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a b s t r a c t 

Botnet attacks have devastating effects on public and private infrastructures. The botmas- 

ters controlling these networks aim to prevent takedown attempts by using highly resilient 

P2P overlays to commandeer their botnets, and even harden them with countermeasures 

against intelligence gathering attempts. In fact, recent research indicates that advanced 

countermeasures can hamper the ability to gather the necessary intelligence for taking 

down botnets. In this article, we take the perspective of the botmaster to eventually an- 

ticipate their behavior. That said, we present a novel mechanism, namely Trust Based Bot- 

net Monitoring Countermeasure (TrustBotMC), that combines computational trust with spe- 

cially crafted bot messages to detect the presence of monitoring activity. We study and eval- 

uate different computational trust models, to create a local and autonomous mechanism 

that ensures the avoidance of common botnet tracking mechanisms, such as sensors. Fur- 

thermore, we show, via our experimental results, that our approach can reduce the gathered 

intelligence by at least 53% compared to techniques that have been seen in botnets to date. 

Finally, we investigate techniques for mitigating our approach. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Botnets are networks of infected computing devices, called 

bots. These bots are remotely controlled and instructed to 
conduct criminal activities by malicious entities – commonly 
referred to as botmasters. Botnets are used for a multitude 
of malicious activities such as Distributed Denial of Service 
(DDoS) attacks, credential theft, ransom attacks, or spam 

email distribution. Moreover, botnet activity appears to be on 

the rise; in fact, recent advances such as the (IoT), increase 

∗ Corresponding author. 
E-mail address: boeck@tk.tu-darmstadt.de (L. Böck). 

the botnet attack surface and capabilities ( Antonakakis et al., 
2017; Kolias et al., 2017 ). 

To cope with these developments, researchers defend by 
proposing novel botnet detection and prevention methods; for 
instance, new intrusion detection algorithms and honeypots 
( Provos and Holz, 2007; Vasilomanolakis et al., 2015 ). Upon de- 
tection of botnet activity, defenders need to take a plethora of 
actions, e.g., bot enumeration, identification of weaknesses, or 
preparation of sinkholing attempts, to actually be able to take 
a botnet down. In many cases such actions are heavily influ- 
enced by the network architecture of the botnet. 

https://doi.org/10.1016/j.cose.2019.01.004 
0167-4048/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license. 
( http://creativecommons.org/licenses/by/4.0/ ) 
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Traditionally, many botnets have been based on a central- 
ized architecture consisting of a Command and Control server 
that relays commands directly to the bots. However, this archi- 
tecture presents a Single Point of Failure (SPoF) in the central- 
ized server which can be used to seize control of, or disman- 
tle, the botnet ( Greengard, 2012 ). To overcome this weakness, 
advanced botnets implement a fully distributed C2 channel 
based on unstructured Peer-to-Peer (P2P) overlays. Such bot- 
nets do not inherit the SPoF of centralized approaches and 

they are very resilient to node churn and node removal at- 
tacks ( Rossow et al., 2013 ). Due to their characteristics, P2P bot- 
nets are especially relevant nowadays for creating a resilient 
and stable basis for attackers. In particular, fully distributed 

botnets are prominent for their ability to provide modular 
post-infection capabilities (so-called malware droppers ) to the 
botmasters (or to entities that hire the botnet for a specific 
time period). Recent examples include the VPNFilter botnet 
( Mansfield-Devine, 2018 ) and the Sality P2P botnet ( Falliere, 
2011 ) (that has been active since 2008). 

As the absence of a central server prevents straightfor- 
ward monitoring, researchers have developed various means 
for gathering intelligence on distributed botnets. This is com- 
monly achieved by reverse engineering the communication 

protocol of the botnet, and afterwards deploying crawlers and 

sensors to enumerate the botnet population. Advanced fully 
distributed botnets such as GameOver Zeus ( Andriesse et al., 
2014 ) or Sality ( Falliere, 2011 ) even implement features to im- 
pede monitoring attempts. 

In this article, we take the perspective of a botmaster, with 

the goal to better understand and anticipate future monitor- 
ing countermeasures. Specifically, we present the Trust Based 

Botnet Monitoring Countermeasure (TrustBotMC), a novel ap- 
proach to thwart monitoring attempts by researchers and law- 
enforcement agencies. The proposed mechanism is based on 

the utilization of computational trust along with test-messages , 
i.e., specially crafted messages, that the bots exchange to ver- 
ify the correct behavior of their peers. Our work is one among 
others published recently that present means to detect mon- 
itoring operations in P2P botnets ( Andriesse et al., 2015; Böck 
et al., 2015; Karuppayah et al., 2017; 2016 ). The multitude of 
different monitoring prevention mechanisms suggest that the 
options to harden P2P botnets are numerous and may even- 
tually disrupt successful monitoring. Therefore, we want to 
highlight the need for developing new mechanisms to effec- 
tively gather intelligence on P2P botnets. 

1.1. Contributions 

This article makes the following contributions to the state of 
the art: 

• It proposes the first technique, namely TrustBotMC, that 
enables bots to locally and autonomously identify and black- 
list sensors in distributed botnets. Furthermore, it exam- 
ines and evaluates two different techniques for the practi- 
cal realization of TrustBotMC. 

• It discusses and evaluates potential mitigations against 
such a sensor detection method. 

1.2. Assumptions 

Our work is based on the following fundamental assump- 
tions with regard to botnets and their detection and mitiga- 
tion methods. 

• Botnet infiltration and monitoring techniques introduce 
characteristics that are distinctive compared to normal bot 
traffic. 

• Researchers are bound to ethical, legal and technical con- 
strains; they cannot assist the botnet into performing il- 
legal activities and/or (unwittingly or knowingly) prevent 
take-down attempts. 

1.3. Outline 

The remainder of this article is structured as follows. 
Section 2 provides the reader with some preliminary infor- 
mation and background with regard to botnets, botnet moni- 
toring and computational trust. Furthermore, in Section 3 we 
present our proposal, TrustBotMC . Afterwards, Section 4 de- 
scribes the evaluation of our proposal; in particular, we dis- 
cuss the simulation setup, the ability of TrustBotMC to blacklist 
advanced monitoring mechanisms and also some preliminary 
ideas for mitigating our own approach. Moreover, in Section 5 , 
we discuss the state of the art with an emphasis on botnet 
monitoring countermeasures. Finally, Section 6 concludes this 
article. 

2. Preliminaries 

Within this section we introduce the necessary background 

on P2P botnets and P2P botnet monitoring. Furthermore, we 
discuss four trust models that will be utilized in TrustBotMC. 

2.1. P2P botnet basics 

Due to the distributed nature of P2P botnets, each bot is in- 
volved in distributing commands and other messages within 

the network. Therefore, the reliability of the C2 channel is 
based on the availability of the bots. This is usually addressed 

by connecting to multiple bots at the same time, to ensure 
that redundant connections are available. In fact, this is neces- 
sary as diurnal patterns and other user behavior causes bots to 
frequently disconnect from and reconnect to the botnet. This 
process of nodes leaving and joining is called churn . 

To ensure that the botnet remains connected in the pres- 
ence of churn, a Membership Management MM mechanism is 
used to frequently update connection information. Each bot in 

a P2P network maintains a list of other bots. This list is com- 
monly referred to as NL and the bots stored within the NL are 
called neighbors. 

Each bot regularly contacts its neighbors to check their re- 
sponsiveness as well as to receive updated commands. If all 
neighbors are unavailable, a bot is isolated from the botnet 
and will not be able to receive any updates or commands. 
Hence, it is important to update the NL frequently by replac- 
ing inactive neighbors with others (active bots). This is accom- 
plished by sending probing messages to all bots in the NL in 
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reoccurring intervals, the so-called MM cycles. These probing 
messages are commonly referred to as hello messages. 

If a node remains unresponsive for a prolonged period of 
time, it will be replaced by a “fresh” entry of another online 
bot. To do so, bots send NL-request messages to their neighbors 
asking for additional bots. Upon such a request a bot replies 
with a NL-reply containing a subset of the entries of its own 

NL. Furthermore, botnets also use the MM cycle to exchange 
information about the ID of the latest instruction set. If one bot 
does not have the most current update, it will query a neighbor 
to forward the latest instruction set. In the case of the Sality 
botnet 1 , the ID is directly embedded in the hello and hello-reply 
messages. 

In this article we make use of a formal graph model to de- 
scribe the connectivity of P2P botnets. This model is based 

on similar models previously published in ( Karuppayah et al., 
2017; Rossow et al., 2013 ). We model a P2P botnet as a graph 

G = (E, V ) , where V represents the set of super-peers (i.e., the 
actively “routable” bots) in the botnet and the connectivity 
between the bots is represented by the set of directed edges 
E ∈ V × V . Each edge e ( u, v ) ∈ E with u, v ∈ V, u � = v represents a 
directed connection from bot u to v . The NL of a bot u is de- 
fined as a set of edges e ( u, v ) ∈ NL u . The out-degree of a bot u is 
defined as the number of outgoing edges of u : deg + (u ) = | NL u | 
Furthermore, we define the popularity (or in-degree ) of a bot (or 
sensor) u as the number of incoming edges, i.e., the number of 
bots that contain u in their NL: deg −(u ) = | (v, u ) ∈ E | . 

2.2. P2P botnet monitoring 

The lack of a SPoF makes it difficult to take down P2P bot- 
nets. In order to take any actions against P2P botnets, it is 
required to obtain reconnaissance information. This process 
of gathering intelligence is commonly referred to as monitor- 
ing . Monitoring is usually achieved by reverse engineering the 
(botnet) malware and re-implementing its communication 

protocol in various so-called monitoring mechanisms . Generally 
two types of monitoring mechanisms are used: crawlers and 

sensors ( Rossow et al., 2013 ). 

2.2.1. Crawlers 
Crawlers provide an aggressive approach to obtain intelli- 
gence about a botnet. Starting with a set of seed-nodes 2 , the 
crawler consecutively sends NL-requests to all known bots. The 
entries contained in the NL-replies sent by the bots are added to 
the queue of the crawler. With this approach, one can quickly 
collect information about actively “routable” bots ( super-peers ), 
and their inter-connectivity. However, a major drawback of 
crawlers is the inability to contact bots that are behind Net- 
work Address Translation (NAT) devices or firewalls. There- 
fore, crawlers often underestimate the overall population of a 
botnet by up to two orders of magnitude ( Rossow et al., 2013 ). 

Another drawback of crawlers is that they behave very 
differently from normal bots and introduce a lot of noise to 
the botnet. Specifically, crawlers exhibit an unusually large 

1 The Sality P2P botnet will be the reference botnet example 
throughout this article. 

2 Seed-nodes are commonly found during the reverse engineer- 
ing of a malware, or by scanning the Internet. 

out-degree . This makes them prone to detection and mitiga- 
tion by monitoring countermeasures ( Andriesse et al., 2015; 
Karuppayah et al., 2016 ). 

2.2.2. Sensors 
Contrary to crawlers, sensors follow a less aggressive ap- 
proach to monitoring. They are implemented such that they 
imitate the behavior of a regular bot. They join a botnet based 

on the specified bootstrap mechanism and wait for incoming 
connections from other bots. To eventually infiltrate the NL of 
other bots, a sensor has to reply to the hello messages of other 
bots. Over time, the likelihood of other bots replacing some of 
their inactive neighbors with the sensor increases. If a con- 
nection is initiated by a bot, NAT devices will route the traf- 
fic accordingly and allow sensors to enumerate bots behind 

NAT. However, this comes at the cost of lacking connectivity 
information that can be obtained by crawlers. Such informa- 
tion may be crucial to successfully conduct attacks against the 
botnet. Therefore, sensors and crawlers are commonly used 

in combination to obtain both connectivity information and 

more accurate enumerations. 
As sensors are a more passive monitoring mechanism they 

are harder to detect than crawlers. While their aim is to 
obtain a very high in-degree , which could be used as a dis- 
tinguishing factor, this behavior is also observed for regu- 
lar bots ( Andriesse et al., 2015 ). Nevertheless, different ap- 
proaches exist to detect sensor nodes; these are discussed in 

greater detail in Section 5 . 

2.3. Computational trust 

Computational trust offers the functionality that supports 
an entity to make informed decisions within digital environ- 
ments. This is important, as such decisions are often accom- 
panied by risk and uncertainty. On a theoretical level, trust is 
commonly described as a contextual relationship between a 
trustor and trustee . The trustor engages in an action that re- 
quires trusting the target entity referred to as trustee. 

Mathematically, trust is a measure for the inherent quality 
or trustworthiness of the trustee. This measure is estimated 

based on evidence of previous behavior of the trustee. For the 
use-case of TrustBotMC, evidence consists of binary experi- 
ences of positive or negative interactions with the trustee. 

Different approaches exist to calculate a trust score based 

on evidence. Within our work, we focus on four promi- 
nent trust models, capable of working with binary evidence. 
Namely, these are the eBay user rating ( Jøsang et al., 2007 ), Beta 
distribution ( Commerce et al., 2002 ), CertainTrust ( Ries, 2009b ), 
and Subjective logic ( Jøsang, 2001 ). These are introduced in the 
following alongside a reputation mechanism called goodcount 
which is used by the Sality botnet. We want to point out, that 
the Beta distribution, CertainTrust and Subjective Logic are 
isomorphic to each other, even though they can outwardly 
provide different functionalities through their parameters. 

eBay User Rating eBay 3 provides a commercial reputation 

system that aggregates positive, neutral and negative expe- 
riences denoted as: (e + , e 0 , e − ) ∈ E. The ratings from different 

3 https://www.ebay.com . 

https://www.ebay.com
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trustors are combined to provide an overall rating for a trustee 
that is presented to all users of the platform. Specifically, users 
are provided with the absolute ratings and a trust score based 

on the positive and negative experiences: 

T ebay (E) = 

| e + | 
| e + | + | e −| (1) 

Furthermore, the eBay trust model provides absolute values 
for all ratings in the last month, last six months and last year 
to provide insights on the development of the trustee. 

Beta distribution The Beta distribution family can be used as 
a trust model, with a trust score based on the expectation 

value of the distribution ( Commerce et al., 2002 ). In particu- 
lar, the Beta distribution f ( p | α, β) can be used to present poste- 
riori probabilities for binary events. In the context of compu- 
tational trust, the expectation value of the Beta distribution: 

E(p) = E Beta (α, β ) = 

α

α + β
(2) 

is used to predict the future behavior of a trustee. For that, the 
parameters are set to α = r + 1 and β = s + 1 where r and 

s represent the number of positive and negative experiences, 
respectively. The trust score is equal to the expectation value 
of the beta distribution and is calculated as: 

T Beta = 

r + 1 
s + r + 2 

(3) 

Moreover, the beta reputation system can be extended with 

two additional parameters s 0 and r 0 to present a base rate 
( Jøsang et al., 2003 ) or prior knowledge ( Ries, 2009a ). Within this 
article, we will use this extended model with α = r + r 0 and 

β = s + s 0 . 

Subjective logic Subjective logic (SL) ( Jøsang, 2001 ) is a trust 
model based on the Dempster–Shafer belief theory ( Shafer, 
1976 ). SL uses an opinion quad-tuple ω 

A 
x = (b, d, u, a ) to de- 

scribe the belief b an entity A has in the truth of a statement 
x . At its core, SL uses a beta distribution with α = r + 2 a and 

β = s + 2 − 2 a . The trust score is calculated as the expectation 

value: 

T SL = E(ω 

A 
x ) = b + ua (4) 

Here, the expectation value of the regular beta distribution 

b = 

r 
r + s +2 is extended by considering the uncertainty u = 

2 
r + s +2 

and the atomicity a , which applies a weight to the uncertainty 
of the trust score. 

CertainTrust CertainTrust (CT) ( Ries, 2009b ) is a trust model 
expressing trust in uncertain environments with a trust score 
based on the expectation value: 

T CT = E Beta 
f,w,N (r, s ) = E Beta (r, s, r 0 , s 0 ) (5) 

A distinguishing factor from other trust models is that the 
initial trust s 0 and r 0 can explicitly be changed through the 
parameter f . Moreover, CT provides linear fade out for the ini- 
tial trust. This is accomplished by dynamically recalculating s 0 

and r 0 upon collection of new experience. The speed at which 

prior knowledge is replaced can be set as parameter w . Fur- 
thermore, N denotes the number of experiences required at 
which prior knowledge is no longer considered, as enough real 
experiences have been collected. In addition to the context de- 
pendent parameters f, w and N , CT also provides an aging factor 
a ∈ [0, 1[. This allows to prioritize newer experiences by adding 
a negative weight to the influence of older experiences. 

Goodcount. goodcount is a reputation mechanism imple- 
mented by the Sality botnet ( Falliere, 2011 ). While strictly 
speaking it is not a trust model, it is analogous and also the 
only implementation of such a countermeasure by any known 

botnet to date. A bot’s goodcount is represented as an integer 
value that represents the availability or reliability of a bot to 
answer to hello-messages . Each bot maintains a goodcount value 
for each of its neighbors. Upon receipt of a hello-reply the good- 
count is increased by one, whereas it is decreased by one if no 
answer is received in response to a hello-message . 

This goodcount value is used during a bot’s MM cycle to de- 
cide if a bot is to be removed from the NL or not. This mech- 
anism is supposed to prevent preemptive deletion of highly 
responsive and reliable neighbors. Moreover, it is in place to 
prevent sensors from easily invading and replacing legitimate 
entries in a bot’s NL. 

3. TrustBotMC: a trust based monitoring 

countermeasure 

Within this section we propose the Trust Based Botnet Mon- 
itoring Countermeasure (TrustBotMC), a novel monitoring 
countermeasure based on computational trust. TrustBotMC al- 
lows bots in fully distributed botnets to locally compute the 
trustworthiness of their neighbors and take automated coun- 
termeasures in the form of blacklisting against sensor nodes 
infiltrating their NL. In the following, we introduce the ideas 
and assumptions behind TrustBotMC. Afterwards, we discuss 
in detail the three core components of TrustBotMC: the test 
message concept, the computational trust models and the black- 
listing mechanism. 

Our proposed trust management approach builds on the 
fundamental assumption that sensors and crawlers can be 
distinguished from regular bots. We argue that this is the case 
for two reasons: ( i ) the goal and therefore the behavior of mon- 
itoring mechanisms is different from bots (cf. Section 2.2 ), ( ii ) 
researchers and law enforcement officials are bound by legal, 
ethical and technical constraints. Some of these constrains 
are that sensors should not disseminate commands from the 
botmaster, or aid the overlay maintenance by sending valid 

NL-reply messages ( Karuppayah et al., 2017 ). If a sensor vio- 
lates these constraints, it not only raises questions regarding 
the legal and ethical consequences of actively participating 
in the maintenance of the botnet, but it could also prevent 
sinkholing attempts against the botnet. The reason for this 
is that sensors are re-implementations of the botnet proto- 
col but they are unlikely to share the same vulnerabilities as 
the malware itself. Therefore, exploiting a bug in the malware 
to sinkhole the botnet will not affect the sensors. Hence, if 
these sensors actively share commands or NL-entries with the 
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sinkholed bots, they will allow sinkholed bots to re-connect to 
other bots and effectively break the sinkholing attempt. 

To leverage the distinctive behavior of monitoring mech- 
anisms, we adapt the concept of test messages ( Fung et al., 
2009 ). At a glance, TrustBotMC regularly sends test messages 
to bots and collects experiences based on the validity of the 
reply. The collected experiences are fed into a trust model to 
compute a continuously updated trust score for each neigh- 
bor in a bot’s NL. If the trust value for any of the neighbors 
falls below a predefined threshold t min , this neighbor will be 
permanently removed from the NL and added to the blacklist. 
All messages originating from bots on the blacklist will be ig- 
nored indefinitely. 

With this approach bots can locally detect and remove sen- 
sor nodes from their NL. This will decrease the popularity 
of sensors and therefore their ability to enumerate the bot- 
net. This greatly limits the capabilities of researchers and law 

enforcement officials to obtain the necessary information re- 
quired to take down the botnet. 

To summarize, the proposed mechanism can be described 

as a three-tuple T BMC = (M, T, t min ) , with M being a non-empty 
set of test messages, a trust model T , and a minimum trust 
threshold t min . Each of these three components will be de- 
scribed in greater detail in the following subsections. 

3.1. Test messages 

To make decisions about the trustworthiness of a neigh- 
bor, bots need to obtain historical data. To obtain this data, 
TrustBotMC uses the concept of test messages ( Fung et al., 
2009 ). Bots frequently send special messages to their neigh- 
bors for which the (correct) answer is clearly defined/known. If 
a neighbor does not reply to the message as expected, a nega- 
tive experience is recorded. Similarly upon receipt of a correct 
answer a positive experience is recorded. 

While the specific implementations of test messages can 

differ, they have to fulfill three conditions: ( i ) they are con- 
structed in a way such that the correct answer is prede- 
fined/known, ( ii ) a sensor should not (ethical/legal/technical 
reasons), or cannot (e.g., due to the encrypted nature of mes- 
sages) answer such that the response is considered a posi- 
tive experience, ( iii ) regular bots do not, or only rarely (e.g., 
due to churn) answer in a way that is considered a negative 
experience. 

We propose two different types of test messages: Bogus 
Neighborlist Request (BNLM) messages and BCM messages. Each 

of them assumes the aforementioned legal, ethical and tech- 
nical limitations of monitoring mechanisms. The reason for 
proposing these two test messages is that the type of mes- 
sages are common for all known P2P botnets. This has the ben- 
efit that a sensor cannot distinguish them from their regular 
counterparts. We want to highlight, that a test-message does 
not need a non test message counterpart. Botmasters can in- 
troduce entirely novel test messages to their botnet if they ful- 
fill the three requirements stated earlier. As an example, such 

a message could be the command to conduct a short-timed 

(DDoS) attack that can be observed by other bots. Complying 
with such a test-message would require active participation in 

attacks. Therefore, due to the aforementioned legal and ethi- 

Fig. 1 – TrustBotMC example: two cases of success and 

failure using the BCM technique. 

cal reasons, sensors would be distinguishable as they cannot 
carry out the attack. 

3.1.1. Bogus command sequence message (BCM) 
A BCM is a specifically crafted hello-message that contains a 
very old command sequence number, i.e., significantly lower 
than the current command sequence number. Upon receipt of 
such a message a bot will reply with its current (higher) com- 
mand sequence number and the corresponding command set. 
However, contrary to the behavior of a bot, a sensor will not be- 
have in the same way and instead send a hel l o−repl y message 
that matches the command sequence number of the BCM. 
Sensors must behave this way, as they would otherwise have 
to attach an updated command set in their reply. As such com- 
mand sets are commonly encrypted, the sensor does not know 

its contents. Therefore, it might contain content that is either 
legally or ethically problematic, or it is a command used by 
botmasters to break out of a sinkholing. 

Consequently, a bot will consider the receipt of hel l o− repl y 
messages with a (recent) higher command sequence number 
as a positive experience, whereas a reply with the same or out- 
dated command sequence number is considered a negative 
experience. This behavior is also depicted in Fig. 1 . Note that 
depending on the specifics of the botnet, a botmaster has to 
define what is considered a recent command sequence. Oth- 
erwise, sensors could cheat by sending higher, yet outdated, 
command sequences. 

We want to point out, that BCMs are unlikely to incur a 
great amount of false positive (FP) classifications. Even if a bot 
replies with a highly out-dated command sequence number, 
it will subsequently be updated and reply correctly to future 
test-messages. 

3.1.2. Bogus neighborlist request message (BNLM) 
BNLMs are test messages that target sensors by forcing them 

to share legitimate bot entries. However, sharing of legitimate 
entries helps the botnet maintain its overlay. Therefore, due to 
legal and ethical limitations sensors cannot share bot entries. 
Instead they can send empty NL-replies or duplicate addresses 
of other sensors ( Andriesse et al., 2015 ). Moreover, sharing 
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legitimate entries could prevent so called sinkholing attacks 
against the botnet ( Karuppayah et al., 2017 ). 

To cover different behavioral patterns of sensors, a nega- 
tive experience will be recorded for all following scenarios: ( i) 
empty NL-reply , ( ii) only unresponsive or non-existing bots, ( iii) 
only blacklisted bots, and ( iv) duplicate entries. 

It is important to mention that many of these replies can 

also occur in NL-replies of legitimate bots. Therefore, contrary 
to the previously discussed BCM, BNLMs are likely to incur FP 
classifications. Specifically for botnets with low NL-reply sizes 
(e.g., Sality) it is likely that an unresponsive or blacklisted bot 
is returned. Therefore, we expect BNLMs to be more likely to 
incur FPs than BCMs. 

Theoretically sensors could avoid the test message detec- 
tion strategy by not replying (to the test messages). This be- 
havior would reflect packet losses or a bot going offline during 
the message exchange. Therefore, we consider not receiving 
a reply in a timely manner as a negative experience. While 
this introduces the possibility of additional FPs, we consider 
this insignificant with regard to the overall number of test 
messages sent. Moreover, the approach is designed such that 
test messages are only sent to bots that are considered online, 
i.e., they replied to a regular hello message beforehand. This 
avoids collecting negative experiences for legitimate bots that 
are currently offline. 

3.2. Leveraging computational trust 

The test message approach allows a bot to collect positive 
and negative experiences for each of its neighbors. To decide 
whether to trust or distrust a neighbor, we need to calcu- 
late the trustworthiness based on the collected evidence. For 
this, we leverage the trust models introduced in Section 2.3 . 
By feeding the experiences collected for each neighbor to the 
trust models, we receive an individual trust score for all NL 
entries. 

3.2.1. Trust threshold 
While the calculated trust scores provide us with an indicator 
of the trustworthiness of a bot, we need a method for inter- 
preting the results. As our goal is to make a binary decision 

about the trustworthiness of a bot, we propose the utilization 

of a trust threshold. 
In this context, the minimum trust threshold t min repre- 

sents a lower boundary for trust scores. Upon each new ex- 
perience, negative or positive, the trust score is updated ac- 
cording to the respective trust model. If the newly calculated 

score falls below the threshold of t min , the bot associated with 

that trust score is considered untrustworthy. Once a neigh- 
bor is considered to be untrustworthy, it will be blacklisted 

and removed from a bot’s NL. Effectively, the trust threshold 

can be used to set the strictness of TrustBotMC. A high value 
will lead to quicker blacklistings, i.e., few negative experiences 
will quickly lead to a trust score lower than t min . Contrary, a 
low threshold will allow a greater number of negative expe- 
riences to be collected before a blacklisting occurs. This also 
allows legitimate bots to restore their trust score with positive 
experiences. Therefore, it depends on the test-messages used 

and the preferences of the botmaster to choose a proper trust 

threshold. For our evaluations we used a parameter study to 
pick a trust threshold that minimizes FPs while maintaining 
high TPs. 

3.2.2. Trust models 
In the context of TrustBotMC , an adapted version of the eBay 
user rating system is represented as T = T eBay (n ) . Here, n de- 
notes the number of experiences that will be used by the 
trust model. More specifically, to compute the trust score, the 
n most recently collected experiences will be taken into ac- 
count. Moreover, instead of a combined rating for each bot, 
every bot maintains their own ratings for each bot on their 
NL. This not only allows local computation of trust scores, but 
also prevents abuse of the rating system by researchers, which 

could falsely down-rate legitimate bots. 
TrustBotMC uses an extended beta distribution , which is rep- 

resented as T = T Beta (r 0 , s 0 ) . Here, r 0 and s 0 denote the initial 
trust. 

Similarly to the beta distribution, Subjective Logic does not 
consider aging of evidence but takes into account an initial as- 
sumption of trust via its base rate parameter a ∈ [0, 1]. In Trust- 
BotMC , Subjective Logic is represented as T = T SL (a ) . 

CertainTrust is the only trust model introduced that consid- 
ers both aging and other environmental factors. In TrustBotMC , 
CertainTrust is represented as T = T CT ( f, w, a ) . Here, the aging 
factor a ∈ [0, 1[ determines the expected number of evidence 
N ∈R 

+ via the formula N = 1 / (1 − a ) . 

3.3. Blacklisting 

To prevent a blacklisted bot (i.e., sensor) from causing more 
harm to the botnet, several steps need to be taken to avoid 

further communication or manipulation by the potential sen- 
sor node. To achieve this, TrustBotMC follows a three-step ap- 
proach of: i ) removing the suspected sensor from the NL, ii ) 
adding it on the blacklist, and iii ) blocking any future commu- 
nication. 

Removing the suspected sensor from the NL will prevent it 
from being shared through NL-request messages or contacted 

during a bot’s MM-cycle. Therefore, the sensor will not be able 
to observe the activities of the bot or increase its view of the 
botnet. Furthermore, adding the sensor to the blacklist will 
prevent re-adding the bot to the NL and allow a bot to filter in- 
coming messages from previously blocked sensors. Lastly, by 
ignoring all incoming messages from nodes on a bot’s black- 
list, sensors cannot obtain any further intelligence about the 
availability or connectivity of a bot. 

4. Evaluation 

Within this section, we evaluate TrustBotMC and compare the 
effectiveness of the trust mechanisms used in it. Specifically, 
we compare the trust mechanisms against the goodcount ap- 
proach (the reputation-based approach used by the Sality bot- 
net). Furthermore, we evaluate how much information can be 
gathered by sensors in the presence of TrustBotMC. Lastly, we 
investigate how collaborative monitoring can mitigate the loss 
of monitoring intelligence introduced by TrustBotMC. 
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4.1. Setup 

For our evaluation, we use the OMNeT++ ( Varga and Hornig, 
2008 ) discrete simulation framework. Within OMNeT++, we 
utilize a framework (as presented in our previous work Böck 
et al., 2018 ) that implements the Sality botnet and extends it, 
such that it either uses its original reputation mechanism (i.e., 
goodcount ) or the test message based approach of TrustBotMC 

(along with any of the trust management mechanisms dis- 
cussed in Section 2.3 ). The decision to use a simulation frame- 
work over a real world testbed, allows to evaluate the proposed 

mechanism on significantly larger networks. 
To ensure a realistic churn behavior of the bots, we use the 

churn model presented by Karuppayah (2016) and Böck et al. 
(2018) . Based on the churn model, we simulated a botnet with 

a population of 5500 and an average active population of 1422. 
We picked this number as it fits the latest reports on the size 
of the super-peer population of the Sality botnet ( Haas et al., 
2016 ). While botnets can be of significantly larger size, we ar- 
gue that the size of the botnet has no immediate effect on 

our mechanism. In TrustBotMC each bot locally computes the 
trust score and maintains their own blacklists. Therefore, the 
size of the botnet has no immediate effects on the effective- 
ness of TrustBotMC. 

In addition to the bot population, we introduced up to 100 
sensor nodes to the botnet. As it requires time to develop sen- 
sor nodes, it is unrealistic to assume that they are present 
from the zero hour of the botnet. Therefore, we use a warm 

up period before the sensors join the network. 
As the churn model requires approximately 41 days to sta- 

bilize itself ( Böck et al., 2018 ), we decided upon a warm up 

period of 50 days before the sensors join the botnet. Once 
the sensors join the network, we observe their popularity 
for a period of 14 days. Overall, this results in a simula- 
tion time of 64 days. During that period, we recorded the 
state of the botnet overlay with a granularity of six hours. 
To evaluate the effectiveness of each proposed test message, 
we conducted three separate experiments: (1) only BCMs, 
(2) only BNLMs, and (3) a combination of BNLMs and BCMs 
with an equal ratio of both message types. To account for 
statistical variances we repeated each of our experiments 
16 times. 

For the evaluation of the different trust models, we had to 
pick a common threshold t min ∈ [0, 1] and set the parameters 
for each trust model. For this, we conducted a parameter study 
to identify which parameter combinations perform best. As 
the result of this study, we decided upon a minimum thresh- 
old of t min = 0 . 4 and the trust parameters specified in the fol- 
lowing subsection. Based on the identified threshold, we later 
compare the trust model based on the sensor popularity, (TP), 
(FP) and (UD). UD denotes sensors that have not been discov- 
ered yet by a bot and therefore are not classified yet. Therefore, 
the sum of sensor popularity and TP does not always match 

the total botnet population as the sensor has not yet been dis- 
covered and classified by all bots. 

4.2. Results 

This section presents the evaluation results for BCM and 

BNLMs for each of the trust models in comparison against the 

Fig. 2 – Development of the popularity of a single sensor 
over time with Sality’s goodcount mechanism and different 
trust models compared ( t min = 0 . 4) , M = { BCSM } . 

Sality goodcount mechanism. Afterwards, a potential mitiga- 
tion based on increased sensor deployment is evaluated and 

discussed. 

4.2.1. Bogus commands sequence messages 
To recapitulate, BCMs target the legal, ethical and technical is- 
sues of sensor sharing botmaster commands with other bots. 
Fig. 2 presents the popularity of a single sensor throughout the 
observation period of 14 days for each trust model and the Sal- 
ity goodcount . 

The plot highlights that TrustBotMC significantly impedes 
the intelligence gathering of the sensor. For Sality, a single sen- 
sor, in our simulation, is capable of enumerating the entire 
botnet after ten days of deployment in the Sality botnet. This 
is not possible in TrustBotMC, where at most 53.436% of the 
botnet could be enumerated by a single sensor at the peak of 
its popularity. Moreover, this peak occurs after about two days 
and then only decreases due to blacklisting. At the end of the 
simulation, i.e., after 14 days of monitoring with the sensor, 
only 7.49% of the bots have the sensors in their NL. This is not 
the case for the unmodified Sality, where the popularity of the 
sensor steadily increases. 

Fig. 2 also highlights the differences between the evaluated 

trust models. The results show that TrustBotMC indeed mit- 
igates the intelligence gathering by the deployed sensor. Out 
of the observed trust models, the eBay user rating performed 

the best with a peak popularity of the sensor of only 1477. In 

comparison, the sensor peaked at a popularity of 2939 if Sub- 
jectiveLogic is used as the trust model. Nevertheless, the pop- 
ularity of the sensor drops below 500 ( < 10%) for all trust mod- 
els after the observation period of 14 days. This poses a signif- 
icant problem (for researchers and law enforcement), as node 
churn and dynamic IP addresses require monitoring knowl- 
edge to be as recent as possible. However, due to TrustBotMC, 
sensors quickly lose the ability to collect the latest monitoring 
intelligence. 

Furthermore, we investigated the FPs incurred by each 

trust model, i.e., falsely blacklisted regular bots. The results 
of this are presented in Table 1 alongside with detailed results 
on the popularity of the sensors after 14 days of monitoring. 
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Table 1 – Performance overview of different trust models 
against a single sensor at its peak popularity and after 
the monitoring period of 14 days ( t min = 0 . 4). The TN are 
omitted from the table due to space reasons and can be 
calculated as 5500 2 − UD − F P. 

Trust model Peak End of simulation 

popularity Popularity (FN) TP FP UD 

T eBay (15) 26.855% 0.6% (33) 5466 0 1 
(1477) 

T Beta (3, 3) 38.073% 2.909% (106) 5394 0 0 
(2094) 

T CT (.5, 5, .95) 46.727% 4.127% (227) 5272 0 1 
(2570) 

T SL (1) 53.436% 7.490% (412) 5088 0 0 
(2939) 

Fig. 3 – Development of the popularity of a single sensor 
over time with Sality’s goodcount mechanism and different 
trust models compared ( t min = 0 . 4) , M = { BNLM } . 

It is interesting to note that none of the trust models incurred 

any FPs. This indeed suggests that TrustBotMC is an effective 
and robust countermeasure against monitoring attempts. 

This is likely the case because TrustBotMC, by de- 
sign, avoids collecting FP experiences for normal bots and 

BCMs being robust towards false negative experiences (c.f. 
Section 3.1.1 ). Hence, eBay performs best as it makes its de- 
cisions faster than the other models, which are designed to 
avoid decisions that can lead to FPs. 

4.2.2. Bogus neighborlist messages 
Next we want to repeat the experiment using BNLMs. BNLMs 
leverage that sensors are restrained from sharing legitimate 
NL entries with other bots. Contrary to BCMs, bots may answer 
incorrectly to BNLMs. Therefore, FP classifications are more 
likely to occur when using BNLM (c.f. Section 3.1.2 ). Fig. 3 de- 
picts the popularity of a single sensor throughout the obser- 
vation period of 14 days for each trust model and the standard 

Sality goodcount . 
In comparison to the experiment with BCMs, the two types 

of test messages show only slight deviations with respect to 
the ability of preventing sensors from infiltrating the botnet. 

Table 2 – Performance overview of different trust models 
against a single sensor at its peak popularity and after 
the monitoring period of 14 days ( t min = 0 . 4), M = {BNLM}. 
The TN are omitted from the table due to space reasons 
and can be calculated as 5500 2 − UD − F P. 

Trust model Peak End of simulation 

popularity Popularity (FN) TP FP UD 

T eBay (15) 27.127% 0.745% (41) 5458 11,556,538 1 
(1492) 

T Beta (3, 3) 38.255% 1.873% (103) 5391 37,250 6 
(2104) 

T CT (.5, 5, .95) 46.764% 4.327% (238) 5262 748 0 
(2572) 

T SL (1) 53.582% 7.636% (420) 5080 13 0 
(2947) 

However, as Table 2 highlights, all four trust models incur FPs 
which is not the case for BCMs. 

Even though the eBay user rating still performs the best, 
the results clearly indicate that the eBay user rating incurs 
a significantly larger amount of FP blacklistings compared to 
the other three trust models. In fact, 38% of all possible edges 
within the network are removed based on blacklisting. This 
impacts the resilience of the graph structure of the botnet and 

is undesirable from a botmaster’s perspective. Contrary, while 
SL performed worst at preventing sensors from infiltrating a 
bot’s NL it incurs the least FPs (13) throughout our observation 

period. CT similarly only incurs 748 FPs, whereas Beta distribu- 
tions incur 37, 250 FPs. Considering, that the overall simulation 

time of 64 days is fairly short in comparison to real world bot- 
nets with lifespans of several years, the results indicate that 
eBay user ratings and the Beta distribution based trust model 
are not suited for deployment in conjunction with test mes- 
sages that are likely to incur negative experiences for legiti- 
mate bots. In such a case, the lesser performing CT or SL trust 
models should be used by botmasters, to impede sensor infil- 
tration while mitigating negative effects on the botnets own 

structure. 

4.2.3. Discussion 

The experiments of running TrustBotMC with BCM and 

BNLM yielded differing results. The eBay user rating model 
performed best at impeding monitoring efforts with sensor 
nodes in combination with both test messages . However, in 

combination with BNLM, it incurred a significant amount of 
FPs which renders it unusable in such a scenario. Interestingly, 
no FP were accumulated at all in combination with BCM. The 
reason for this discrepancy lies in the nature of the test mes- 
sages . While a bot may provide incorrect answers to a BNLM 

under some circumstances, this is not the case for BCMs. 
Therefore, by the characteristics of BCMs a FP may only hap- 
pen if a bot goes offline while being tested. 

In summary, the choice of a proper trust model greatly de- 
pends on the characteristics of the test messages and the pos- 
sibility of bots replying incorrectly. In a setting, where the test 
message is likely to incur FPs a more robust trust model such as 
CT or SL should be used. Contrary in a scenario with few pos- 
sibilities of FP classifications the more aggressive eBay user 
rating model yields better results. 
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Fig. 4 – Comparison of the popularity of 10, 50 and 100 sensors (collaborating), with Sality’s goodcount mechanism and 

different trust models ( t min = 0 . 4) . 

We also repeated our experiments with a combination of 
both BCM and BNLM. The results of this are presented in 

Appendix A . Lastly, we want to highlight once more that the 
test messages used for these experiments are only two possi- 
ble options. We chose them for their applicability to a wide 
range of P2P botnets. However, botmasters theoretically have 
complete freedom of adding arbitrary test messages to aid in 

identifying sensor nodes. 

4.3. Mitigation 

As a mechanism such as TrustBotMC significantly impedes 
monitoring operations, we need to identify means to continue 
monitoring operations. A simple but resource consuming ap- 
proach is to increase the number of sensors. In the following, 
we investigate how running the same simulations (with 10, 
50 and 100 colluding sensor nodes) influences the intelligence 
gathered by means of combining the knowledge from all 
sensors. 

Fig. 4 a–c depict the combined popularity of 10, 50 and 100 
sensors respectively. As expected, the combined intelligence 

gathered by the sensors increases with an increasing number 
of sensors. Our results even indicate that 50 sensors are suffi- 
cient to fully enumerate TrustBotMC for a short period, if Sub- 
jectiveLogic is used as the trust model. However, with the eBay 
trust model at an average of 4088.5 bots (74.44%) were enumer- 
ated at the peak using 50 sensors. Throughout the monitoring 
period of 14 days this dropped down to 1438.25 bots (26.15%). 
Furthermore, even increasing the number of sensors to 100 is 
insufficient to fully enumerate the botnet if eBay user rating 
is used as the trust model. 

To identify why increasing the number of sensors yielded 

only small gains in the overall monitoring knowledge, we 
also investigated the popularity of the individual sensors. We 
found out, that injecting too many sensors at the same time 
leads to a situation where the sensors compete against each 

other. The reasons for this are limitations in NL-size, Sality’s 
neighbor addition strategy, and the order and time of sensors 
joining the botnet. We discuss these findings in more detail in 

Appendix B . In summary, this effect is likely to occur in other 
botnets as well. Therefore, increasing the number of sensors 
might be more efficient for monitoring other botnets. 
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Overall the results indicate that increasing the number of 
sensors can help to mitigate the effect that TrustBotMC has on 

monitoring operations. However, the limited success and sig- 
nificant resource overhead are clear indicators that we need 

more advanced monitoring strategies to overcome advanced 

monitoring countermeasures such as TrustBotMC. One possi- 
ble approach is to develop smart approaches for collaborative 
monitoring, as the straightforward method of increasing the 
number shows odd effects such as sensors competing for pop- 
ularity. 

5. Related work 

In this section we discuss the state of the art by emphasizing 
on (botnet) monitoring countermeasures cas well as on tech- 
niques for detecting sensors and crawlers. 

5.1. Botnet monitoring countermeasures 

Countermeasures against monitoring are a common feature 
of P2P botnets. Among the most typical countermeasures is 
rate limiting the size of NL-reply messages ( Andriesse et al., 
2014; Falliere, 2011; Neville and Gibb, 2013 ). This is supposed 

to prevent crawlers from easily obtaining full information 

about a bot’s neighbors. In addition, the GameOver Zeus bot- 
net also implements an automated blacklisting mechanism 

that triggers if more than five NL-request messages are sent 
from the same IP address within a sliding window of one 
minute ( Andriesse et al., 2014 ). As discussed in Section 2.3 , the 
Sality botnet ( Falliere, 2011 ) implements the so-called good- 
count mechanism to prevent sensor nodes from easily replac- 
ing legitimate bots that have been reliable over a prolonged 

period of time. The goodcount mechanism prevents replacing 
long lived and reliable NL-entries with newer potentially unre- 
liable neighbors. This also affects sensors, as it becomes more 
difficult to infiltrate and remain in a bot’s NL (c.f. Appendix B ). 

5.2. Sensor and crawler detection 

In ( Böck et al., 2015; Karuppayah et al., 2017 ) the authors 
present how sensor nodes can be detected within P2P botnets 
based on three different graph metrics. In more details, they 
make use of the local clustering coefficient, PageRank ( Page 
et al., 1999 ) and strongly connected components to identify 
sensor nodes in the overlay graph. Their approach is based 

on the assumption, that sensors will not aid the botnet by re- 
turning legitimate bot entries upon a NL-request . While these 
mechanisms effectively identify sensor nodes, they require an 

aggregated view or global knowledge on the graph connectiv- 
ity. On the contrary, our approach only requires a bot’s local 
knowledge to autonomously blacklist sensor nodes. 

In Andriesse et al. (2015) , Andriesse et al. investigate how 

crawlers and sensors can be detected based on protocol and 

behavioral anomalies. Specifically for crawlers their approach 

has proven to be successful. The anomalies used by the au- 
thors to identify the crawlers cover both protocol and behav- 
ioral anomalies. Furthermore, they show how sensors can be 
detected based on protocol violation. Nevertheless, they state 
that their approach is not generally applicable to the detection 

of sensor nodes, as violations could be avoided in sensor im- 
plementations. Karuppayah et al. also use protocol violations 
to autonomously detect crawlers based on a bot’s local view 

( Karuppayah et al., 2016 ). Their approach is based on setting 
traps targeting the behavior of crawlers to locally identify and 

subsequently blacklist crawlers. 

6. Conclusion 

Fully distributed botnets exhibit a unique level of resilience 
against take down attempts and monitoring. Recent work in- 
dicates that essential intelligence gathering mechanisms can 

be detected and repelled by botmasters. In this article, we con- 
tribute to this field by presenting TrustBotMC, a method for lo- 
cally and autonomously identifying sensors in P2P botnets via 
the utilization of computational trust and special messages 
that are exchanged between bots. We want to point out, that 
TrustBotMC assumes that defenders are bound to legal and 

ethical restrictions. If these restrictions are circumvented (e.g., 
for reasons of national security) TrustBotMC will not be effec- 
tive. Nevertheless, we argue that such a scenario is not gen- 
erally applicable to all botnets. Our evaluation results suggest 
that the use of TrustBotMC can significantly reduce the bene- 
fits of sensor monitoring. In particular, we show that Trust- 
BotMC is much more efficient in detecting and blacklisting 
sensor nodes than existing mitigation mechanisms in bot- 
nets; that is, Sality’s goodcount mechanism. Moreover, we ex- 
amine collaborative methods for mitigating the TrustBotMC 

threat. While collaboration seems to be a promising solution 

to continue successful monitoring operations, the straightfor- 
ward approach of simply sharing data shows odd effects of 
sensors competing against each other. Nevertheless, increas- 
ing the number of sensors, while requiring a lot of resources, 
does increase the overall monitoring intelligence. Moreover, 
increasing the number of sensors allows to slow down the loss 
of monitoring information due to blacklistings by TrustBotMC. 
To further mitigate the effects of monitoring countermeasures 
such as TrustBotMC, we suggest future work to focus on al- 
ternative monitoring approaches as suggested in Böck et al. 
(2018) as well as to more advanced collaboration strategies 
that avoid competition among sensors. 
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Appendix A. BNLM +BCM 

We repeated our experiments for TrustBotMC with equally 
distributed numbers of BCMs and BNLMs. Fig. B.5 indicates, 
that the results for the popularity of the sensor are similar to 
using only one of the two test-message types. However, the 
number of FP incurred by the trust models shows a more in- 
teresting pattern. While eBay incurred 35.46% less FPs than 

only using BNLMs, the Beta distribution incurred 77.22% less 
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Table A1 – Performance overview of different trust mod- 
els against a single sensor at its peak popularity and af- 
ter the monitoring period of 14 days ( t min = 0 . 4, M = 

{ BCLM , BCM } ). 
Trust Model Peak End of simualtion 

popularity Popularity TP FP UD 

T eBay (15) 27.309% (1502) 0.764% (42) 5456 7,458,526 2 
T Beta (3, 3) 38.036% (2092) 1.945% (107) 5393 8484 0 
T CT (0.5, 5, 0.95) 46.309% (2547) 4.091% (225) 5275 88 0 
T SL (1) 53.527% (2944) 7.436% (409) 5091 1 0 

FPs. This indicates, that the Beta distribution may be usable in 

combination with test-messages that generate a lower num- 
ber of false negative experiences than BNLMs. This is interest- 
ing, as using the Beta distribution model is more effective at 
blacklisting sensors than SL or CT. Therefore, botmasters need 

a deep understanding of the deployed test-messages to chose 
the trust model that provides high TP classifications with min- 
imal FPs. 

Appendix B. Competing sensors 

In Section 4.3 we investigated how deploying additional sen- 
sors improved the intelligence gathered during monitoring 
operations. We observed, that the additional information 

gained decreases with rising numbers of sensors. To investi- 
gate why this occurs, we analyzed the popularity of individual 
sensors. Fig. B.6 presents the average popularity of a sensor in 

a group of 50 colluding sensors. In comparison to Fig. 2 , we 
observe that the average popularity of the 50 sensors is signif- 
icantly lower than the popularity of one single sensor. 

We investigate whether the aforesaid observation is related 

to the way sensors are deployed during the simulation. That 
is, sensors are deployed within a quick succession. This leads 
to a scenario where a large number of sensors attempt to in- 
filtrate NLs at the same time, effectively competing against 
each other. Hence, we examined how injecting sensors at a 

Fig. B1 – Development of the popularity of a single sensor 
over time with Sality’s goodcount mechanism and different 
trust models compared ( t min = 0 . 4, M = { BCLM , BCM } ). 

Fig. B2 – Comparison of the average popularity of 50 (non 

collaborating) sensors over time with Sality’s goodcount 
mechanism and different trust models ( t min = 0 . 4) . 

slower pace influences their popularity. However, even 40 min 

intervals between injecting the sensors did not solve the prob- 
lem. While even longer intervals might reduce the competi- 
tion among sensors, it will also spread out the monitoring in- 
telligence across a longer period of time. Therefore, the peak 
popularity of all sensors will remain high for a longer period of 
time, but the overall peak will be lower. In fact, deploying 100 
sensors with 40 min intervals, causes the last sensor to join 

only once the first sensors are starting to be blacklisted and 

dropping in popularity. Therefore, we attempt to optimize the 
peak popularity of the sensors by injecting them in quick suc- 
cession. 

The specific effects of this competition among sensors de- 
pends on the design of the MM-protocol. In the following, we 
discuss the specific effects of the Sality MM-protocol and dis- 
cuss why similar effects are expected for other MM-designs. 

Sality MM. Sensors can infiltrate a bot’s NL by sending a 
server announcement message. The receiving bot will then ei- 
ther add the sensor to an empty slot in its NL or replace the 
newest entry. Due to the design of the Sality MM at most 20 
empty slots exist in a Sality NL before a bot actively asks for 
additional entries to populate its NL. Therefore, if sensors join 

in quick succession, they must compete for at most 20 empty 
slots within a bot’s NL. Once the free slots are occupied, a sen- 
sor will most likely replace another sensor in the bot’s NL. This 
leads to a situation, where the first 19 sensors may obtain an 

empty slot in a bot’s NL and all following sensors actively re- 
place other sensors. Fig. B.7 depicts the popularity of individ- 
ual sensors out of 100 in the order they joined the botnet. The 
first 20 have a higher popularity as they had a better chance of 
occupying empty slots. Consequently, a large group of sensors 
have a similar and comparatively low popularity. This changes 
again for the last sensors injected to the botnet. As there are 
less or no sensors joining the botnet after them, they are less 
likely to be replaced and maintain a higher popularity. 

This indicates, that injecting large amounts (i.e., ≥ 20) of 
sensors into the Sality botnet at the same time only yields 
marginal improvements in monitoring knowledge. To over- 
come this drawback, we suggest two possible approaches: 
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Fig. B3 – Popularity after four days for individual (non collaborating) sensors in the order of joining the botnet. 

( i ) inject sensors with greater inter-arrival times or ( ii ) develop 

more balanced approaches to inject large groups of sensors. 

Other-MM-protocols While the discussed effect of competing 
sensors is specific for the Sality botnet, it is likely to occur in 

other botnets as well. If a MM-protocol allows large sets of new 

bots to enter a NL this will make the botnet susceptible to NL- 
poisoning attacks ( Rossow et al., 2013 ), i.e., a defender could 

replace all existing entries with sensor to sinkhole all botnet 
traffic. Therefore, most botnets will prevent a large number of 
bots or sensors to join a NL in quick succession. 

Supplementary material 

Supplementary material associated with this article can be 
found, in the online version, at doi: 10.1016/j.cose.2019.01.004 . 
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