

Aalborg Universitet

Autonomously detecting sensors in fully distributed botnets

Böck, Leon; Vasilomanolakis, Emmanouil; Wolf, Jan Helge; Mühlhäuser, Max

Published in:
Computers and Security

DOI (link to publication from Publisher):
10.1016/j.cose.2019.01.004

Creative Commons License
CC BY 4.0

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Böck, L., Vasilomanolakis, E., Wolf, J. H., & Mühlhäuser, M. (2019). Autonomously detecting sensors in fully
distributed botnets. Computers and Security, 83, 1-13. https://doi.org/10.1016/j.cose.2019.01.004

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: February 07, 2025

https://doi.org/10.1016/j.cose.2019.01.004
https://vbn.aau.dk/en/publications/1631e883-0c40-49c5-b0ed-425bc5e8d5fe
https://doi.org/10.1016/j.cose.2019.01.004

c o m p u t e r s & s e c u r i t y 8 3 (2 0 1 9) 1 – 1 3

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

Autonomously detecting sensors in fully

distributed botnets

Leon Böck

a , ∗, Emmanouil Vasilomanolakis

b , Jan Helge Wolf a ,
Max Mühlhäuser

a

a Telecooperation Lab, Technische Universität Darmstadt, Darmstadt, Germany
b Aalborg University Copenhagen, Center for Communication, Media and Information Technologies (CMI)
Copenhagen, Denmark

a r t i c l e i n f o

Article history:

Received 25 October 2018

Accepted 11 January 2019

Available online 19 January 2019

Keywords:

Sensor evasion

Botnet monitoring

Fully distributed botnets

P2P botnets

Computational trust

a b s t r a c t

Botnet attacks have devastating effects on public and private infrastructures. The botmas-

ters controlling these networks aim to prevent takedown attempts by using highly resilient

P2P overlays to commandeer their botnets, and even harden them with countermeasures

against intelligence gathering attempts. In fact, recent research indicates that advanced

countermeasures can hamper the ability to gather the necessary intelligence for taking

down botnets. In this article, we take the perspective of the botmaster to eventually an-

ticipate their behavior. That said, we present a novel mechanism, namely Trust Based Bot-

net Monitoring Countermeasure (TrustBotMC), that combines computational trust with spe-

cially crafted bot messages to detect the presence of monitoring activity. We study and eval-

uate different computational trust models, to create a local and autonomous mechanism

that ensures the avoidance of common botnet tracking mechanisms, such as sensors. Fur-

thermore, we show, via our experimental results, that our approach can reduce the gathered

intelligence by at least 53% compared to techniques that have been seen in botnets to date.

Finally, we investigate techniques for mitigating our approach.

© 2019 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license.

(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Botnets are networks of infected computing devices, called

bots. These bots are remotely controlled and instructed to
conduct criminal activities by malicious entities – commonly
referred to as botmasters. Botnets are used for a multitude
of malicious activities such as Distributed Denial of Service
(DDoS) attacks, credential theft, ransom attacks, or spam

email distribution. Moreover, botnet activity appears to be on

the rise; in fact, recent advances such as the (IoT), increase

∗ Corresponding author.
E-mail address: boeck@tk.tu-darmstadt.de (L. Böck).

the botnet attack surface and capabilities (Antonakakis et al.,
2017; Kolias et al., 2017).

To cope with these developments, researchers defend by
proposing novel botnet detection and prevention methods; for
instance, new intrusion detection algorithms and honeypots
(Provos and Holz, 2007; Vasilomanolakis et al., 2015). Upon de-
tection of botnet activity, defenders need to take a plethora of
actions, e.g., bot enumeration, identification of weaknesses, or
preparation of sinkholing attempts, to actually be able to take
a botnet down. In many cases such actions are heavily influ-
enced by the network architecture of the botnet.

https://doi.org/10.1016/j.cose.2019.01.004
0167-4048/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2019.01.004
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2019.01.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:boeck@tk.tu-darmstadt.de
https://doi.org/10.1016/j.cose.2019.01.004
http://creativecommons.org/licenses/by/4.0/

2 c o m p u t e r s & s e c u r i t y 8 3 (2 0 1 9) 1 – 1 3

Traditionally, many botnets have been based on a central-
ized architecture consisting of a Command and Control server
that relays commands directly to the bots. However, this archi-
tecture presents a Single Point of Failure (SPoF) in the central-
ized server which can be used to seize control of, or disman-
tle, the botnet (Greengard, 2012). To overcome this weakness,
advanced botnets implement a fully distributed C2 channel
based on unstructured Peer-to-Peer (P2P) overlays. Such bot-
nets do not inherit the SPoF of centralized approaches and

they are very resilient to node churn and node removal at-
tacks (Rossow et al., 2013). Due to their characteristics, P2P bot-
nets are especially relevant nowadays for creating a resilient
and stable basis for attackers. In particular, fully distributed

botnets are prominent for their ability to provide modular
post-infection capabilities (so-called malware droppers) to the
botmasters (or to entities that hire the botnet for a specific
time period). Recent examples include the VPNFilter botnet
(Mansfield-Devine, 2018) and the Sality P2P botnet (Falliere,
2011) (that has been active since 2008).

As the absence of a central server prevents straightfor-
ward monitoring, researchers have developed various means
for gathering intelligence on distributed botnets. This is com-
monly achieved by reverse engineering the communication

protocol of the botnet, and afterwards deploying crawlers and

sensors to enumerate the botnet population. Advanced fully
distributed botnets such as GameOver Zeus (Andriesse et al.,
2014) or Sality (Falliere, 2011) even implement features to im-
pede monitoring attempts.

In this article, we take the perspective of a botmaster, with

the goal to better understand and anticipate future monitor-
ing countermeasures. Specifically, we present the Trust Based

Botnet Monitoring Countermeasure (TrustBotMC), a novel ap-
proach to thwart monitoring attempts by researchers and law-
enforcement agencies. The proposed mechanism is based on

the utilization of computational trust along with test-messages ,
i.e., specially crafted messages, that the bots exchange to ver-
ify the correct behavior of their peers. Our work is one among
others published recently that present means to detect mon-
itoring operations in P2P botnets (Andriesse et al., 2015; Böck
et al., 2015; Karuppayah et al., 2017; 2016). The multitude of
different monitoring prevention mechanisms suggest that the
options to harden P2P botnets are numerous and may even-
tually disrupt successful monitoring. Therefore, we want to
highlight the need for developing new mechanisms to effec-
tively gather intelligence on P2P botnets.

1.1. Contributions

This article makes the following contributions to the state of
the art:

• It proposes the first technique, namely TrustBotMC, that
enables bots to locally and autonomously identify and black-
list sensors in distributed botnets. Furthermore, it exam-
ines and evaluates two different techniques for the practi-
cal realization of TrustBotMC.

• It discusses and evaluates potential mitigations against
such a sensor detection method.

1.2. Assumptions

Our work is based on the following fundamental assump-
tions with regard to botnets and their detection and mitiga-
tion methods.

• Botnet infiltration and monitoring techniques introduce
characteristics that are distinctive compared to normal bot
traffic.

• Researchers are bound to ethical, legal and technical con-
strains; they cannot assist the botnet into performing il-
legal activities and/or (unwittingly or knowingly) prevent
take-down attempts.

1.3. Outline

The remainder of this article is structured as follows.
Section 2 provides the reader with some preliminary infor-
mation and background with regard to botnets, botnet moni-
toring and computational trust. Furthermore, in Section 3 we
present our proposal, TrustBotMC . Afterwards, Section 4 de-
scribes the evaluation of our proposal; in particular, we dis-
cuss the simulation setup, the ability of TrustBotMC to blacklist
advanced monitoring mechanisms and also some preliminary
ideas for mitigating our own approach. Moreover, in Section 5 ,
we discuss the state of the art with an emphasis on botnet
monitoring countermeasures. Finally, Section 6 concludes this
article.

2. Preliminaries

Within this section we introduce the necessary background

on P2P botnets and P2P botnet monitoring. Furthermore, we
discuss four trust models that will be utilized in TrustBotMC.

2.1. P2P botnet basics

Due to the distributed nature of P2P botnets, each bot is in-
volved in distributing commands and other messages within

the network. Therefore, the reliability of the C2 channel is
based on the availability of the bots. This is usually addressed

by connecting to multiple bots at the same time, to ensure
that redundant connections are available. In fact, this is neces-
sary as diurnal patterns and other user behavior causes bots to
frequently disconnect from and reconnect to the botnet. This
process of nodes leaving and joining is called churn .

To ensure that the botnet remains connected in the pres-
ence of churn, a Membership Management MM mechanism is
used to frequently update connection information. Each bot in

a P2P network maintains a list of other bots. This list is com-
monly referred to as NL and the bots stored within the NL are
called neighbors.

Each bot regularly contacts its neighbors to check their re-
sponsiveness as well as to receive updated commands. If all
neighbors are unavailable, a bot is isolated from the botnet
and will not be able to receive any updates or commands.
Hence, it is important to update the NL frequently by replac-
ing inactive neighbors with others (active bots). This is accom-
plished by sending probing messages to all bots in the NL in

c o m p u t e r s & s e c u r i t y 8 3 (2 0 1 9) 1 – 1 3 3

reoccurring intervals, the so-called MM cycles. These probing
messages are commonly referred to as hello messages.

If a node remains unresponsive for a prolonged period of
time, it will be replaced by a “fresh” entry of another online
bot. To do so, bots send NL-request messages to their neighbors
asking for additional bots. Upon such a request a bot replies
with a NL-reply containing a subset of the entries of its own

NL. Furthermore, botnets also use the MM cycle to exchange
information about the ID of the latest instruction set. If one bot
does not have the most current update, it will query a neighbor
to forward the latest instruction set. In the case of the Sality
botnet 1 , the ID is directly embedded in the hello and hello-reply
messages.

In this article we make use of a formal graph model to de-
scribe the connectivity of P2P botnets. This model is based

on similar models previously published in (Karuppayah et al.,
2017; Rossow et al., 2013). We model a P2P botnet as a graph

G = (E, V) , where V represents the set of super-peers (i.e., the
actively “routable” bots) in the botnet and the connectivity
between the bots is represented by the set of directed edges
E ∈ V × V . Each edge e (u, v) ∈ E with u, v ∈ V, u � = v represents a
directed connection from bot u to v . The NL of a bot u is de-
fined as a set of edges e (u, v) ∈ NL u . The out-degree of a bot u is
defined as the number of outgoing edges of u : deg + (u) = | NL u |
Furthermore, we define the popularity (or in-degree) of a bot (or
sensor) u as the number of incoming edges, i.e., the number of
bots that contain u in their NL: deg −(u) = | (v, u) ∈ E | .

2.2. P2P botnet monitoring

The lack of a SPoF makes it difficult to take down P2P bot-
nets. In order to take any actions against P2P botnets, it is
required to obtain reconnaissance information. This process
of gathering intelligence is commonly referred to as monitor-
ing . Monitoring is usually achieved by reverse engineering the
(botnet) malware and re-implementing its communication

protocol in various so-called monitoring mechanisms . Generally
two types of monitoring mechanisms are used: crawlers and

sensors (Rossow et al., 2013).

2.2.1. Crawlers
Crawlers provide an aggressive approach to obtain intelli-
gence about a botnet. Starting with a set of seed-nodes 2 , the
crawler consecutively sends NL-requests to all known bots. The
entries contained in the NL-replies sent by the bots are added to
the queue of the crawler. With this approach, one can quickly
collect information about actively “routable” bots (super-peers),
and their inter-connectivity. However, a major drawback of
crawlers is the inability to contact bots that are behind Net-
work Address Translation (NAT) devices or firewalls. There-
fore, crawlers often underestimate the overall population of a
botnet by up to two orders of magnitude (Rossow et al., 2013).

Another drawback of crawlers is that they behave very
differently from normal bots and introduce a lot of noise to
the botnet. Specifically, crawlers exhibit an unusually large

1 The Sality P2P botnet will be the reference botnet example
throughout this article.

2 Seed-nodes are commonly found during the reverse engineer-
ing of a malware, or by scanning the Internet.

out-degree . This makes them prone to detection and mitiga-
tion by monitoring countermeasures (Andriesse et al., 2015;
Karuppayah et al., 2016).

2.2.2. Sensors
Contrary to crawlers, sensors follow a less aggressive ap-
proach to monitoring. They are implemented such that they
imitate the behavior of a regular bot. They join a botnet based

on the specified bootstrap mechanism and wait for incoming
connections from other bots. To eventually infiltrate the NL of
other bots, a sensor has to reply to the hello messages of other
bots. Over time, the likelihood of other bots replacing some of
their inactive neighbors with the sensor increases. If a con-
nection is initiated by a bot, NAT devices will route the traf-
fic accordingly and allow sensors to enumerate bots behind

NAT. However, this comes at the cost of lacking connectivity
information that can be obtained by crawlers. Such informa-
tion may be crucial to successfully conduct attacks against the
botnet. Therefore, sensors and crawlers are commonly used

in combination to obtain both connectivity information and

more accurate enumerations.
As sensors are a more passive monitoring mechanism they

are harder to detect than crawlers. While their aim is to
obtain a very high in-degree , which could be used as a dis-
tinguishing factor, this behavior is also observed for regu-
lar bots (Andriesse et al., 2015). Nevertheless, different ap-
proaches exist to detect sensor nodes; these are discussed in

greater detail in Section 5 .

2.3. Computational trust

Computational trust offers the functionality that supports
an entity to make informed decisions within digital environ-
ments. This is important, as such decisions are often accom-
panied by risk and uncertainty. On a theoretical level, trust is
commonly described as a contextual relationship between a
trustor and trustee . The trustor engages in an action that re-
quires trusting the target entity referred to as trustee.

Mathematically, trust is a measure for the inherent quality
or trustworthiness of the trustee. This measure is estimated

based on evidence of previous behavior of the trustee. For the
use-case of TrustBotMC, evidence consists of binary experi-
ences of positive or negative interactions with the trustee.

Different approaches exist to calculate a trust score based

on evidence. Within our work, we focus on four promi-
nent trust models, capable of working with binary evidence.
Namely, these are the eBay user rating (Jøsang et al., 2007), Beta
distribution (Commerce et al., 2002), CertainTrust (Ries, 2009b),
and Subjective logic (Jøsang, 2001). These are introduced in the
following alongside a reputation mechanism called goodcount
which is used by the Sality botnet. We want to point out, that
the Beta distribution, CertainTrust and Subjective Logic are
isomorphic to each other, even though they can outwardly
provide different functionalities through their parameters.

eBay User Rating eBay 3 provides a commercial reputation

system that aggregates positive, neutral and negative expe-
riences denoted as: (e + , e 0 , e −) ∈ E. The ratings from different

3 https://www.ebay.com .

https://www.ebay.com

4 c o m p u t e r s & s e c u r i t y 8 3 (2 0 1 9) 1 – 1 3

trustors are combined to provide an overall rating for a trustee
that is presented to all users of the platform. Specifically, users
are provided with the absolute ratings and a trust score based

on the positive and negative experiences:

T ebay (E) =

| e + |
| e + | + | e −| (1)

Furthermore, the eBay trust model provides absolute values
for all ratings in the last month, last six months and last year
to provide insights on the development of the trustee.

Beta distribution The Beta distribution family can be used as
a trust model, with a trust score based on the expectation

value of the distribution (Commerce et al., 2002). In particu-
lar, the Beta distribution f (p | α, β) can be used to present poste-
riori probabilities for binary events. In the context of compu-
tational trust, the expectation value of the Beta distribution:

E(p) = E Beta (α, β) =

α

α + β
(2)

is used to predict the future behavior of a trustee. For that, the
parameters are set to α = r + 1 and β = s + 1 where r and

s represent the number of positive and negative experiences,
respectively. The trust score is equal to the expectation value
of the beta distribution and is calculated as:

T Beta =

r + 1
s + r + 2

(3)

Moreover, the beta reputation system can be extended with

two additional parameters s 0 and r 0 to present a base rate
(Jøsang et al., 2003) or prior knowledge (Ries, 2009a). Within this
article, we will use this extended model with α = r + r 0 and

β = s + s 0 .

Subjective logic Subjective logic (SL) (Jøsang, 2001) is a trust
model based on the Dempster–Shafer belief theory (Shafer,
1976). SL uses an opinion quad-tuple ω

A
x = (b, d, u, a) to de-

scribe the belief b an entity A has in the truth of a statement
x . At its core, SL uses a beta distribution with α = r + 2 a and

β = s + 2 − 2 a . The trust score is calculated as the expectation

value:

T SL = E(ω

A
x) = b + ua (4)

Here, the expectation value of the regular beta distribution

b =

r
r + s +2 is extended by considering the uncertainty u =

2
r + s +2

and the atomicity a , which applies a weight to the uncertainty
of the trust score.

CertainTrust CertainTrust (CT) (Ries, 2009b) is a trust model
expressing trust in uncertain environments with a trust score
based on the expectation value:

T CT = E Beta
f,w,N (r, s) = E Beta (r, s, r 0 , s 0) (5)

A distinguishing factor from other trust models is that the
initial trust s 0 and r 0 can explicitly be changed through the
parameter f . Moreover, CT provides linear fade out for the ini-
tial trust. This is accomplished by dynamically recalculating s 0

and r 0 upon collection of new experience. The speed at which

prior knowledge is replaced can be set as parameter w . Fur-
thermore, N denotes the number of experiences required at
which prior knowledge is no longer considered, as enough real
experiences have been collected. In addition to the context de-
pendent parameters f, w and N , CT also provides an aging factor
a ∈ [0, 1[. This allows to prioritize newer experiences by adding
a negative weight to the influence of older experiences.

Goodcount. goodcount is a reputation mechanism imple-
mented by the Sality botnet (Falliere, 2011). While strictly
speaking it is not a trust model, it is analogous and also the
only implementation of such a countermeasure by any known

botnet to date. A bot’s goodcount is represented as an integer
value that represents the availability or reliability of a bot to
answer to hello-messages . Each bot maintains a goodcount value
for each of its neighbors. Upon receipt of a hello-reply the good-
count is increased by one, whereas it is decreased by one if no
answer is received in response to a hello-message .

This goodcount value is used during a bot’s MM cycle to de-
cide if a bot is to be removed from the NL or not. This mech-
anism is supposed to prevent preemptive deletion of highly
responsive and reliable neighbors. Moreover, it is in place to
prevent sensors from easily invading and replacing legitimate
entries in a bot’s NL.

3. TrustBotMC: a trust based monitoring

countermeasure

Within this section we propose the Trust Based Botnet Mon-
itoring Countermeasure (TrustBotMC), a novel monitoring
countermeasure based on computational trust. TrustBotMC al-
lows bots in fully distributed botnets to locally compute the
trustworthiness of their neighbors and take automated coun-
termeasures in the form of blacklisting against sensor nodes
infiltrating their NL. In the following, we introduce the ideas
and assumptions behind TrustBotMC. Afterwards, we discuss
in detail the three core components of TrustBotMC: the test
message concept, the computational trust models and the black-
listing mechanism.

Our proposed trust management approach builds on the
fundamental assumption that sensors and crawlers can be
distinguished from regular bots. We argue that this is the case
for two reasons: (i) the goal and therefore the behavior of mon-
itoring mechanisms is different from bots (cf. Section 2.2), (ii)
researchers and law enforcement officials are bound by legal,
ethical and technical constraints. Some of these constrains
are that sensors should not disseminate commands from the
botmaster, or aid the overlay maintenance by sending valid

NL-reply messages (Karuppayah et al., 2017). If a sensor vio-
lates these constraints, it not only raises questions regarding
the legal and ethical consequences of actively participating
in the maintenance of the botnet, but it could also prevent
sinkholing attempts against the botnet. The reason for this
is that sensors are re-implementations of the botnet proto-
col but they are unlikely to share the same vulnerabilities as
the malware itself. Therefore, exploiting a bug in the malware
to sinkhole the botnet will not affect the sensors. Hence, if
these sensors actively share commands or NL-entries with the

c o m p u t e r s & s e c u r i t y 8 3 (2 0 1 9) 1 – 1 3 5

sinkholed bots, they will allow sinkholed bots to re-connect to
other bots and effectively break the sinkholing attempt.

To leverage the distinctive behavior of monitoring mech-
anisms, we adapt the concept of test messages (Fung et al.,
2009). At a glance, TrustBotMC regularly sends test messages
to bots and collects experiences based on the validity of the
reply. The collected experiences are fed into a trust model to
compute a continuously updated trust score for each neigh-
bor in a bot’s NL. If the trust value for any of the neighbors
falls below a predefined threshold t min , this neighbor will be
permanently removed from the NL and added to the blacklist.
All messages originating from bots on the blacklist will be ig-
nored indefinitely.

With this approach bots can locally detect and remove sen-
sor nodes from their NL. This will decrease the popularity
of sensors and therefore their ability to enumerate the bot-
net. This greatly limits the capabilities of researchers and law

enforcement officials to obtain the necessary information re-
quired to take down the botnet.

To summarize, the proposed mechanism can be described

as a three-tuple T BMC = (M, T, t min) , with M being a non-empty
set of test messages, a trust model T , and a minimum trust
threshold t min . Each of these three components will be de-
scribed in greater detail in the following subsections.

3.1. Test messages

To make decisions about the trustworthiness of a neigh-
bor, bots need to obtain historical data. To obtain this data,
TrustBotMC uses the concept of test messages (Fung et al.,
2009). Bots frequently send special messages to their neigh-
bors for which the (correct) answer is clearly defined/known. If
a neighbor does not reply to the message as expected, a nega-
tive experience is recorded. Similarly upon receipt of a correct
answer a positive experience is recorded.

While the specific implementations of test messages can

differ, they have to fulfill three conditions: (i) they are con-
structed in a way such that the correct answer is prede-
fined/known, (ii) a sensor should not (ethical/legal/technical
reasons), or cannot (e.g., due to the encrypted nature of mes-
sages) answer such that the response is considered a posi-
tive experience, (iii) regular bots do not, or only rarely (e.g.,
due to churn) answer in a way that is considered a negative
experience.

We propose two different types of test messages: Bogus
Neighborlist Request (BNLM) messages and BCM messages. Each

of them assumes the aforementioned legal, ethical and tech-
nical limitations of monitoring mechanisms. The reason for
proposing these two test messages is that the type of mes-
sages are common for all known P2P botnets. This has the ben-
efit that a sensor cannot distinguish them from their regular
counterparts. We want to highlight, that a test-message does
not need a non test message counterpart. Botmasters can in-
troduce entirely novel test messages to their botnet if they ful-
fill the three requirements stated earlier. As an example, such

a message could be the command to conduct a short-timed

(DDoS) attack that can be observed by other bots. Complying
with such a test-message would require active participation in

attacks. Therefore, due to the aforementioned legal and ethi-

Fig. 1 – TrustBotMC example: two cases of success and

failure using the BCM technique.

cal reasons, sensors would be distinguishable as they cannot
carry out the attack.

3.1.1. Bogus command sequence message (BCM)
A BCM is a specifically crafted hello-message that contains a
very old command sequence number, i.e., significantly lower
than the current command sequence number. Upon receipt of
such a message a bot will reply with its current (higher) com-
mand sequence number and the corresponding command set.
However, contrary to the behavior of a bot, a sensor will not be-
have in the same way and instead send a hel l o−repl y message
that matches the command sequence number of the BCM.
Sensors must behave this way, as they would otherwise have
to attach an updated command set in their reply. As such com-
mand sets are commonly encrypted, the sensor does not know

its contents. Therefore, it might contain content that is either
legally or ethically problematic, or it is a command used by
botmasters to break out of a sinkholing.

Consequently, a bot will consider the receipt of hel l o− repl y
messages with a (recent) higher command sequence number
as a positive experience, whereas a reply with the same or out-
dated command sequence number is considered a negative
experience. This behavior is also depicted in Fig. 1 . Note that
depending on the specifics of the botnet, a botmaster has to
define what is considered a recent command sequence. Oth-
erwise, sensors could cheat by sending higher, yet outdated,
command sequences.

We want to point out, that BCMs are unlikely to incur a
great amount of false positive (FP) classifications. Even if a bot
replies with a highly out-dated command sequence number,
it will subsequently be updated and reply correctly to future
test-messages.

3.1.2. Bogus neighborlist request message (BNLM)
BNLMs are test messages that target sensors by forcing them

to share legitimate bot entries. However, sharing of legitimate
entries helps the botnet maintain its overlay. Therefore, due to
legal and ethical limitations sensors cannot share bot entries.
Instead they can send empty NL-replies or duplicate addresses
of other sensors (Andriesse et al., 2015). Moreover, sharing

6 c o m p u t e r s & s e c u r i t y 8 3 (2 0 1 9) 1 – 1 3

legitimate entries could prevent so called sinkholing attacks
against the botnet (Karuppayah et al., 2017).

To cover different behavioral patterns of sensors, a nega-
tive experience will be recorded for all following scenarios: (i)
empty NL-reply , (ii) only unresponsive or non-existing bots, (iii)
only blacklisted bots, and (iv) duplicate entries.

It is important to mention that many of these replies can

also occur in NL-replies of legitimate bots. Therefore, contrary
to the previously discussed BCM, BNLMs are likely to incur FP
classifications. Specifically for botnets with low NL-reply sizes
(e.g., Sality) it is likely that an unresponsive or blacklisted bot
is returned. Therefore, we expect BNLMs to be more likely to
incur FPs than BCMs.

Theoretically sensors could avoid the test message detec-
tion strategy by not replying (to the test messages). This be-
havior would reflect packet losses or a bot going offline during
the message exchange. Therefore, we consider not receiving
a reply in a timely manner as a negative experience. While
this introduces the possibility of additional FPs, we consider
this insignificant with regard to the overall number of test
messages sent. Moreover, the approach is designed such that
test messages are only sent to bots that are considered online,
i.e., they replied to a regular hello message beforehand. This
avoids collecting negative experiences for legitimate bots that
are currently offline.

3.2. Leveraging computational trust

The test message approach allows a bot to collect positive
and negative experiences for each of its neighbors. To decide
whether to trust or distrust a neighbor, we need to calcu-
late the trustworthiness based on the collected evidence. For
this, we leverage the trust models introduced in Section 2.3 .
By feeding the experiences collected for each neighbor to the
trust models, we receive an individual trust score for all NL
entries.

3.2.1. Trust threshold
While the calculated trust scores provide us with an indicator
of the trustworthiness of a bot, we need a method for inter-
preting the results. As our goal is to make a binary decision

about the trustworthiness of a bot, we propose the utilization

of a trust threshold.
In this context, the minimum trust threshold t min repre-

sents a lower boundary for trust scores. Upon each new ex-
perience, negative or positive, the trust score is updated ac-
cording to the respective trust model. If the newly calculated

score falls below the threshold of t min , the bot associated with

that trust score is considered untrustworthy. Once a neigh-
bor is considered to be untrustworthy, it will be blacklisted

and removed from a bot’s NL. Effectively, the trust threshold

can be used to set the strictness of TrustBotMC. A high value
will lead to quicker blacklistings, i.e., few negative experiences
will quickly lead to a trust score lower than t min . Contrary, a
low threshold will allow a greater number of negative expe-
riences to be collected before a blacklisting occurs. This also
allows legitimate bots to restore their trust score with positive
experiences. Therefore, it depends on the test-messages used

and the preferences of the botmaster to choose a proper trust

threshold. For our evaluations we used a parameter study to
pick a trust threshold that minimizes FPs while maintaining
high TPs.

3.2.2. Trust models
In the context of TrustBotMC , an adapted version of the eBay
user rating system is represented as T = T eBay (n) . Here, n de-
notes the number of experiences that will be used by the
trust model. More specifically, to compute the trust score, the
n most recently collected experiences will be taken into ac-
count. Moreover, instead of a combined rating for each bot,
every bot maintains their own ratings for each bot on their
NL. This not only allows local computation of trust scores, but
also prevents abuse of the rating system by researchers, which

could falsely down-rate legitimate bots.
TrustBotMC uses an extended beta distribution , which is rep-

resented as T = T Beta (r 0 , s 0) . Here, r 0 and s 0 denote the initial
trust.

Similarly to the beta distribution, Subjective Logic does not
consider aging of evidence but takes into account an initial as-
sumption of trust via its base rate parameter a ∈ [0, 1]. In Trust-
BotMC , Subjective Logic is represented as T = T SL (a) .

CertainTrust is the only trust model introduced that consid-
ers both aging and other environmental factors. In TrustBotMC ,
CertainTrust is represented as T = T CT (f, w, a) . Here, the aging
factor a ∈ [0, 1[determines the expected number of evidence
N ∈R

+ via the formula N = 1 / (1 − a) .

3.3. Blacklisting

To prevent a blacklisted bot (i.e., sensor) from causing more
harm to the botnet, several steps need to be taken to avoid

further communication or manipulation by the potential sen-
sor node. To achieve this, TrustBotMC follows a three-step ap-
proach of: i) removing the suspected sensor from the NL, ii)
adding it on the blacklist, and iii) blocking any future commu-
nication.

Removing the suspected sensor from the NL will prevent it
from being shared through NL-request messages or contacted

during a bot’s MM-cycle. Therefore, the sensor will not be able
to observe the activities of the bot or increase its view of the
botnet. Furthermore, adding the sensor to the blacklist will
prevent re-adding the bot to the NL and allow a bot to filter in-
coming messages from previously blocked sensors. Lastly, by
ignoring all incoming messages from nodes on a bot’s black-
list, sensors cannot obtain any further intelligence about the
availability or connectivity of a bot.

4. Evaluation

Within this section, we evaluate TrustBotMC and compare the
effectiveness of the trust mechanisms used in it. Specifically,
we compare the trust mechanisms against the goodcount ap-
proach (the reputation-based approach used by the Sality bot-
net). Furthermore, we evaluate how much information can be
gathered by sensors in the presence of TrustBotMC. Lastly, we
investigate how collaborative monitoring can mitigate the loss
of monitoring intelligence introduced by TrustBotMC.

c o m p u t e r s & s e c u r i t y 8 3 (2 0 1 9) 1 – 1 3 7

4.1. Setup

For our evaluation, we use the OMNeT++ (Varga and Hornig,
2008) discrete simulation framework. Within OMNeT++, we
utilize a framework (as presented in our previous work Böck
et al., 2018) that implements the Sality botnet and extends it,
such that it either uses its original reputation mechanism (i.e.,
goodcount) or the test message based approach of TrustBotMC

(along with any of the trust management mechanisms dis-
cussed in Section 2.3). The decision to use a simulation frame-
work over a real world testbed, allows to evaluate the proposed

mechanism on significantly larger networks.
To ensure a realistic churn behavior of the bots, we use the

churn model presented by Karuppayah (2016) and Böck et al.
(2018) . Based on the churn model, we simulated a botnet with

a population of 5500 and an average active population of 1422.
We picked this number as it fits the latest reports on the size
of the super-peer population of the Sality botnet (Haas et al.,
2016). While botnets can be of significantly larger size, we ar-
gue that the size of the botnet has no immediate effect on

our mechanism. In TrustBotMC each bot locally computes the
trust score and maintains their own blacklists. Therefore, the
size of the botnet has no immediate effects on the effective-
ness of TrustBotMC.

In addition to the bot population, we introduced up to 100
sensor nodes to the botnet. As it requires time to develop sen-
sor nodes, it is unrealistic to assume that they are present
from the zero hour of the botnet. Therefore, we use a warm

up period before the sensors join the network.
As the churn model requires approximately 41 days to sta-

bilize itself (Böck et al., 2018), we decided upon a warm up

period of 50 days before the sensors join the botnet. Once
the sensors join the network, we observe their popularity
for a period of 14 days. Overall, this results in a simula-
tion time of 64 days. During that period, we recorded the
state of the botnet overlay with a granularity of six hours.
To evaluate the effectiveness of each proposed test message,
we conducted three separate experiments: (1) only BCMs,
(2) only BNLMs, and (3) a combination of BNLMs and BCMs
with an equal ratio of both message types. To account for
statistical variances we repeated each of our experiments
16 times.

For the evaluation of the different trust models, we had to
pick a common threshold t min ∈ [0, 1] and set the parameters
for each trust model. For this, we conducted a parameter study
to identify which parameter combinations perform best. As
the result of this study, we decided upon a minimum thresh-
old of t min = 0 . 4 and the trust parameters specified in the fol-
lowing subsection. Based on the identified threshold, we later
compare the trust model based on the sensor popularity, (TP),
(FP) and (UD). UD denotes sensors that have not been discov-
ered yet by a bot and therefore are not classified yet. Therefore,
the sum of sensor popularity and TP does not always match

the total botnet population as the sensor has not yet been dis-
covered and classified by all bots.

4.2. Results

This section presents the evaluation results for BCM and

BNLMs for each of the trust models in comparison against the

Fig. 2 – Development of the popularity of a single sensor
over time with Sality’s goodcount mechanism and different
trust models compared (t min = 0 . 4) , M = { BCSM } .

Sality goodcount mechanism. Afterwards, a potential mitiga-
tion based on increased sensor deployment is evaluated and

discussed.

4.2.1. Bogus commands sequence messages
To recapitulate, BCMs target the legal, ethical and technical is-
sues of sensor sharing botmaster commands with other bots.
Fig. 2 presents the popularity of a single sensor throughout the
observation period of 14 days for each trust model and the Sal-
ity goodcount .

The plot highlights that TrustBotMC significantly impedes
the intelligence gathering of the sensor. For Sality, a single sen-
sor, in our simulation, is capable of enumerating the entire
botnet after ten days of deployment in the Sality botnet. This
is not possible in TrustBotMC, where at most 53.436% of the
botnet could be enumerated by a single sensor at the peak of
its popularity. Moreover, this peak occurs after about two days
and then only decreases due to blacklisting. At the end of the
simulation, i.e., after 14 days of monitoring with the sensor,
only 7.49% of the bots have the sensors in their NL. This is not
the case for the unmodified Sality, where the popularity of the
sensor steadily increases.

Fig. 2 also highlights the differences between the evaluated

trust models. The results show that TrustBotMC indeed mit-
igates the intelligence gathering by the deployed sensor. Out
of the observed trust models, the eBay user rating performed

the best with a peak popularity of the sensor of only 1477. In

comparison, the sensor peaked at a popularity of 2939 if Sub-
jectiveLogic is used as the trust model. Nevertheless, the pop-
ularity of the sensor drops below 500 (< 10%) for all trust mod-
els after the observation period of 14 days. This poses a signif-
icant problem (for researchers and law enforcement), as node
churn and dynamic IP addresses require monitoring knowl-
edge to be as recent as possible. However, due to TrustBotMC,
sensors quickly lose the ability to collect the latest monitoring
intelligence.

Furthermore, we investigated the FPs incurred by each

trust model, i.e., falsely blacklisted regular bots. The results
of this are presented in Table 1 alongside with detailed results
on the popularity of the sensors after 14 days of monitoring.

8 c o m p u t e r s & s e c u r i t y 8 3 (2 0 1 9) 1 – 1 3

Table 1 – Performance overview of different trust models
against a single sensor at its peak popularity and after
the monitoring period of 14 days (t min = 0 . 4). The TN are
omitted from the table due to space reasons and can be
calculated as 5500 2 − UD − F P.

Trust model Peak End of simulation

popularity Popularity (FN) TP FP UD

T eBay (15) 26.855% 0.6% (33) 5466 0 1
(1477)

T Beta (3, 3) 38.073% 2.909% (106) 5394 0 0
(2094)

T CT (.5, 5, .95) 46.727% 4.127% (227) 5272 0 1
(2570)

T SL (1) 53.436% 7.490% (412) 5088 0 0
(2939)

Fig. 3 – Development of the popularity of a single sensor
over time with Sality’s goodcount mechanism and different
trust models compared (t min = 0 . 4) , M = { BNLM } .

It is interesting to note that none of the trust models incurred

any FPs. This indeed suggests that TrustBotMC is an effective
and robust countermeasure against monitoring attempts.

This is likely the case because TrustBotMC, by de-
sign, avoids collecting FP experiences for normal bots and

BCMs being robust towards false negative experiences (c.f.
Section 3.1.1). Hence, eBay performs best as it makes its de-
cisions faster than the other models, which are designed to
avoid decisions that can lead to FPs.

4.2.2. Bogus neighborlist messages
Next we want to repeat the experiment using BNLMs. BNLMs
leverage that sensors are restrained from sharing legitimate
NL entries with other bots. Contrary to BCMs, bots may answer
incorrectly to BNLMs. Therefore, FP classifications are more
likely to occur when using BNLM (c.f. Section 3.1.2). Fig. 3 de-
picts the popularity of a single sensor throughout the obser-
vation period of 14 days for each trust model and the standard

Sality goodcount .
In comparison to the experiment with BCMs, the two types

of test messages show only slight deviations with respect to
the ability of preventing sensors from infiltrating the botnet.

Table 2 – Performance overview of different trust models
against a single sensor at its peak popularity and after
the monitoring period of 14 days (t min = 0 . 4), M = {BNLM}.
The TN are omitted from the table due to space reasons
and can be calculated as 5500 2 − UD − F P.

Trust model Peak End of simulation

popularity Popularity (FN) TP FP UD

T eBay (15) 27.127% 0.745% (41) 5458 11,556,538 1
(1492)

T Beta (3, 3) 38.255% 1.873% (103) 5391 37,250 6
(2104)

T CT (.5, 5, .95) 46.764% 4.327% (238) 5262 748 0
(2572)

T SL (1) 53.582% 7.636% (420) 5080 13 0
(2947)

However, as Table 2 highlights, all four trust models incur FPs
which is not the case for BCMs.

Even though the eBay user rating still performs the best,
the results clearly indicate that the eBay user rating incurs
a significantly larger amount of FP blacklistings compared to
the other three trust models. In fact, 38% of all possible edges
within the network are removed based on blacklisting. This
impacts the resilience of the graph structure of the botnet and

is undesirable from a botmaster’s perspective. Contrary, while
SL performed worst at preventing sensors from infiltrating a
bot’s NL it incurs the least FPs (13) throughout our observation

period. CT similarly only incurs 748 FPs, whereas Beta distribu-
tions incur 37, 250 FPs. Considering, that the overall simulation

time of 64 days is fairly short in comparison to real world bot-
nets with lifespans of several years, the results indicate that
eBay user ratings and the Beta distribution based trust model
are not suited for deployment in conjunction with test mes-
sages that are likely to incur negative experiences for legiti-
mate bots. In such a case, the lesser performing CT or SL trust
models should be used by botmasters, to impede sensor infil-
tration while mitigating negative effects on the botnets own

structure.

4.2.3. Discussion

The experiments of running TrustBotMC with BCM and

BNLM yielded differing results. The eBay user rating model
performed best at impeding monitoring efforts with sensor
nodes in combination with both test messages . However, in

combination with BNLM, it incurred a significant amount of
FPs which renders it unusable in such a scenario. Interestingly,
no FP were accumulated at all in combination with BCM. The
reason for this discrepancy lies in the nature of the test mes-
sages . While a bot may provide incorrect answers to a BNLM

under some circumstances, this is not the case for BCMs.
Therefore, by the characteristics of BCMs a FP may only hap-
pen if a bot goes offline while being tested.

In summary, the choice of a proper trust model greatly de-
pends on the characteristics of the test messages and the pos-
sibility of bots replying incorrectly. In a setting, where the test
message is likely to incur FPs a more robust trust model such as
CT or SL should be used. Contrary in a scenario with few pos-
sibilities of FP classifications the more aggressive eBay user
rating model yields better results.

c o m p u t e r s & s e c u r i t y 8 3 (2 0 1 9) 1 – 1 3 9

Fig. 4 – Comparison of the popularity of 10, 50 and 100 sensors (collaborating), with Sality’s goodcount mechanism and

different trust models (t min = 0 . 4) .

We also repeated our experiments with a combination of
both BCM and BNLM. The results of this are presented in

Appendix A . Lastly, we want to highlight once more that the
test messages used for these experiments are only two possi-
ble options. We chose them for their applicability to a wide
range of P2P botnets. However, botmasters theoretically have
complete freedom of adding arbitrary test messages to aid in

identifying sensor nodes.

4.3. Mitigation

As a mechanism such as TrustBotMC significantly impedes
monitoring operations, we need to identify means to continue
monitoring operations. A simple but resource consuming ap-
proach is to increase the number of sensors. In the following,
we investigate how running the same simulations (with 10,
50 and 100 colluding sensor nodes) influences the intelligence
gathered by means of combining the knowledge from all
sensors.

Fig. 4 a–c depict the combined popularity of 10, 50 and 100
sensors respectively. As expected, the combined intelligence

gathered by the sensors increases with an increasing number
of sensors. Our results even indicate that 50 sensors are suffi-
cient to fully enumerate TrustBotMC for a short period, if Sub-
jectiveLogic is used as the trust model. However, with the eBay
trust model at an average of 4088.5 bots (74.44%) were enumer-
ated at the peak using 50 sensors. Throughout the monitoring
period of 14 days this dropped down to 1438.25 bots (26.15%).
Furthermore, even increasing the number of sensors to 100 is
insufficient to fully enumerate the botnet if eBay user rating
is used as the trust model.

To identify why increasing the number of sensors yielded

only small gains in the overall monitoring knowledge, we
also investigated the popularity of the individual sensors. We
found out, that injecting too many sensors at the same time
leads to a situation where the sensors compete against each

other. The reasons for this are limitations in NL-size, Sality’s
neighbor addition strategy, and the order and time of sensors
joining the botnet. We discuss these findings in more detail in

Appendix B . In summary, this effect is likely to occur in other
botnets as well. Therefore, increasing the number of sensors
might be more efficient for monitoring other botnets.

10 c o m p u t e r s & s e c u r i t y 8 3 (2 0 1 9) 1 – 1 3

Overall the results indicate that increasing the number of
sensors can help to mitigate the effect that TrustBotMC has on

monitoring operations. However, the limited success and sig-
nificant resource overhead are clear indicators that we need

more advanced monitoring strategies to overcome advanced

monitoring countermeasures such as TrustBotMC. One possi-
ble approach is to develop smart approaches for collaborative
monitoring, as the straightforward method of increasing the
number shows odd effects such as sensors competing for pop-
ularity.

5. Related work

In this section we discuss the state of the art by emphasizing
on (botnet) monitoring countermeasures cas well as on tech-
niques for detecting sensors and crawlers.

5.1. Botnet monitoring countermeasures

Countermeasures against monitoring are a common feature
of P2P botnets. Among the most typical countermeasures is
rate limiting the size of NL-reply messages (Andriesse et al.,
2014; Falliere, 2011; Neville and Gibb, 2013). This is supposed

to prevent crawlers from easily obtaining full information

about a bot’s neighbors. In addition, the GameOver Zeus bot-
net also implements an automated blacklisting mechanism

that triggers if more than five NL-request messages are sent
from the same IP address within a sliding window of one
minute (Andriesse et al., 2014). As discussed in Section 2.3 , the
Sality botnet (Falliere, 2011) implements the so-called good-
count mechanism to prevent sensor nodes from easily replac-
ing legitimate bots that have been reliable over a prolonged

period of time. The goodcount mechanism prevents replacing
long lived and reliable NL-entries with newer potentially unre-
liable neighbors. This also affects sensors, as it becomes more
difficult to infiltrate and remain in a bot’s NL (c.f. Appendix B).

5.2. Sensor and crawler detection

In (Böck et al., 2015; Karuppayah et al., 2017) the authors
present how sensor nodes can be detected within P2P botnets
based on three different graph metrics. In more details, they
make use of the local clustering coefficient, PageRank (Page
et al., 1999) and strongly connected components to identify
sensor nodes in the overlay graph. Their approach is based

on the assumption, that sensors will not aid the botnet by re-
turning legitimate bot entries upon a NL-request . While these
mechanisms effectively identify sensor nodes, they require an

aggregated view or global knowledge on the graph connectiv-
ity. On the contrary, our approach only requires a bot’s local
knowledge to autonomously blacklist sensor nodes.

In Andriesse et al. (2015) , Andriesse et al. investigate how

crawlers and sensors can be detected based on protocol and

behavioral anomalies. Specifically for crawlers their approach

has proven to be successful. The anomalies used by the au-
thors to identify the crawlers cover both protocol and behav-
ioral anomalies. Furthermore, they show how sensors can be
detected based on protocol violation. Nevertheless, they state
that their approach is not generally applicable to the detection

of sensor nodes, as violations could be avoided in sensor im-
plementations. Karuppayah et al. also use protocol violations
to autonomously detect crawlers based on a bot’s local view

(Karuppayah et al., 2016). Their approach is based on setting
traps targeting the behavior of crawlers to locally identify and

subsequently blacklist crawlers.

6. Conclusion

Fully distributed botnets exhibit a unique level of resilience
against take down attempts and monitoring. Recent work in-
dicates that essential intelligence gathering mechanisms can

be detected and repelled by botmasters. In this article, we con-
tribute to this field by presenting TrustBotMC, a method for lo-
cally and autonomously identifying sensors in P2P botnets via
the utilization of computational trust and special messages
that are exchanged between bots. We want to point out, that
TrustBotMC assumes that defenders are bound to legal and

ethical restrictions. If these restrictions are circumvented (e.g.,
for reasons of national security) TrustBotMC will not be effec-
tive. Nevertheless, we argue that such a scenario is not gen-
erally applicable to all botnets. Our evaluation results suggest
that the use of TrustBotMC can significantly reduce the bene-
fits of sensor monitoring. In particular, we show that Trust-
BotMC is much more efficient in detecting and blacklisting
sensor nodes than existing mitigation mechanisms in bot-
nets; that is, Sality’s goodcount mechanism. Moreover, we ex-
amine collaborative methods for mitigating the TrustBotMC

threat. While collaboration seems to be a promising solution

to continue successful monitoring operations, the straightfor-
ward approach of simply sharing data shows odd effects of
sensors competing against each other. Nevertheless, increas-
ing the number of sensors, while requiring a lot of resources,
does increase the overall monitoring intelligence. Moreover,
increasing the number of sensors allows to slow down the loss
of monitoring information due to blacklistings by TrustBotMC.
To further mitigate the effects of monitoring countermeasures
such as TrustBotMC, we suggest future work to focus on al-
ternative monitoring approaches as suggested in Böck et al.
(2018) as well as to more advanced collaboration strategies
that avoid competition among sensors.

Acknowledgements

This work was supported by the Royal Bank of Canada within

the project Novel P2P Botnet Detection under Grant Agree-
ment 2761478.4.

Appendix A. BNLM +BCM

We repeated our experiments for TrustBotMC with equally
distributed numbers of BCMs and BNLMs. Fig. B.5 indicates,
that the results for the popularity of the sensor are similar to
using only one of the two test-message types. However, the
number of FP incurred by the trust models shows a more in-
teresting pattern. While eBay incurred 35.46% less FPs than

only using BNLMs, the Beta distribution incurred 77.22% less

c o m p u t e r s & s e c u r i t y 8 3 (2 0 1 9) 1 – 1 3 11

Table A1 – Performance overview of different trust mod-
els against a single sensor at its peak popularity and af-
ter the monitoring period of 14 days (t min = 0 . 4, M =

{ BCLM , BCM }).
Trust Model Peak End of simualtion

popularity Popularity TP FP UD

T eBay (15) 27.309% (1502) 0.764% (42) 5456 7,458,526 2
T Beta (3, 3) 38.036% (2092) 1.945% (107) 5393 8484 0
T CT (0.5, 5, 0.95) 46.309% (2547) 4.091% (225) 5275 88 0
T SL (1) 53.527% (2944) 7.436% (409) 5091 1 0

FPs. This indicates, that the Beta distribution may be usable in

combination with test-messages that generate a lower num-
ber of false negative experiences than BNLMs. This is interest-
ing, as using the Beta distribution model is more effective at
blacklisting sensors than SL or CT. Therefore, botmasters need

a deep understanding of the deployed test-messages to chose
the trust model that provides high TP classifications with min-
imal FPs.

Appendix B. Competing sensors

In Section 4.3 we investigated how deploying additional sen-
sors improved the intelligence gathered during monitoring
operations. We observed, that the additional information

gained decreases with rising numbers of sensors. To investi-
gate why this occurs, we analyzed the popularity of individual
sensors. Fig. B.6 presents the average popularity of a sensor in

a group of 50 colluding sensors. In comparison to Fig. 2 , we
observe that the average popularity of the 50 sensors is signif-
icantly lower than the popularity of one single sensor.

We investigate whether the aforesaid observation is related

to the way sensors are deployed during the simulation. That
is, sensors are deployed within a quick succession. This leads
to a scenario where a large number of sensors attempt to in-
filtrate NLs at the same time, effectively competing against
each other. Hence, we examined how injecting sensors at a

Fig. B1 – Development of the popularity of a single sensor
over time with Sality’s goodcount mechanism and different
trust models compared (t min = 0 . 4, M = { BCLM , BCM }).

Fig. B2 – Comparison of the average popularity of 50 (non

collaborating) sensors over time with Sality’s goodcount
mechanism and different trust models (t min = 0 . 4) .

slower pace influences their popularity. However, even 40 min

intervals between injecting the sensors did not solve the prob-
lem. While even longer intervals might reduce the competi-
tion among sensors, it will also spread out the monitoring in-
telligence across a longer period of time. Therefore, the peak
popularity of all sensors will remain high for a longer period of
time, but the overall peak will be lower. In fact, deploying 100
sensors with 40 min intervals, causes the last sensor to join

only once the first sensors are starting to be blacklisted and

dropping in popularity. Therefore, we attempt to optimize the
peak popularity of the sensors by injecting them in quick suc-
cession.

The specific effects of this competition among sensors de-
pends on the design of the MM-protocol. In the following, we
discuss the specific effects of the Sality MM-protocol and dis-
cuss why similar effects are expected for other MM-designs.

Sality MM. Sensors can infiltrate a bot’s NL by sending a
server announcement message. The receiving bot will then ei-
ther add the sensor to an empty slot in its NL or replace the
newest entry. Due to the design of the Sality MM at most 20
empty slots exist in a Sality NL before a bot actively asks for
additional entries to populate its NL. Therefore, if sensors join

in quick succession, they must compete for at most 20 empty
slots within a bot’s NL. Once the free slots are occupied, a sen-
sor will most likely replace another sensor in the bot’s NL. This
leads to a situation, where the first 19 sensors may obtain an

empty slot in a bot’s NL and all following sensors actively re-
place other sensors. Fig. B.7 depicts the popularity of individ-
ual sensors out of 100 in the order they joined the botnet. The
first 20 have a higher popularity as they had a better chance of
occupying empty slots. Consequently, a large group of sensors
have a similar and comparatively low popularity. This changes
again for the last sensors injected to the botnet. As there are
less or no sensors joining the botnet after them, they are less
likely to be replaced and maintain a higher popularity.

This indicates, that injecting large amounts (i.e., ≥ 20) of
sensors into the Sality botnet at the same time only yields
marginal improvements in monitoring knowledge. To over-
come this drawback, we suggest two possible approaches:

12 c o m p u t e r s & s e c u r i t y 8 3 (2 0 1 9) 1 – 1 3

Fig. B3 – Popularity after four days for individual (non collaborating) sensors in the order of joining the botnet.

(i) inject sensors with greater inter-arrival times or (ii) develop

more balanced approaches to inject large groups of sensors.

Other-MM-protocols While the discussed effect of competing
sensors is specific for the Sality botnet, it is likely to occur in

other botnets as well. If a MM-protocol allows large sets of new

bots to enter a NL this will make the botnet susceptible to NL-
poisoning attacks (Rossow et al., 2013), i.e., a defender could

replace all existing entries with sensor to sinkhole all botnet
traffic. Therefore, most botnets will prevent a large number of
bots or sensors to join a NL in quick succession.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi: 10.1016/j.cose.2019.01.004 .

R E F E R E N C E S

Andriesse D, Rossow C, Bos H. Reliable recon in adversarial
peer-to-peer botnets. In: Proceedings of the 2015 Internet
Measurement Conference, IMC ’15. New York, NY, USA: ACM;
2015. p. 129–40. doi: 10.1145/2815675.2815682 .

Andriesse D, Rossow C, Stone-Gross B, Plohmann D, Bos H. Highly
resilient peer-to-peer botnets are here: An analysis of
gameover zeus. 2013 8th International Conference on

Malicious and Unwanted Software: “The Americas”
(MALWARE) 2014;00:116–23.
doi: 10.1109/MALWARE.2013.6703693 .

Antonakakis M , April T , Bailey M , Bernhard M , Bursztein E ,
Cochran J , Durumeric Z , Halderman JA , Invernizzi L ,
Kallitsis M , et al . Understanding the mirai botnet. In: USENIX

Security Symposium; 2017. p. 1092–110 .
Böck L, Vasilomanolakis E, Mühlhäuser M, Karuppayah S. Next

generation p2p botnets: Monitoring under adverse conditions.

In: Research in Attacks, Intrusions, and Defenses (RAID).
Springer International Publishing; 2018. p. 511–31.
doi: 10.1007/978-3-030-00470-5_24 .

Böck L, Karuppayah S, Grube T, Mühlhäuser M, Fischer M. Hide
and seek: Detecting sensors in p2p botnets. In: 2015 IEEE
Conference on Communications and Network Security (CNS);
2015. p. 731–2. doi: 10.1109/CNS.2015.7346908 .

Commerce BE , Jøsang A , Ismail R . The beta reputation system. In:
Proceedings of the 15th Bled Electronic Commerce
Conference. Citeseer; 2002. p. 1–14 .

Falliere N . In: Technical report. Sality: Story of a peer-to-peer viral
network. Symantec Corporation; 2011 .

Fung CJ, Zhang J, Aib I, Boutaba R. Robust and scalable trust
management for collaborative intrusion detection. In: 2009
IFIP/IEEE International Symposium on Integrated

Network Management; 2009. p. 33–40.
doi: 10.1109/INM.2009.5188784 .

Greengard S. The war against botnets. Communications of the
ACM 2012;55(2):16. doi: 10.1145/2076450.2076456 .

Haas S, Karuppayah S, Manickam S, Mühlhäuser M, Fischer M. On

the resilience of p2p-based botnet graphs. In: 2016 IEEE
Conference on Communications and Network Security (CNS);
2016. p. 225–33. doi: 10.1109/CNS.2016.7860489 .

Jøsang A. A logic for uncertain probabilities. International Journal
of Uncertainty Fuzziness and Knowledge-Based Systems
2001;9(03):279–311. doi: 10.1142/S0218488501000831Cited .

Jøsang A, Hird S, Faccer E. Simulating the effect of reputation

systems on e-markets. In: Nixon P, Terzis S, editors. In: Trust
Management. Berlin, Heidelberg: Springer Berlin Heidelberg;
2003. p. 179–94. doi: 10.1007/3-540-44875-6_13 .

Jøsang A, Ismail R, Boyd C. A survey of trust and reputation

systems for online service provision. Decision Support
Systems 2007;43(2):618–44 . Emerging Issues in Collaborative
Commerce doi: 10.1016/j.dss.2005.05.019 .

Karuppayah S . Advanced monitoring in P2P botnets. Technische
Universität Darmstadt; 2016. Ph.D. thesis .

Karuppayah S, Böck L, Grube T, Manickam S, Mühlhäuser M,
Fischer M. Sensorbuster: On identifying sensor nodes in p2p

botnets. In: Proceedings of the 12th International Conference
on Availability, Reliability and Security, ARES ’17. New York,
NY, USA: ACM; 2017. p. 34:1–34:6. doi: 10.1145/3098954.3098991 .

https://doi.org/10.1016/j.cose.2019.01.004
https://doi.org/10.1145/2815675.2815682
https://doi.org/10.1109/MALWARE.2013.6703693
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0003
https://doi.org/10.1007/978-3-030-00470-5_24
https://doi.org/10.1109/CNS.2015.7346908
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0006
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0006
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0006
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0006
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0007
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0007
https://doi.org/10.1109/INM.2009.5188784
https://doi.org/10.1145/2076450.2076456
https://doi.org/10.1109/CNS.2016.7860489
https://doi.org/10.1142/S0218488501000831Cited
https://doi.org/10.1007/3-540-44875-6_13
https://doi.org/10.1016/j.dss.2005.05.019
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0014
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0014
https://doi.org/10.1145/3098954.3098991

c o m p u t e r s & s e c u r i t y 8 3 (2 0 1 9) 1 – 1 3 13

Karuppayah S, Vasilomanolakis E, Haas S, Muhlhauser M,
Fischer M. BoobyTrap: On autonomously detecting and

characterizing crawlers in P2P botnets. IEEE international
conference on communications, ICC, 2016 .

Kolias C, Kambourakis G, Stavrou A, Voas J. Ddos in the iot: Mirai
and other botnets. Computer 2017;50(7):80–4.
doi: 10.1109/MC.2017.201 .

Mansfield-Devine S. Nation-state hacking–a threat to everyone.
Comput Fraud Secur 2018;2018(8):17–20.
doi: 10.1016/S1361-3723(18)30077-0 .

Neville A , Gibb R . In: Technical report. ZeroAccess Indepth.
Symantec Security; 2013 .

Page L , Brin S , Motwani R , Winograd T . In: Technical report,
1999-66. The PageRank citation ranking: bringing order to the
web. Stanford InfoLab; 1999 .

Provos N , Holz T . Virtual honeypots: from botnet tracking to
intrusion detection. Addison-Wesley Professional; 2007 .

Ries S. Extending bayesian trust models regarding
context-dependence and user friendly representation. In:
Proceedings of the 2009 ACM symposium on applied

computing, SAC ’09. New York, NY, USA: ACM; 2009a.
p. 1294–301. doi: 10.1145/1529282.1529573 .

Ries S . Trust in ubiquitous computing. Technische Universität;
2009b. Ph.D. thesis .

Rossow C, Andriesse D, Werner T, Stone-Gross B, Plohmann D,
Dietrich CJ, Bos H. Sok: P2pwned - modeling and evaluating
the resilience of peer-to-peer botnets. In: 2013 IEEE
symposium on security and privacy; 2013. p. 97–111.
doi: 10.1109/SP.2013.17 .

Shafer G , 42. Princeton University Press; 1976 .
Varga A , Hornig R . An overview of the omnet++ simulation

environment. In: Proceedings of the 1st international
conference on simulation tools and techniques for
communications, networks and systems & workshops,
Simutools ’08. ICST, Brussels, Belgium, Belgium: ICST

(Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering); 2008. p.
60:1–60:10 .

Vasilomanolakis E, Karuppayah S, Mühlhäuser M, Fischer M.
Taxonomy and survey of collaborative intrusion detection.
ACM Comput Surv 2015;47(4):55:1–55:33. doi:
10.1145/2716260 .

Leon Böck is a Ph.D. student at the Telecooperation Labs at Tech-
nical University of Darmstadt. His research focus is on detection,
monitoring and prevention of Peer-to-Peer botnets. In addition to
the technical aspects of his research, he is also interested in the
legal and privacy concerning issues related to fighting botnets.
Leon received his M. Sc. in computer science from TU Darmstadt
in 2017 with a masters thesis on the topic “On P2P botnet moni-
toring in adverse conditions”.

Dr. Emmanouil Vasilomanolakis is a senior researcher and area
head at Technische Universitt Darmstadt. His research inter-
ests include collaborative intrusion detection, honeypots, botnet
monitoring and alert data correlation. He received a Ph.D. from

the Technische Universitt Darmstadt in 2016 for his dissertation

“On Collaborative Intrusion Detection”. Heretofore, he received

his diploma (Dipl.-Inform.) and M.Sc. from the University of the
Aegean (Greece) in 2008 and 2011 respectively. His master the-
sis, in the area of honeypots, was conducted in cooperation with

the National Center of Scientific Research “Demokritos”. Lastly, he
worked as a researcher for AGT International, on the field of IoT

security, from 2014–2015.

Jan Helge Wolf is an information security consultant focusing on

penetration testing and overall technical security. His work and re-
search interests center around cybercrime, darknet markets, and

the intersection of (offensive) information security and business
in general. Jan graduated from University of Trento, Italy, and Tech-
nical University of Darmstadt, Germany with an M.Sc. in IT Secu-
rity after obtaining his B.Sc. from University of Mnster, Germany.

Prof. Dr. Max Mühlhäuser is head of the Telecooperation Lab
at Technische Universitt Darmstadt. His Lab conducts research

on smart ubiquitous computing environments in three research

fields: middleware and large network infrastructures, novel multi-
modal interaction concepts, and human protection in ubiquitous
computing (privacy, trust, and network security). Max regularly
publishes in Ubiquitous and Distributed Computing, HCI, Multi-
media, E-Learning, and Privacy&Trust conferences and journals
and authored or co-authored more than 400 publications. He is
active in numerous conference program committees, as organizer
of several annual conferences, and as member of editorial boards
or guest editor for journals like Pervasive Computing, ACM Mul-
timedia, Pervasive and Mobile Computing, Web Engineering, and

Distance Learning Technology.

https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1016/S1361-3723(18)30077-0
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0019
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0019
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0019
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0020
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0020
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0020
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0020
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0020
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0021
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0021
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0021
https://doi.org/10.1145/1529282.1529573
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0023
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0023
https://doi.org/10.1109/SP.2013.17
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0025
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0025
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0026
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0026
http://refhub.elsevier.com/S0167-4048(18)31209-4/sbref0026
https://doi.org/\penalty -\@M 10.1145/2716260

