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A Statistical Learning Approach to Ultra-Reliable
Low Latency Communication

Marko Angjelichinoski, Student Member, IEEE, Kasper Fløe Trillingsgaard, Student Member, IEEE,
and Petar Popovski, Fellow, IEEE

Abstract—Mission-critical applications require Ultra-Reliable
Low Latency (URLLC) wireless connections, where the packet
error rate (PER) goes down to 10−9. Fulfillment of the bold
reliability figures becomes meaningful only if it can be related to a
statistical model in which the URLLC system operates. However,
this model is generally not known and needs to be learned by
sampling the wireless environment. In this paper we treat this
fundamental problem in the simplest possible communication-
theoretic setting: selecting a transmission rate over a dynamic
wireless channel in order to guarantee high transmission reli-
ability. We introduce a novel statistical framework for design
and assessment of URLLC systems, consisting of three key
components: (i) channel model selection; (ii) learning the model
using training; (iii) selecting the transmission rate to satisfy the
required reliability. As it is insufficient to specify the URLLC
requirements only through PER, two types of statistical con-
straints are introduced, Averaged Reliability (AR) and Probably
Correct Reliability (PCR). The analysis and the evaluations show
that adequate model selection and learning are indispensable for
designing consistent physical layer that asymptotically behaves
as if the channel was known perfectly, while maintaining the
reliability requirements in URLLC systems.

Index Terms—URLLC, channel uncertainty, parametric mod-
els, non-parametric models, learning, MLE, training.

I. INTRODUCTION

ULTRA-reliable low latency communication (URLLC) is
among the most exciting novelties in 5G networks [1]–

[4]. The projected reliability guarantees of 10−5, and even
going down to 10−9, represent the ultra-reliable (UR) regime
of wireless operation. This regime is necessary to support
a multitude of mission-critical applications, such as remote
control of robots, autonomous coordination among vehicles as
well as many yet-to-be-defined use cases. The strictness of the
reliability requirements increases the focus on the performance
of the physical layer, its main design assumptions [1], [5], the
modeling of the inherently unreliable wireless channel [6]–[8]
and the adequacy of existing transmission strategies in UR-
relevant regime [8].

Fulfillment of the bold figures on reliability for URLLC
becomes meaningful only if it can be related to a statistical
model in which the URLLC system operates, as in that
case one can calculate the probability of error or failure.
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However, the statistical model and the probability distribution
of the parameters that affect the occurrence of errors are,
generally, unknown and the URLLC system needs to invest
resources to learn them. In general, the statistical model can
encompass the interference from other devices, behavior of
the protocols, etc. Here we consider the simplest possible
communication-theoretic setting: selecting a transmission rate
over a dynamic wireless channel, in absence of interference, in
order to guarantee high transmission reliability. For example,
even if it is known that a channel is subject to a Rayleigh
fading, guaranteeing certain reliability means that the average
gain of that channel is known perfectly. We take a closer look
into the impact of channel uncertainty on the reliability that
can be attained in wireless systems operating in UR-relevant
regime. Specifically, we consider two fundamental questions:

1) What level of knowledge is required about the wireless
channel to be able to guarantee ultra-reliable support of
a certain transmission rate? To the best of our knowl-
edge, the existing URLLC studies select the transmission
parameters by ignoring the uncertainty introduced by the
transmission environment. As a result, the assumption of
perfect knowledge of the channel statistics needs to be
revised, as without it, the extreme reliability guarantees
become questionable. This assumption is fundamentally
unreliable, and although it might be acceptable in existing
wireless systems with reliability targets in the order of
10−3, the impact of channel uncertainty will lead to
severe performance degradation in URLLC systems.

2) How to pose the requirements for ultra-reliability in a
statistically correct way? Stating only that we need a
packet error rate of e.g. ε = 10−6 is insufficient. We
define two different way to measure reliability: Averaged
Reliability (AR), suitable for dynamically changing envi-
ronments, and Probably Correct Reliability (PCR), where
we assign a confidence that the reliability target will be
met in a relatively static environment.

Addressing these questions calls naturally for the use of the
statistical learning methodology, which has recently started to
get a traction in the wireless communication community [9].
Our investigation, which to the best of our knowledge is the
first of its kind, shows that, the knowledge about the true chan-
nel statistics affects significantly the amount of effort that has
to be invested in guaranteeing high reliability. Furthermore,
compared to the case in which the channel statistics is perfectly
known, the transmitter needs to sacrifice the spectral efficiency
in order to meet the reliability requirements. Hence, more
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robust methods for design and assessment of URLLC systems
are required. We illustrate this in the following example.

A. A Motivating Example

Alice is selling an ultra-reliable wireless communication
system. In the advertisement she claims that the system can
deliver information at a rate of up to R with the probability
of failing being no larger than ε (e.g. 10−5). Bob considers
purchasing the system and wants the following two questions
answered:

1) How does Alice measure the reliability performance?
2) Under what conditions can the system offer the advertised

performance?
To investigate, Bob contacts Alice and gets the following
response: when established over a flat fading wireless channel
with received power drawn from a cumulative distribution
function F , the system can support one-way transmission at
a maximal rate R = Rε(F ) while maintaining link outage
probability equal to ε. Alice also provides Bob a list of rates
Rε(F ) for various values of F and ε.

Alice’s answer might sound reassuring to some customers,
but not to Bob. Instead, he finds the answer limiting and
responds with several other questions:
• What happens if the system has only limited/imperfect

knowledge of F?
• What if the true channel differs from F?
• What if the system has no knowledge of F at all?

Is Alice in a position to make an informed statement about the
achievable rates and the corresponding reliability performance
of the system under all of the above circumstances? Although
she might be able to give some insights on part of them, Alice
has a hard time in giving Bob technically precise or fully
general answers to all questions. This is because, unless F
is fully and perfectly known, it is unclear to Alice how the
reliability should be assessed.

B. URLLC Revisited

This paper answers Bob’s questions in a novel statistical
framework for design and performance assessment. Being in-
spired by supervised learning, the framework consists of three
key elements: model selection, learning, and rate selection.

Model Selection: As indicated in the above example, when
transmitting at rate Rε(F ), the corresponding reliability, as-
sessed in terms of e.g. link outage probability ε, can be
guaranteed with certainty only in the case when the system
has perfect knowledge of the true distribution F i.e. the exact
channel statistics. Such knowledge is seldom available in
practice and in all other cases the system has to learn, i.e.,
estimate F . In order to do so, the system first selects a model
for F . The choice will, in general, depend on the state of
knowledge of the system regarding the true distribution F . In
some cases, a side information on the physical properties of the
wireless channel might be available. For instance, the system
might know that the channel exhibits a strong diffuse/specular
component and adopt the Rayleigh/Rician fading model [10].
In other cases, physical knowledge will be unavailable; hence,

no parametric model is suitable, and the system should resort
to non-parametric models. Alternatively, given that in URLLC
applications only the regions of very low outages are of
practical interest, the system might resort to simple and general
first order approximations of the lower tail of F [6].

Learning: After selecting an appropriate model, the system
applies a learning procedure that generates an estimate of F ,
denoted by F̂ , using a finite number of channel measurements.
We refer to the measurements as the training sample and as-
sume that they are collected in a dedicated training phase prior
to transmission. For parametric models including the models
based on tail approximations, we use maximum likelihood
estimation (MLE), as a standard learning tool in absence of
informative priors.

Rate Selection: The estimated distribution F̂ is a function
of the random training sample which makes it a random
quantity itself and is, therefore, inherently uncertain. Choosing
the transmission rate as R = Rε(F̂ ) randomizes the outage
probability, i.e., different realizations of the training sample
induce different outage probabilities; this is why Alice is
unable to give Bob deterministic reliability guarantees. In other
words, the commonly accepted methodology of specifying
ultra-reliability through an outage probability value is essen-
tially insufficient since, under limited channel knowledge and
uncertainty, the outage probability is a random variable. In
our framework, the system selects the transmission rate such
that predefined statistical reliability constraints are satisfied;
hence, the reliability now is guaranteed either on average
or probabilistically. These reliability constraints rely on the
statistical characterization of the outage probability as a ran-
dom variable and impose limits on some specific probabilistic
measures. Furthermore, due to the statistical interpretation,
the reliability constraints naturally render themselves useful
when the objective is the joint co-design of the communication
and control planes. We consider two types of constraints.
The first type of constraint, termed Averaged Reliability (AR),
controls the mean of the outage probability over all possible
realizations of the training sample and is suitable for designing
URLLC systems that perform as desired on the average, over
all transmissions. The second constraint, termed Probably
Correct Reliability (PCR), controls the probability ξ that the
outage probability violates ε for a given specific training
sample. The latter constraint is more restrictive and suitable for
applications that require tighter, per-transmission control of the
performance of the system. In principle, the second constraint
generalizes the first as it provides the system designer with
the freedom to control the higher order moments of the
distribution of the outage probability via an additional free
parameter ξ. This type of statistical approach in characterizing
the reliability performance probabilistically via two parameters
is reminiscent to the framework of probably approximately
correct (PAC) learning [11], [12]. The reader would recall
that the goal in PAC learning, after acquiring the training
samples, is to select a generalization function which, with
high probability, has a low generalization error. Drawing the
parallel, in our framework, when designing the URLLC system
according to the second constraint, the goal of the designer,
after training the channel, is to select a transmission rate which
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with high probability 1 − ξ will have link outage probability
equal to ε. Clearly, in both frameworks the performance is
assessed probabilistically.

Consistency and Reliability Assessment: As the size of the
training sample grows, we intuitively expect that the trans-
mission rate will converge to Alice’s rate, i.e., the maximum
achievable rate Rε(F ) for given ε when F is perfectly known;
we refer to this desired property as consistency. We observe
that ensuring consistency while meeting the statistical reliabil-
ity requirements is crucially dependent on the relation between
the assumed model and the true distribution. Summarizing the
main findings, we conclude that the scheme is consistent when

• The assumed model belongs in the same parametric
family as F , or

• The system uses a non-parametric model.

In the first case, the transmission rate converges rather quickly.
However, the assumption of knowing which parametric family
of models the channel belongs to is a strong one, difficult
to fulfill in practice and prone to modeling mismatch which
severely violates the reliability performance. Non-parametric
models have generalization power and work for any channel.
Nevertheless, the convergence is slow, requiring prohibitive
training sample sizes. Finally, models based on first-order
lower tail approximation offer “the best of the two worlds”
[6]. Although such models do not maintain consistency due
to inherent mismatch stemming from the approximation error,
they still show superior performance compared to poor para-
metric modeling choices. In addition, they also require less
channel training compared to non-parametric models.

C. Related Work and Organization of Contributions

There are several works that have focused on assessing
the impact of channel uncertainty onto the realized reliability
performance of URLLC systems. Preliminary insights are
presented by Bennis et al. in the recent survey [5]. The work
presented there gives an overview of key URLLC enablers
with their corresponding performance metrics and identifies
the challenges related to each of them; the authors also
acknowledge the need for statistical characterization of the
channel behavior in the regime of extremely rare events, i.e.,
the low tail of the channel distribution as well as the need
to redefine the reliability metric when channel uncertainty
and limited channel knowledge is being considered. However,
apart from a discussion on potentially viable statistical tools
for doing so (such as extreme value theory for instance), [5]
does not provide any rigorous assessment of the performance
of URLLC systems under channel uncertainty. Swamy et al.
in [7] and [8] give more focused treatment of the problem
of guaranteeing the reliability performance in block-fading
URLLC systems under channel uncertainty. Nevertheless, the
approach presented there relies heavily on consideration about
the physical properties of the channel which makes it difficult
to scale in practice; in addition, the analysis considers only
the case of Rayleigh fading and provides little to no insight
in general, non-Rayleighian environments. Within the context
established in [5], an even earlier work by Eggers et al. [6]

studies the tail behavior of the wireless channel using first-
order expansion of the received power distribution; the main
conclusion there is that wide variety of channel models in
the UR-regime can be approximated via unified power law
and represented only via two parameters. This result is further
revisited in this paper in Section VI where it has been justified
from extreme value theoretic point of view, which has not been
done in [6]. Furthermore, the result has been used to show
how to design channel-agnostic rate-selection function with
satisfactory performance in terms of both reliability guarantees
and spectral efficiency which is also missing in [6].

With respect to prior art, the main contribution of our
work can be summarized as follows: we cast the problem
of configuring the physical layer parameters of an URLLC
system into a novel framework directly motivated and inspired
from the theory of statistical learning. We apply the framework
over a simple toy example of selecting the transmission rate in
coherent, one-way communication system in order to illustrate
how it can be used to deduce important insights and, in
the same time, show how this well-established mathematical
discipline should be applied for fundamental and rigorous
assessment of URLLC communication systems. This type of
treatment is missing in the literature, while its importance will
only grow with the increasing importance of ultra-reliability in
wireless systems. After introducing the system model in Sec-
tion II, the specific contributions of the paper are distributed
among the remaining sections in the following order.

• Motivated by the statistical interpretation of the out-
age probability under channel uncertainty, Section III
introduces the two novel types of reliability constraints,
already discussed in Section I-B, and also provides hints
on the possible practical applications where they can be
applied. In addition, Section II introduces the definition
of the main problem considered in the rest of the pa-
per: selection of transmission rate under limited channel
knowledge while maintaining statistically-defined relia-
bility constraints.

• Sections IV, V and VI focus on solving the
probabilistically-constrained rate-selection problem using
parametric, non-parametric and approximate, channel-
agnostic models and identify several important trade-offs
between consistency and training overhead, also briefly
discussed in Section I-B.

To the best of the authors’ knowledge and given the extent of
the analysis, this is the first work of its kind.

II. PRELIMINARIES

A. System model

We consider one-way communication link where the trans-
mitter (Tx) sends a packet to a receiver (Rx) at rate R over a
flat fading wireless communication channel. With F we denote
the cumulative distribution function (CDF) of the received
power Y ≥ 0; we denote Y ∼ F and use the terms true
channel statistics and true distribution interchangeably when
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referring to F .1 We assume that F belongs to a class F of
smooth distributions defined over the non-negative reals. We
will consider two cases: 1) F is a parametric, and 2) F is an
arbitrary non-parametric family of distributions. Throughout
the rest of the paper, we assume that the F is a stationary,
i.e., it does not change over time; this implies that the class F
is fixed, which in the parametric case further implies that the
parameters specifying the distribution class are not functions
of time. Prior to transmission, in the training phase2 the
Tx collects n independent and identically distributed (i.i.d.)
channel measurements from F ; we refer to them as the
training sample and denote them by Xn = {X1, . . . , Xn}.3

Parametric Channel Models: In this case, we assume that
F belongs to a parametric family of distributions Fθ = {Fθ :
θ ∈ Θ} with Θ denoting the parameter space. The parameter
θ, which can be a vector or a scalar, usually has a specific
interpretation stemming from the physical properties of the
wireless channel. We review three common parametric models
that are widely used in practice.

Rayleigh channel: Adopted in many wireless studies, the
Rayleigh model represents a single scatterer (i.e. cluster)
where the received signal is due to a diffuse component only
[10], [13]. The received power Y follows an exponential
distribution and the CDF is given by

Fλ(y) = 1− e−
y
λ , (1)

where λ = E [Y ] denotes the average received power.
Rician channel: The Rician channel is an extension of the

Rayleigh fading model, featuring an additional specular com-
ponent [10], [13]. Let the power of the specular component
be denoted by ρ, whereas, similarly to the Rayleigh case, the
mean power of the diffuse component is denoted by λ. Let
k = ρ/λ ≥ 0 be the ratio between the average powers of the
specular and diffuse components, also known as a Rician k-
factor. The CDF of the received power under Rician fading is
given as

Fλ,k(y) = 1−Q1

(√
2k,

√
2
y

λ

)
, (2)

where Q1(·, ·) is the 1st order Marcum Q-function. The
average received power is E [Y ] = ρ + λ. The special case
when k = 0, indicating no specular component, corresponds
to Rayleigh-distributed channel as in (1).

Nakagami-m channel: The extension of the Rayleigh model
in multi-cluster settings is the Nakagami-m model where

1Choosing the received signal power instead of the channel state informa-
tion as a channel statistics implies that we assumed the transmit power to be
fixed and known in advance. In such case, using the received signal power
is equivalent to using the squared amplitude of the channel state information
(more precisely, they are equivalent up to a scaling factor represented by the
Signal-to-Noise Ratio).

2The reader will note that the definition of the training phase is vague,
i.e., we intentionally do not specify the details on how the channel training is
actually performed. In other words, our analysis is not bound to any specific
standard or transmission format and is therefore valid for variety of channel
training schemes. At one end, those are the conventional, dedicated pilot
signals and training sequences which are commonly implemented in practical
deployments. At the other end, the history of previous data transmissions and
the associated feedback can be used as an input to the training process.

3Throughout the paper, we use small case letters to denote specific
realizations of random variables.

the received envelope follows the Nakagami distribution with
shape parameter m and scale parameter λ [14]. The Nakagami-
m channel can be interpreted as the incoherent sum of m i.i.d.
Rayleigh-type clusters, each with mean diffuse power λ. The
CDF of the received power under Nakagami-m fading is

Fλ,m(y) =
γ
(
m, yλ

)
Γ(m)

, (3)

where γ(·, ·) denotes the lower incomplete gamma function,
whereas Γ(·) denotes the gamma function. Evidently, the
average received power is E [Y ] = mλ. For generality, we
assume that m ≥ 0.5 [14]. The special case m = 1 indicates a
single diffuse cluster and therefore corresponds to the Rayleigh
channel (1).

B. Outage probability

To isolate and study the impact of channel uncertainty, we
neglect the impact of noise and interference and consider
errors due to link outage only. Link outages are defined by
the following event:

R > log2(1 + Y ). (4)

Hence, the outage probability at transmission rate4 R is
defined as

pF (R) = P[R > log2(1 + Y )] . (5)

This approach fits well our overall narrative; we study block-
fading channel where we neglect other impairments such as re-
ceiver noise. In such case, the dominant source of error are the
outages. In addition to this, deep fading is a wireless channel
phenomenon; hence, using outage probability as a reliability
metric extrapolates the impact of the wireless channel onto
the performance of the communication system at the most
fundamental, communication-theoretic level.

The goal of ultra-reliable communication is to choose the
maximal rate that meets a predetermined reliability constraint,
such as

pF (R) ≤ ε. (6)

However, designing the reliability criteria as well as deter-
mining the most favorable transmission rate is strongly linked
to the amount of knowledge, i.e., state of knowledge the Tx
has about the true distribution. As illustrated in the following
section, specifying the reliability performance using only (6)
when the Tx has limited knowledge of the channel is no longer
sufficient.

III. RELIABILITY GUARANTEES UNDER LIMITED
CHANNEL KNOWLEDGE

A. Perfect channel knowledge: ε-outage capacity

First, consider the benchmark case when the Tx perfectly
knows F . In such circumstances, the Tx can easily determine

4Note that in the definition (4) unit bandwidth is assumed; hence, strictly
speaking R represents the transmission rate per unit bandwidth, i.e., spectral
efficiency. However, we do stick to using “rate” throughout the paper for
brevity.
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the maximum rate as a function of F at which the outage
probability is no larger than ε, i.e., (6) can be guaranteed
deterministically:

Rε(F ) = sup{R ≥ 0 : pF (R) ≤ ε} (7)

= log2

(
1 + F−1(ε)

)
. (8)

The term Rε(F ) is also known as the ε-outage capacity,
whereas F−1(ε) is the ε-quantile of F . For parametric models,
knowing the channel implies that θ is known perfectly and we
use the notation Rε(θ).

B. Limited channel knowledge: MLE of the ε-outage capacity

To illustrate the impact of channel uncertainty, consider the
following: the Tx knows that Y ∼ Fθ but has no knowledge of
θ. Having acquired a training sample xn prior to transmission,
the Tx can learn θ via MLE as follows

θ̂(xn) = arg max
θ∈Θ

n∑
i=1

logF
′

θ(x)|x=xi . (9)

Then, the “plug-in” estimator

R(xn) = Rε

(
θ̂(xn)

)
(10)

is MLE of the ε-outage capacity. Selecting the rate this way
is naı̈ve due to the uncertainty of R(Xn), which is itself a
random variable. It follows from (5) that different R yields
different outage probability for fixed F ; in other words, the
random sequence Xn induces a distribution on the outage
probability and the Tx can no longer guarantee with certainty
that the outage probability for the transmission rate R(Xn),
denoted by pθ(R(Xn)), will be less than or equal to ε. In fact,
if the probability density function of the outage probability is
symmetric (i.e., the mean and the median coincide), we have
that P [pθ(R(Xn)) > ε] = 0.5 which in some practical setups
is clearly unacceptable, as discussed below.

C. Problem formulation

The discussion in the previous subsection shows that, when
the Tx has a limited knowledge about the channel, it can only
guarantee the reliability in a probabilistic manner. Formally
stated, this is done by defining a rate-selection function R(Xn)
such that a predetermined statistical reliability constraint is
satisfied.

1) Statistical reliability constraints: We consider two dif-
ferent approaches, resulting in two types of constraints, each
of them suited to a specific set of use cases.

Averaged Reliability (AR): We consider the probability

pF = P [R(Xn) > log2(1 + Y )] (11)

computed w.r.t. the joint distribution of Xn and Y . Condition-
ing on Xn and using the law of total expectation, (11) can be
rewritten as

pF = E[P[R(Xn) > log2(1 + Y )|Xn]] (12)
= E[pF (R(Xn))] , (13)

where the outer expectation is taken over the distribution of
the training sample Xn. It follows that pF is the mean of the

outage probability, as defined in (5), averaged over the training
sample Xn. We consider the reliability constraint

sup
F∈F

pF ≤ ε (14)

which controls the worst-case mean outage probability over
the whole class F and provides a firm reliability guarantee.

The mean outage probability (11) can be used when the
Tx’s objective is to optimize the transmission rate jointly over
the training and the transmission, when training is performed
prior to each transmission. This approach is suitable in a
dynamic environment in which the channel changes frequently,
requiring frequent channel training and estimation; an example
of this is a vehicular communication scenario.

Probably Correct Reliability (PCR): Differently from the
cases suited for AR, in many URLLC applications, such as
monitoring and control in power grids or automated production
in industrial complexes, the environment remains reasonably
static for long periods of time. In such cases, it makes sense
to train the channel infrequently implying that the most recent
channel estimate will be used by the system over many future
transmissions. Clearly, the Tx has to be more conservative here
and choose the rate such that the outage probability in all the
following transmissions is below ε with high probability.

This scenario is captured by PCR, which is more restrictive
and effectively controls the higher order moments of the
distribution of the outage probability. PCR is suitable when
the Tx sets the transmission rate for all future transmissions
after obtaining the training sample. We rely on the concept of
meta-probability [15] and introduce

p̃F = P [P[R(Xn) > log2(1 + Y )|Xn] > ε] (15)
= P[pF (R(Xn)) > ε] , (16)

where the outer probability is computed w.r.t. the joint dis-
tribution of the training sample Xn. In PCR we define the
statistical reliability constraint

sup
F∈F

p̃F ≤ ξ. (17)

The probability ξ bounds the worst-case probability that the
conditional outage probability (5) given Xn is larger than
ε. Borrowing the terminology from PAC learning, ξ is the
confidence parameter that indicates how likely it is to meet
the reliability requirement [12].

So far, we have omitted to include the latency explicitly in
the definition of the reliability metric (5). Nevertheless, the
reader should note that the latency is included implicitly in
the way the new reliability constraints are defined; in PCR for
instance, the Tx does not have channel state information (CSI)
before each transmission as there is no time to convey the CSI
due to strict latency constraints.

2) Rate-selection function: There is a whole family of rate-
selection functions R(Xn) that satisfy (14) or (17). In order
to find the most favorable, one should introduce an objec-
tive function of R(Xn) and define an optimization problem
that will give the optimal rate-selection function subject to
(14)/(17). A possible objective function might be the ratio

ωnε (F ) =
E
[
R(Xn)1R(Xn)≤log2(1+Y )

]
Rε(F )(1− ε)

(18)
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between the throughput using R(Xn) and the optimal through-
put, given that F is known perfectly. Formulating such opti-
mization problem using (18) is a non-trivial task and therefore
out of the scope of the paper. One issue is the fact that (18)
depends on a specific and fixed true distribution F while our
aim is to design a robust rate-selection function that maximizes
the transmission rate over potentially large class F of channel
distributions.

In the rest of the paper, we will limit our discussion to the
heuristic, yet intuitive choice, inspired by the naı̈ve, MLE-
based approach described in the previous subsection. Namely,
the Tx uses

R(Xn) = log2

(
1 + F̂−1(εn)

)
, (19)

where F̂−1(εn) is an estimate of the εn-quantile of the channel
for some positive sequence εn > 0 and training sample Xn.
The objective now is to find εn that maximizes R(Xn) while
meeting either (14) or (17). Note that if εn = ε for every n,
we have the plug-in solution where R(Xn) is just the MLE
of the ε-outage capacity. Note that the rate-selection function
(19) is still an estimate of the ε-outage capacity; however, by
choosing εn such that (14)/(17) is satisfied, intuitively the Tx
controls the uncertainty of the transmission rate introduced by
limited channel knowledge.

We next introduce the notion of consistency. Namely, a rate-
selection function is said to be consistent if R(Xn) converges
to the ε-outage capacity Rε(F ) as n→∞ with probability 1
for all F ∈ F while simultaneously satisfying either (14) or
(17). In such case

lim
n→∞

ωnε (F ) = 1. (20)

Clearly, consistent rate-selection functions are desirable, but,
depending on the relation between the model and the true
distribution, not always possible. Specifically, if there is a
model mismatch, such that the model differs from the actual
channel distribution, then the rate-selection function will not
be consistent and limn→∞ ωnε (F ) 6= 1. This phenomenon,
which can be also linked to the bias-variance trade-off [12],
is discussed in more detail in the following section.

IV. PARAMETRIC RATE-SELECTION FUNCTIONS

We begin by considering parametric channel models. In this
case, (19) can be rewritten as

R(Xn) = Rεn

(
θ̂(Xn)

)
(21)

for some εn > 0; here, θ̂ is the MLE of the parameter θ
using the training sample Xn. We illustrate some of our main
insights through several case studies for which we impose
different assumptions regarding the true distribution and the
state of knowledge at the Tx. In particular, we focus on the
following cases:

1) The channel is Rayleigh-distributed and the Tx knows
this; however, the Tx has no knowledge of λ.

2) The channel is not Rayleigh distributed and the Tx does
not know this; nevertheless, the Tx still assumes that the
channel is Rayleigh-distributed, with unknown λ.

For known λ, the ε-outage capacity is easily computed as

Rε(λ) = log2(1− λ log(1− ε)) . (22)

Note that, even for the simple and intuitive choice (21), finding
εn that maximizes R(Xn) such that (14)/(17) is satisfied, is
a non-trivial exercise for most of the remaining parametric
channel models and one needs to resort to numerical methods
to compute the transmission rate.

A. The true distribution is Rayleigh

The MLE of λ under Rayleigh fading is just the sample
mean and the transmission rate for specific training sample
xn becomes

R(xn) = log2

(
1− log(1− εn)

n

n∑
i=1

xi

)
. (23)

We show how to find εn for any n such that (23) is maximized
and either (14) or (17) is satisfied. Specifically, the AR as
defined in (11) can be computed as

pλ = E

[
Fλ

(
− log(1− εn)

n

n∑
i=1

Xi

)]
(24)

= 1− E

[
exp

{
log(1− εn)

nλ

n∑
i=1

Xi

}]
(25)

= 1−
(

1− log(1− εn)

n

)−n
. (26)

In (25) we have used (1) and in (26) the moment generating
function (MGF) of an exponential random variable with mean
λ given by Mλ(t) = (1 − tλ)−1. Now, εn can be computed
from (14) by equating (26) with ε; we obtain

εn = 1− e−n
(
(1−ε)−

1
n−1

)
. (27)

Interestingly, for the specific case of Rayleigh channel, the
mean outage probability in AR does not depend on λ and
selecting εn according to (27) gives a transmission rate that
satisfies (14) for all λ.

Similarly, the meta-probability (15) in PCR evaluates to

p̃λ = P

[
Fλ

(
− log(1− εn)

n

n∑
i=1

Xi

)
> ε

]
(28)

= P

[
1− exp

{
log(1− εn)

nλ

n∑
i=1

Xi

}
> ε

]
(29)

= P

[
n∑
i=1

Xi > nλ
log(1− ε)

log(1− εn)

]
(30)

= 1−
γ
(
n, n log(1−ε)

log(1−εn)

)
(n− 1)!

. (31)

In (31) we used the CDF of an Erlang-n random variable with
shape parameters λ (obtained as a sum of n i.i.d. exponential
random variables with mean λ), given by P [

∑n
i=1X ≤ x] =

γ(n, xλ)/(n−1)!. Observe again that, similarly as in AR, the
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meta-probability in PCR does not depend on λ. By choosing
εn as the maximum value satisfying

1−
γ
(
n, n log(1−ε)

log(1−εn)

)
(n− 1)!

≤ ξ, (32)

we obtain a rate-selection function that meets (17) for any λ.

B. Mismatch: The true distribution is not Rayleigh

Next, we study the impact of channel mismatch on the
reliability performance of the system. We assume that the
channel is no longer Rayleigh, i.e., Fθ is different from (1);
yet, the Tx maintains the assumption that the channel is
Rayleigh, setting the rate as in (23) with εn computed via
(27)/(32). Due to mismatch, the rate-selection function can no
longer be guaranteed to be consistent, i.e., R(Xn) does not
converge to Rε(θ) computed w.r.t. the true distribution Fθ.
As a result, one can no longer guarantee that the reliability
constraints (14) or (17) will be satisfied.

Given that the Tx sets the transmission rate as in (23), the
mean outage probability (11) and the meta-probability (15)
can be written as

pθ = E

[
Fθ

(
− log(1− εn)

n

n∑
i=1

Xi

)]
, (33)

p̃θ = P

[
Fθ

(
− log(1− εn)

n

n∑
i=1

Xi

)
> ε

]
. (34)

The outer expectations are taken w.r.t. the true distribution
Fθ. The above quantities can be easily evaluated numerically
for any Fθ. To gain more insight into the impact of channel
mismatch, we derive simple approximations relaying on the
assumption that the outage probability conditioned on xn is
small, i.e., in the order of ε. In such case, for wide variety of
channels, Fθ can be approximated via simple power law (see
[6] for detailed derivations based on first-order approximations
for different channels and Section VI for an argument from
the extreme value theory)

Fθ(y) ≈ αθy
1/κθ , y → 0, (35)

where αθ and κθ depend on the true distribution Fθ. Then,
we obtain the simple approximations

pθ ≈ αθ (− log(1− εn)Eθ [X])
1/κθ

(
1 +

1− κθ
2nκ2θ

Varθ[X]

(Eθ [X])
2

)
,

(36)

p̃θ ≈ exp

{
t∗n

log(1− εn)

(
ε

αθ

)κθ
}

(Mθ(t∗))n. (37)

In (36) we used a second-order Taylor expansion to approx-
imate the expectation E

[
(
∑
iXi)

1/κθ

]
and in (37) we used

the Chernoff method to approximate P [
∑
iXi > x]; Mθ(t∗)

is MGF of X with t∗ obtained as

t∗ = inf
t>0

exp

{
tn

log(1− εn)

(
ε

αθ

)κθ
}

(Mθ(t))n. (38)

Examples: Consider the Ricean channel (2) whose power
law approximation has the form [6]

Fk,λ(y) ≈ e−k

λ
y, (39)

i.e., αk,λ = e−k/λ and κk,λ = 1. Note that the Rician channel
asymptotically exhibits the same slope as the Rayleigh channel
but with different scaling. The mean outage probability is

pλ,k ≈ −
k + 1

ek
log(1− εn). (40)

Note that under Rayleigh fading, k = 0 and (26) can be
approximated as pλ ≈ − log(1 − εn). Hence, we see from
(40) that in case of Rician fading but with transmission rate
dimensioned for the empirical channel mean, the mean outage
probability is always smaller than ε, i.e., the transmission rate
will always be pessimistic and lower than the maximum rate
the Rician channel can support for outage ε.

Now, let us consider the Nakagami-m channel for 0.5 ≤
m ≤ 1 (note that for m = 0.5, the distribution of received
amplitude

√
Y under Nakagami-m fading is exponential); the

power law approximation obtains the form

Fλ,m(y) ≈ 1

λmΓ(m+ 1)
ym (41)

and the mean outage probability can be approximated as

pλ,m ≈
(−m)m

Γ(m+ 1)
(log(1− εn))m. (42)

It is easy to check that for 0.5 ≤ m ≤ 1, the above expression
is always larger than ε, i.e., the transmission rate will be always
optimistic and larger than the maximum rate the Nakagami-m
channel offers for given ε. These results fit well the intuition:
for equal average power λ of the diffuse component, the
Rayleigh CDF (1) is always an upper/lower bound bound on
the Rician/Nakagami-m (for m < 1) CDFs given in (2)/(3).

Another interesting observation that can be deduced from
(26), (40) and (42) concerns the impact of the training sample
size n on the convergence. Provided that εn is selected as
in (27), we have that − log(1− εn) = n

(
(1− ε)− 1

n − 1
)

.
Given that ε/n� 1 for any n ≥ 1, and applying the binomial
approximation, we obtain

pλ ≈ ε, pλ,k ≈
k + 1

ek
ε, pλ,m ≈

mm

Γ(m+ 1)
εm. (43)

We conclude that the mean outage probability depends very
weakly on n. This implies that the transmission rate calculated
under AR (14) converges quickly.

Now, we turn to PCR; in order to compute the meta-
probability, we observe that the MGF of X under Rician fading
is given by

Mλ,k(t) =
exp

{
kλt
1−λt

}
1− λt

(44)

for t < 1/λ. Hence, we obtain

p̃λ,k ≈
exp

{(
k

1−λt∗ + εek

log(1−εn)

)
nλt∗

}
(1− λt∗)n

, (45)
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R(xn) = sup
{
R > 0 : F̂

(
2R − 1

)
≤ ε
}

(52)

= sup
{
R > 0 : ∃i ∈ {1, . . . , n+ 1}, x(i−1) ≤ 2R − 1 < x(i), i ≤ nε+ 1

}
(53)

= sup
{
R > 0 : x(bnε+1c−1) ≤ 2R − 1 < x(bnε+1c)

}
(54)

= sup
{
R > 0 : log2(1 + x(bnε+1c−1)) ≤ R < log2(1 + x(bnε+1c))

}
(55)

= log2(1 + x(bnε+1c)). (56)

and t∗ is the solution to the quadratic equation

nλ(1− λt+ k) +
εnλek

log(1− εn)
(1− λt)2 = 0 (46)

that satisfies t < 1/λ. Similarly, the MGF of X under
Nakagami-m fading is

Mλ,m(t) =
1

(1− tλ)m
, (47)

for t < 1/λ; the meta-probability can be approximated as

p̃λ,m ≈
exp

{
t∗nλ

log(1−εn) (εΓ(m+ 1))
1
m

}
(1− t∗λ)mn

(48)

with

t∗ =
1

λ

(
1 +m log(1− εn)(εΓ(m+ 1))−1/m

)
. (49)

The resulting approximations are less insightful than the
approximations for the mean outage probability; in Section VII
we show numerically that the mismatch impacts the meta-
probability performance more severely.

V. NON-PARAMETRIC RATE-SELECTION FUNCTIONS

Using non-parametric rate-selection approach is suitable
when the Tx has no, or very limited knowledge of the channel
distribution and is unwilling to impose assumptions that might
lead to mismatch and compromise the reliability performance.
Clearly, one major advantage of the non-parametric approach
is its generality and versatility, i.e., it is applicable to wide vari-
ety of channels, subject only to some smoothness constraints,
such as e.g. existence of the first-order derivative of F , see
[16]. However, this comes at the expense of the duration of the
channel training phase; in general, non-parametric approaches
often require excessive training sample lengths for reasonably
reliable system performance, as shown below.

A. Non-parametric estimation of the ε-outage capacity

Similarly as in the parametric case, we will first look into
the plug-in estimate of the ε-outage capacity. We consider
a general case: Y is drawn from an arbitrary distribution
F , defined over the non-negative reals. Consider a specific
training sample xn; the empirical CDF

F̂ (y) =
1

n

n∑
i=1

1xi≤y (50)

for y ≥ 0 serves as an estimate of F . Let X(1) ≤ . . . ≤ X(n)

denote the order statistics formed from the elements of the Xn

and define for convenience X(0) = 0 and X(n+1) =∞. Then,
for every y ≥ 0, there exists an integer i ∈ {1, . . . , n + 1}
such that

F̂ (y) =
i− 1

n
and x(i−1) ≤ y < x(i). (51)

Using (51), one can easily derive the plug-in estimate of the
ε-outage capacity, see eq. (55)-(56) at the top of the page.
From (55) we observe that the number of samples necessary to
obtain reliability performance of ε should satisfy bnε+1c > 0
or, equivalently nε > 1; we see that the number of channel
samples in purely non-parametric setup grows as

n ∼ 1

ε
. (57)

In the context of URLLC with target ε in the order of 10−6 and
below, the non-parametric approach requires excessive channel
training.

B. Non-parametric rate-selection function

We see from (56) that in non-parametric setup the l-th order
statistic x(l) is an estimate of the ε-quantile. Motivated by this,
for a given training sample xn, the Tx fixes the rate as

R(xn) = log2(1 + x(l)) (58)

and chooses the largest l that meets the statistical reliability
constraints. Thus, using (58), the outage probability (5) con-
ditioned on Xn obtains the simple form

pF (R(Xn)) = P [R(Xn) ≥ log2(1 + Y )|Xn] (59)
= F (X(l)). (60)

Now, let U1, . . . , Un be independent random variables uni-
formly distributed [0, 1]. Then, F (X(l)) has the same distribu-
tion as U(l) which is beta-distributed with shape parameters l
and n+ 1− l. With this property, we easily evaluate the mean
outage probability (11) as

pF = E [pF (R(Xn))] = E
[
U(l)

]
(61)

=
l

n+ 1
. (62)

Clearly, the mean outage does not depend on F and
supF∈F pF = l/(n+ 1). Hence, the constraint (14) gives

l ≤ ε(n+ 1). (63)

From the above rate-selection rule, it is evident that when the
number of training samples n < 1/ε − 1 which corresponds
to l < 1, the transmission rate is R(xn) = 0.
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Similarly, for the meta-probability (15), we obtain

p̃F = P [pF (R(Xn)) > ε] = P
[
U(l) > ε

]
(64)

= 1− Iε(l, n+ 1− l), (65)

where Ix(a, b) is the regularized incomplete beta function. As
in the mean outage approach, the meta-probability does not
depend on F and the constraint (17) implies that l should be
chosen as a solution to the equation:

1− Iε(l, n+ 1− l) = ξ. (66)

Since l is an integer, we choose l to be the largest integer
satisfying 1 − Iε(l, n + 1 − l) ≤ ξ. Albeit the above implicit
equation does not reveal immediate insights, the numerical
evaluations in Section VII show that the meta-probability
constraint requires even bigger training samples sizes.

VI. POWER LAW APPROXIMATION OF THE CHANNEL TAIL

In Section IV, we saw that the training sample size required
to learn the channel for parametric channel models is relatively
low; however, the model mismatch may have a significant
impact on the realized reliability. The non-parametric method
in Section V does not suffer from this drawback, but requires
a training sample size of the order 1/ε which is enormous for
many practical applications. This section takes an approximate
approach using power law approximations and asymptotic
properties. To this end, we first argue why the power law
approximation for lower tail of F , introduced in (35) is of
interest.

The Pickands-Balkema-de Haan theorem theorem (see [17,
Th. 2.1.1] or [18, Th. 21.17]) in extreme value theory states
that, for a large class of distributions F , there exists a constant
κ > 0 such that

lim
t→0

F (ty)

F (t)
= y1/κ (67)

for every y > 0. Hence, justifying the use of the power law
approximation

F (y) ≈ αy1/κ (68)

for small y ≥ 0. Here, α and κ are parameters that depend
on the true but unknown distribution F . For convenience,
throughout the section, we consider the transformed variables
Z = log(Y ) and Zn = {Zi = log(Xi)}ni=1. After this
transformation, the power law approximation in (68) implies
that

FZ(z) ≈ αez/κ. (69)

Under the additional assumption that F is smooth and that
F ′(y) > 0 for y > 0, the density of Z is also well-
approximated as fZ(z) ≈ α

κ e
z/κ.

The importance of the power law approximation is that it
allows one to treat the tail of any distribution F , satisfying
the conditions stated before, as a parametric distribution of
only two parameters. We remark that there are three domains
of attraction for the extreme value distribution and that (67)
only captures one of these, see [6] for a list of common fading
distributions satisfying the power law approximation and [17,

Th. 2.1.2] sufficient conditions. As a result, we can take an
approach similar to the one in Section IV for parametric
distributions even though no full parameterization of F is
given.

In order to estimate α and κ, we shall apply a variation of
the ML estimator. In particular, given a training sample zn

and a small constant β, we use only the l = dβne smallest
order statistics z(1), . . . , z(l) and choose the parameters α̂ and
κ̂ such that the likelihood f(z(1), . . . , z(l); α̂, κ̂) is maximized.
The intuition is that only the smallest observations contain
information about the tail of F .

This approximate approach has some clear disadvantages;
namely, the range of validity of the power law approximation
depends crucially on the value of β and on the true distribution
F . Hence, no strict statistical guarantees can be derived. It is,
however, worth noting that in cases where no parameterization
of F is available, only the non-parametric approach can
provide such true statistical guarantees for reliability at the
expense of a large required sample size, and approximate
statistical guarantees may therefore be favored.

By using the power law approximation in (68) for approx-
imating f(z(1), . . . , z(l); α̂, κ̂), we find that [19, Sec. 7.2.4]

f(z(1), . . . , z(l);α, κ) =
n!

(n− l)!
FZ(z(l))

n−l
l∏
i=1

fZ(zi)

(70)

≈
(α
κ

)l n!

(n− l)!
(1− αez(l)/κ)n−le

1
κ

∑l
i=1 z(i) . (71)

As a result, by differentiating the logarithm of the right-hand
side of (71) with respect to α and κ, by equating with zero,
and by solving for α and κ, we find the following simple
expressions for the estimator (α̂, κ̂)

κ̂ =
1

l

l∑
i=1

(Z(l) − Z(i)), (72)

α̂ =
l

n
e−Z(l)/κ̂. (73)

We let F̂Z(z) be the estimate of the tail distribution of Z given
by α̂ez/κ̂. Then, we obtain an estimate of the lower εn-quantile
of Z as follows:

F̂−1Z (εn) = κ̂ log
(εn
α̂

)
(74)

= Z(l) +
1

l
log
(nεn

l

) l∑
i=1

(Z(l) − Z(i)). (75)

Under the power law approximation in (69), one can show that
Z(l) and

∑l
i=1(Z(l)−Z(i)) are independent random variables.

In particular, Z(l) is asymptotically normal and
∑l
i=1(Z(l) −

Z(i)) is Erlang distributed with parameters l− 1 and 1/κ and
its distribution is not altered when conditioning on Z(l).

We now set the rate-selection function as

R(Xn) = log2

(
1 + exp

(
F̂−1Z (εn)

))
, (76)

where the exponential function is introduced to invert the log-
transformation.
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We consider two different approaches for specifying εn. The
first approach relies on asymptotic approximations of F̂−1Z (εn)
which holds in the limit n → ∞. The second approach
is simpler and does not rely on asymptotic approximations;
however, it is computationally more tedious and does not
provide simple analytical insights.

Asymptotic approach: Relying on the asymptotic nor-
mality of F̂−1Z (εn), we choose εn according to the following
simple formula:

εn = ε exp

−
√
V

n
Q−1(ξ)

 , (77)

where

V =
1

β

(
1− β + log2 ε

β

)
. (78)

Then, as shown in Appendix A, we obtain the following
approximate meta-probability for PCR:

lim
n→∞

p̃F ≈ ξ, (79)

where the approximation stems from the power law approx-
imation in (69). Hence, the approximation becomes increas-
ingly more accurate as β is lowered towards zero. Similarly,
it can be shown that εn = ε implies that

lim
n→∞

pF ≈ ε. (80)

Non-asymptotic approach: While the asymptotic ap-
proach provides a simple closed-form expression for choosing
the rate-selection function, asymptotic approximations are
generally not accurate for small l. We can provide a simple,
but less insightful, approximate bound for the meta-probability
that does not exploit asymptotic normality as follows:

p̃F = P
[
F̂−1Z (εn) > F−1Z (ε)

]
(81)

≤ min
t

{
P
[
Z(l) > t

]
+ P

[
l∑
i=1

(Z(l) − Z(i)) > r

]}
(82)

≈ min
τ∈[ε,1]

{
2− Iτ (l, n+ 1− l)−

γ

(
l − 1,

l log ε
τ

log(nεnl )

)
(l − 2)!

}
.

(83)

The bound (82) follows because, for any two random variables
A and B, P [A+B > v] ≤ mint

{
P [A > t]+P [B > v − t]};

here, r = l
(
κ log ε

α − t
)
/log

(
nεn
l

)
. The approximation (83)

follows from the substitution τ = αet/κ and because, under
the power law approximation,

∑q
i=1(Z(l) − Z(i)) is Erlang

distributed with parameters 1/κ and l− 1 and P
[
Z(l) ≤ t

]
=

P
[
U(l) ≤ FZ(t)

]
≈ Iτ (l, n + 1 − l) where U(l) is the l-th

order statistic of a sequence of n independent standard uniform
random variables as in Section V.

By choosing εn such that right-hand side of (83) equals ξ,
we find that

p̃F / ξ. (84)

The approximation in (84) again originates from the power
law approximation in (69).

VII. NUMERICAL EVALUATION

Before presenting the results, we advise the reader to refer
to the caption of the individual figures for details regarding
the notation of the curves.

We begin by considering transmission over Rayleigh flat
fading channel with average received power λ = 1. Fig. 1
shows the throughput ratio ωnε (λ) as defined in (18) for
parametric (21) (square markers) and non-parametric (circle
markers) rate-selection functions (58) for different training
sample lengths n and ε ∈

{
10−3, 10−4, 10−5

}
. We observe

that the parametric and non-parametric rate-selection functions
are consistent; the oscillations in the non-parametric case
arise due to (l) ∈ N. We also observe that the parametric
rate-selection functions converge significantly faster to the ε-
outage capacity. As expected, the non-parametric rate-selection
functions require n to be of the order 1/ε to produce non-zero
throughput; the PCR constraint requires n to be even larger,
almost an order of magnitude larger than the AR constraint.

We observe that ωnε (λ) approaches 1 faster when the rate-
selection follows the AR constraint (14) (filled markers) as
opposed to the PCR constraint (17) (empty markers); in
fact, ωnε (λ) ≈ 1 and R(xn) ≈ Rε(λ) even for n < 10.
This is expected since the mean outage probability depends
very weakly on n (see (43)). In contrast, the rate under
meta-probability constraint converges slower which is also
intuitively expected due to the strictness of the constraint. An
interesting observation follows from Fig. 1: the convergence
rate under the parametric rate-selection function appears to
be (almost) independent from ε for fixed ξ, implying that
the rate-selection function obtained for given ξ via (32) is
valid for any ε. In Fig. 2 we depict the throughput ratio under
PCR constraint for different values of the confidence param-
eter ξ (square/circle markers correspond to parametric/non-
parametric rate selection). Note that lower values for ξ impose
stricter requirements; this implies lower rate for fixed n
and slower convergence. Interestingly, when ξ → 0.5 we
obtain similar behavior as in the case of AR-constrained
rate-selection. In fact, when the distribution of the outage
probability is symmetric, i.e., its mean coincides with the
median, the PCR constraint for ξ = 0.5 is equivalent to the
AR constraint. Hence, even though rigorously precise only in
the case of symmetric outage probability distribution, the PCR
(14) can, in general, be viewed as generalization of the AR
constraint (17).

Fig. 3 evaluates the impact of mismatched model on the
reliability performance: the Tx adopts Rayleigh model (filled
markers), but the true distribution is different. We fix ε and ξ,
we choose n to be large enough to ensure convergence and
we plot the mean outage probability and the meta-probability
as a function of the true channel distribution as specified by
the corresponding parameters. In Fig. 3a, the channel follows
Rice distribution (2) and we plot the reliability performance
for a range of k-factors: note that, we plot both (33)/(34) with
the corresponding approximations (36)/(37) (dotted lines),
confirming that the latter approximate the former well for
small ε and ξ. As already discussed in Section IV-B, assuming
Rayleigh when the actual fading is Rician, always gives a
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(c) ε = 10−5, ξ = 10−3

Fig. 1. Parametric vs non-parametric rate-selection under Rayleigh fading with λ = 1 (full/empty markers correspond to AR/PCR constraints (14)/(17)),
respectively.
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Fig. 2. Parametric rate-selection under Rayleigh fading and PCR constraint
λ = 1, ε = 10−4 (square/circle markers correspond to parametric/non-
parametric rate-selection functions, respectively).

pessimistic rate-selection function, i.e., the throughput ratio is
strictly less than 1; in fact, as the specular component becomes
stronger, the throughput becomes even lower. We conclude that
by assuming Rayleigh, i.e., k = 0 when k > 0, the reliability
constraints (14) and (17) will never be violated. However,
this comes at the price of under-utilizing the degrees of
freedom offered by the Rician channel; under PCR constraint,
the underutilization is severe as seen in Fig. 3a, with the
meta-probability quickly dropping and pushing the throughput
towards 0. For Fig. 3b the true distribution is Nakagami-
m (3) and it shows the reliability performance for different
values of m. For m > 1, the behavior is similar to the
Rician case. However, the numerical evaluations suggest that
the under-utilization is more severe; already for m = 2, which
corresponds to two Rayleigh-type of clusters, both the mean

outage probability and the meta-probability are several order of
magnitudes below the thresholds, implying that the throughput
is very low. We observe opposite behavior for m < 1 (which
we also predicted in Section IV-B). Here, the rate-selection
function gives optimistic rates, larger than the corresponding
ε-outage capacity; such rates violate the reliability constraints
to produce throughput ratio larger than 1. Once again, the
meta-probability shows severe under/over-utilization, quickly
dropping/jumping towards 0/1.

The performance of the parametric and non-parametric rate-
selection functions can be also linked to the bias-variance
trade-off. Namely, learning parametric models via MLE pro-
duces estimates with small variance which explains the rela-
tively fast convergence of the rate, but they can be heavily
biased in case of model mismatch. On the other hand, in
the non-parametric approach the εn-quantile is estimated with
a small bias but a large variance; hence, it works for any
distribution F but requires a large number of samples.

The asymptotic rate-selection functions based on power
law tail approximation address the trade-off among con-
sistency, training sample length, and mismatch. Fig. 4
compares the performance of the power law tail ap-
proach against parametric/non-parametric rate-selection func-
tions with Rayleigh true distribution; in such case κ = 1,
α = 1/λ. Clearly, the throughput ratio converges faster than
the non-parametric case, which is particularly evident for the
meta-probability constraint. Note that the approach requires
l ≥ 2, i.e., n ≥ 2/β samples. Also, for small l (less than
10 in this case study), the estimators (72) and (73) over-
estimate κ and α. For the meta-probability constraint, this
effect is (partially) alleviated by using εn chosen according
to the upper bound (81) at the expense of slower convergence.
The rate-selection function (76) also suffers from mismatch
due to approximation error; therefore, the approach does not
guarantee consistency.

To investigate the effect, Fig. 3 shows the reliability per-
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(a) True distribution: Rician fading (λ = 1) (b) True distribution: Nakagami-m fading (λ = 1)

Fig. 3. Impact of channel mismatch onto AR- and PCR-constrained rate-selection with ε = 10−4, ξ = 10−2, n = 106, β = 0.01 (full/empty markers
correspond to Rayleigh fading assumption/power law tail approximation, respectively).
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Fig. 4. Parametric, non-parametric and power law-based rate-selection under
Rayleigh fading (full/empty markers correspond to AR/PCR constraints, ε =
10−4, ξ = 10−2, β = 0.01, λ = 1).

formance of the approach (empty markers), compared against
the case of incorrect model assumption. In both Figs. 3a and
3b, we see that even in Rayleigh case (k = 0 or m = 1,
recall the special cases of the Rician or Nakagami-m channel
in Section II) there is slight bias in the reliability performance
which is more evident for the PCR constraint; hence, the rate
is slightly inconsistent due to the approximation error. When
the true distribution is Ricean, we see that the power law
tail approach violates both constraints for large k, producing
optimistic rates; similarly, in the case of Nakagami-m and
m < 1, the approach gives optimistic rates. This is due to the
fact that the power law tail approximation is a lower bound of
the respective cdfs (see [6] for more details). Oppositely, for
large enough m > 1 in the Nakagami-m channel, the approach
leads to pessimistic rates since the power law approximation

becomes an upper bound [6].

VIII. CONCLUSIONS AND DISCUSSION

The strict requirements of URLLC systems demand from us
to reconsider the usual ways the physical layer is designed and
its performance assessed. Our study shows that the phenomena
of channel uncertainty strongly impact the performance in UR-
relevant regime of operation, in the sense that the targeted reli-
ability can no longer be guaranteed with certainty. Motivated
by this, we introduced novel statistical framework in which
the transmitter, given its best knowledge of the true channel
distribution, determines the physical layer parameters, namely
the transmission rate such that the reliability is guaranteed
probabilistically. We showed that the approach based on para-
metric channel models requires the least amount of channel
training but is highly susceptible to modeling mismatch. Non-
parametric approaches do not suffer from such mismatch
since they do not impose assumptions; however, the training
sample sizes tend to be prohibitively large. As a consensus
between the parametric and non-parametric approaches, the
design approach based on the power law tail approximations
offers versatile performance that reduces both, the impact of
modeling mismatch and the training sample sizes.

Finally, some remarks on the perspectives and future work.
Despite the fact that our work is limited to the simple case
of one-way transmission, we note that the statistical treatment
we introduce here opens up a methodology that can be readily
extended to more advanced and complex transmission and
networking scenarios that also introduce other sources of
uncertainties such as ARQ, interference, etc. Most importantly,
the framework can be extended to apply to higher layers
as well. However, such an endeavor would require adequate
redefinition of the reliability metric. For instance, when con-
sidering ARQ mechanisms, a possible reliability metric can
be the average number of retransmissions until the packet has
been delivered. When going to the higher layers, such as the
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application layer which employs TCP-like transport protocol,
the reliability can be defined integrally as the probability of
successful end-to-end packet delivery within given latency
budget. Note that, in all cases above, the reliability is a
probabilistic quantity, so one can apply the same statistical
reliability constraints introduced in Section III for selecting
the relevant communication parameters. In addition to the
relatively straightforward appeal of our framework to higher
layers, the analysis presented in this paper can also serve as
a building block for more exhaustive characterization of the
physical layer and analysis of advanced physical layer archi-
tectures, such as multiple antenna techniques. For instance, one
can use the proposed framework to study the phenomenon of
channel hardening in massive MIMO systems from a statistical
learning perspective and quantify the impact of number of
antennas, channel model, etc. on how fast the channel hardens;
such investigations are part of our on-going research [3].

APPENDIX A
PROOF OF (79)

We are going to show that, under the power law approxi-
mation,

√
n

F̂−1Z (εn)− κ log
ε

α
+

√
κ2V

n
Q−1(ξ)

 (85)

is asymptotically normal with asymptotic mean and asymptotic
variance given by 0 and κ2V , respectively. Let W be a stan-
dard normal random variable. Then, we obtain (79) through
the following steps

lim
n→∞

P [P [R(Xn) ≥ log(1 + Y )|Xn] ≥ ε]

= lim
n→∞

P
[
P
[
F̂−1Z (εn) > log(Y )|Xn

]
≥ ε
]

(86)

= lim
n→∞

P
[
F̂−1Z (εn) > F−1Z (ε)

]
(87)

≈ P

W >

√
n

V

F−1Z (ε)

κ
− log

ε

α
+

√
V

n
Q−1(ξ)

 (88)

≈ P
[
W > Q−1(ξ)

]
(89)

= ξ. (90)

Here, (87) follows from the log-transformation which implies
that P [· ≥ log(Y )] = FZ(·), (88) follows from the asymptotic
normality of (85), and (89) follows because F−1Z (ε) ≈ κ log ε

α .
To establish asymptotic normality of (85) under the power

law approximation, we first substitute the expressions for
F̂−1Z (εn) and εn (see (75) and (77)) and rewrite (85) as follows

√
n

(
Z(l) − κ log

β

α

+
1

l
log
(nε
l

) l∑
i=1

(Z(l) − Z(i))− κ log
ε

β

−

√
V

n
Q−1(ξ)

(
1

l

l∑
i=1

(Z(l) − Z(i))− κ

))
. (91)

We now consider each line of (91) separately. First, it follows
from [18, Th. 21.7] that

√
n

(
Z(l) − κ log

β

α

)
d→ N

(
0, Ṽ

)
(92)

as n→∞, where

Ṽ =
β(1− β)

f2Z(F−1Z (β))
≈ κ2(1− β)

β
. (93)

Next, it follows from the standard central limit theorem [18,
Th. 2.17] that

√
n

(
1

l − 1
log

(
ε

β

) l∑
i=1

(Z(l) − Z(i))− κ log
ε

β

)
(94)

is asymptotically normal with mean 0 and variance κ2

β log2 ε
β

(recall that the mean and variance of an Erlang distribution
with parameters 1/κ and l − 1 is κ(l − 1) and κ2(l − 1),
respectively. An application of Slutsky’s theorem [18, Th. 2.8]
shows that the second line in (91) (multiplied by

√
n) has the

same asymptotic distribution as (94). We finally note that

1

l

l∑
i=1

(Z(l) − Z(i)) (95)

converges to κ almost surely as n→∞.
These three properties imply that (85) is asymptotically nor-

mal distributed with asymptotic mean and asymptotic variance
given by 0 and κ2

β (1 − β + log2 ε
β ) = κ2V , respectively, as

desired.5
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