the database; (2) a recording selected from the target
database (the database under study), and the whole signal, save
for a very short segment (100 ms), is set to silent: this outlier
is considered as a recording with very short speech activity;
(3) four recordings selected from the target database, two of
them are contaminated by speech babble noise at 5 dB and -5
dB and the other two recordings are moderately and heavily
distorted by clipping followed by reverberation: these four
outlier recordings are used to represent low-quality recordings
in a database; (4) four clean recordings from a different context
selected from databases other than the one under analysis
and one music signal played by a piano: these recordings are
resampled and trimmed/repeated to have the same sampling
rate and signal duration as those of the target database –
these are considered as irrelevant samples (incorrect context)
in the database. It should be noted that the four recordings
from different databases have not been selected from the noisy
speech nor from the noisy reverberant speech databases since
we have already considered noisy and reverberant samples
in the previous item; (5) one recording in the same context
as the database under study but selected from a different
database to represent a sample collected under a different
acoustic environment or using different recording equipment.
Thus, each database contains 212 recordings among which 12
recordings are known outliers.

V. RESULTS AND DISCUSSION

The proposed method operates on mel-cepstral features.
Recordings in each database are segmented into frames of 30
ms, with 10 ms overlap, using a Hamming window. For each
frame of a speech signal, m cepstral coefficients are calculated.
The MFCCs extracted from the frames of a recording are then
averaged both to smooth out the impact of articulation and
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Fig. 2. Performance of the proposed method for outlier detection in speech
databases, in terms of the number of misdetected outliers, as a function of
the MFCC dimension.

to form one m-dimensional vector per each recording. Since
the flagged outliers are the only samples that are subject to
further inspection (as explained in Section II-A), minimizing
the misdetection error is more important than minimizing the
false alarms. In Fig. 2, the number of misdetected outliers in
the eight different databases are plotted as a function of m, the
number of cepstral coefficients. The plots suggest that the best
performance is obtained when m is set to a number between
5 and 14 which, in most cases, results in detecting most of
the added outliers to the databases.

The robust distance, RD, calculated from the observations
of the eight speech databases using 5 MFCCs is shown in
Fig. 3. In this figure, the threshold for identification of outliers
are indicated by the dashed line. The correctly detected inlier
observations which were collected according to the database’s
protocol are shown by the blue circles. The correctly detected
outliers are represented by the green circles. The black stars
show the misdetected outliers (false negatives), and the inlier
samples detected as the potential outliers (false positives) are
represented by the red crosses. Since most of the data in
these plots are concentrated below the threshold, we show the
vertical axes on a logarithmic scale for a better visualization.
We set k ≈ 0.75n and θ =

√
χ2
5,0.975 = 3.58 for all databases.

The results show the effectiveness of the proposed approach.
We can observe that almost all outliers added to the databases
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Fig. 3. Robust distance, on a logarithmic scale, calculated from the observations of eight different databases. The blue circles are the correctly detected inlier
samples which are collected according to the corresponding data collection protocol. The green circles are the correctly detected outliers which are added to
the databases. The red crosses indicate the inlier samples detected as the potential outliers (false positives). The black stars are the misdetected outliers (false
negatives). The dashed lines indicate the threshold value for identification of outliers in databases defined in (10).
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Fig. 4. Robust distance, on a logarithmic scale, calculated from the observa-
tions of a subset of 600 recordings randomly selected from the smartphone
Parkinson’s database. The blue circles are the clean observations correctly
detected as inliers. The green circles are correctly detected outliers. The red
crosses are the clean samples detected as the potential outliers (false positives).
The black stars represent the misdetected outliers (false negatives). The dashed
line shows the threshold value for identification of outliers.

have RD larger than the threshold defined in (10).
The outlier that is not detected in the CHAIN database

is a recording in a whisper (the same context) added from
the CSTR NAM TIMIT Plus database. The outlier which is
not detected in the telephone Parkinson’s database and the
noisy speech database is a noisy recording at 5 dB, and two
misdetected outliers in the noisy reverberant database are a
noisy recording at 5 dB and a recording moderately distorted
by clipping followed by reverberation. Bearing in mind that
the recordings in the telephone Parkinson’s database have
been collected over the telephone, they are not perfectly clean
and already have some noise and distortion. Moreover, the
samples of the noisy speech and the noisy reverberant speech
databases are the recordings that have been contaminated
respectively by noise and noise-reverberation at 10 dB and 15
dB. Thus, recordings with moderate noise and distortion can
still be considered as inliers in these particular databases. This
suggests that noise and distortion in recordings can to some
extent be tolerated depending on the data collection method.

In the next experiment, the proposed outlier detection
method is applied to the smartphone Parkinson’s database
to evaluate the effectiveness of the proposed approach in
detecting potential outliers in a real database which is remotely
collected in an unsupervised manner. In this database, the
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TABLE II
THE CONFUSION MATRIX OF THE PROPOSED METHOD APPLIED TO A

SUBSET OF 600 RECORDINGS RANDOMLY SELECTED FROM THE
SMARTPHONE PARKINSON’S DATABASE

Predicted

Outlier Inlier
A

ct
ua

l Outlier 97.4 % 2.6 %

Inlier 5.1 % 94.9 %

participants were supposed to utter a sustained vowel /a/ for
10 seconds at a comfortable pitch and intensity. Since the data
collection was unsupervised, we expect to have outliers in
the database. A subset of 600 recordings drawn uniformly at
random from the database has been selected so as to have
a reasonably large population while making it practical to
annotate the recordings manually to assess the performance
of the method. By manual inspection of the recordings, 77
outliers have been detected which can be categorized into three
general classes, namely recordings with very short speech
activity, recordings with no relevant speech activity (including
speaking, laughing, coughing, recordings that captured only
the ambient noise or empty recordings), and low quality
recordings (noisy or distorted signals).

Fig. 4 shows the robust distance of the observations in
this subset. The vertical axis is on a logarithmic scale for
a better visualization of the data. The dashed line in this
figure indicates the threshold. The blue circles show the good-
quality samples which are correctly detected as inliers. Outliers
correctly detected by the proposed algorithm are highlighted
by the green circles. The good-quality samples detected as
the potential outliers (the type I errors) are shown by the
red crosses, and the misdetected outliers (the type II errors)
are represented by the black stars. Setting k ≈ 0.75n and
θ = 3.58, the algorithm flagged 102 samples in this subset
as potential outliers which have RD ≥ θ among which 75
samples are the actual outliers and 27 samples are good-
quality recordings detected as outliers. Table II summarizes
the results in the form of a confusion matrix. The results show
that the proposed algorithm, for this particular subset, reduces
the 600 recordings down to 102 flagged samples, avoiding
the need to further inspect 83% of the database. It can be
observed from the plot that the threshold θ, defined in (10) can
provide a reasonably acceptable cutoff value for identification
of outliers which leads to detecting 97.4% of outliers and only
2 misdetections and 27 false alarms in this data set. This is
beneficial when there is no prior knowledge about the number
of outliers in a database.

VI. CONCLUSION

In this paper, we proposed a simple and effective method
for detecting potential low-quality and inconsistent outliers
in a speech database. This approach operates on the MFCC
features which are known to be sensitive to changes in signal
characteristics due to noise and distortion. Assuming that the
majority of recordings in a speech database have roughly the
same quality, and using the deterministic MCD algorithm to

estimate the robust center and scatter of the observations, the
potential outliers are detected based on their robust distance
from the robust center of the data. We showed that a threshold
equal to

√
χ2
m,0.975 can provide a reasonably acceptable cutoff

value for detecting outliers, particularly, when there is no prior
knowledge about the number of outliers. Experimental results
using eight different databases show the effectiveness of the
proposed method in detecting outliers in speech databases
which can significantly decrease the effort required for further
inspection to manually identify and remove poor-quality sam-
ples. Future work should focus on evaluating how the proposed
quality control can improve the performance of individual
speech-based applications. We plan to evaluate this issue on
the performance of voice-based Parkinson’s disease detection.
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