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Abstract—In this paper, we present a detailed framework to
analyze the evolution of the random topology of a time-varying
wireless network via the information theoretic notion of entropy
rate. We consider a propagation channel varying over time with
random node positions in a closed space and Rayleigh fading
affecting the connections between nodes. The existence of an
edge between two nodes at given locations is modeled by a
Markov chain, enabling memory effects in network dynamics.
We then derive a lower and an upper bound on the entropy rate
of the spatiotemporal network. The entropy rate measures the
shortest per-step description of the stationary stochastic process
defining the state of the wireless system and depends both on
the maximum Doppler shift and the path loss exponent. It
characterizes the topological uncertainty of the wireless network
and quantifies how quickly the underlying topology is varying
with time.

Index Terms—Entropy rate, graph entropy, network topology,
random geometric graphs.

I. INTRODUCTION

Many complex systems show spatiotemporal characteristics
in the real world. These networks are composed of a large
number of nodes embedded in space and are dynamically
evolving over time [1], [2]. Nodes in these networks are not
isolated single elements, but they communicate with each
other. These interactions can be represented as edges in a
graph. In these systems, a node’s state parameters (its healthy
or infected condition, its availability or congestion) depend on
both time and space-related variables [3]. Spatial networks [4]
that show time-dependence can be described as a time-ordered
sequence of static graphs [5]. Each graph is composed of a
set of vertices (or nodes) and a set of edges linking nodes
together. The positions of the nodes and edges of the graph
change over time, therefore the topological structure shows
a time-dependent evolution. Understanding the evolution of
the links and quantifying the topological uncertainty is bene-
ficial for modeling dissemination of information [6], network
synchronization [7], routing protocols [8], evaluation of route
stability [9] and fault localization [10].

Entropy-based methods have been widely used to better
understand the properties of complex networks. Dehmer et
al. [11] introduced an information functional on each of the
vertices of a graph in order to associate an entropic quantity
with the network. The authors in [12] used local vertex
measures of entropy to identify critical nodes in a network. In
[13], [14] Anand et al. studied the Shannon and von Neumann

entropy of graph ensembles. In the field of temporal networks,
entropy rates of random walks have been used to characterize
the temporal network structure [15], [16]. More recently,
studies in [17]–[20] used Shannon entropy to quantify the
topological uncertainty of wireless networks embedded within
a spatial domain and the authors in [21] derived different lower
bounds on the Shannon entropy of random geometric graphs
by using the notion of conditional entropy.

The typical approach used in the literature to characterize
the entropy of the spatial networks has been limited to the
study of the system as a static network. This approach has
a fundamental limitation in the analysis of the evolution of
the interactions, as it neglects any temporal property of the
network. For instance, in wireless networks, links change
over time due to the ability of the nodes to move inside the
confined space and/or due to the variations in the propagation
channel. In this environment, connections between nodes are
established and broken intermittently, leading to frequently-
changing network topologies.

From an information theoretic perspective, the entropy
rate measures the average minimum description length of
a stationary stochastic process capturing the state of the
dynamic system [22]. Therefore a high entropy rate indicates
a large uncertainty, or easiness of communication between
nodes [23]. As time goes on, two nodes initially disconnected
might eventually establish a link between them, and hence a
successful communication can take place. On the other hand,
a high entropy rate indicates that the topology is frequently
changing over time and nodes need to constantly send updated
information about their state to the neighbors, leading to an
increase in overhead throughout the network.

In this paper, we model a wireless network as a soft random
geometric graph [24] evolving over time. Our model considers
random node positions bounded inside a square/circle/triangle,
small-scale fading affecting connections between nodes, and
moving scatterers. The transmission range of each node and
the quality of the channel jointly affect link connectivity.
The availability of a link between two nodes is modeled as
a two-state Markov chain with on and off states [25], [26].
The main contributions of this paper are the modeling of the
network state as a stationary stochastic process, the analyzing
of the evolution of the topology via entropy rate and the
derivation of lower and upper bounds on the entropy rate of
the spatiotemporal network. To the best of our knowledge, this
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is the first time such analysis has been performed.
This paper is the first research work to be included in

a bigger project whose goal is to understand dynamics and
mobility in spatiotemporal networks. Future work will focus
on the analysis of the system stability via the information
theory notion of entropy rate. Finally, we will use this metric
for the optimization of routing protocols in wireless networks.

The remainder of the paper is organized as follows. In
Section II we explain the details of the network under ex-
amination and introduce the two-state Markov Model used to
characterize the evolution of links. We provide a lower and
an upper bound on the shortest description of the stochastic
process by analyzing the entropy rate of the dynamic system
in Section III. We then present numerical results on the
tightness of the derived entropy bounds for nodes embedded
in a square/circle/triangle in Section IV. Finally, in Section V,
we present our conclusions.

II. SYSTEM MODEL

A. Network Model
We consider a network of Vn = {1, . . . , n} of n nodes

representing wireless devices located randomly in a space K ⊂
Rd where d ∈ N with d ≥ 2, with finite volume and diameter
D := supu,v∈K‖u − v‖. The locations of the nodes, Z :=
(Zi)i∈Vn are independently and uniformly distributed in K.
We denote by R := (Ri,j)i<j the random vector collecting the
pair distances Ri,j = ‖Zi−Zj‖, and let fR : [0, D]n(n−1)/2 →
[0,∞) be its pdf.

We model a wireless network as an instance of a soft
undirected random geometric graph (RGG). We represent the
time-varying wireless network as a time-ordered sequence of
RGGs. Each graph corresponds to a snapshot of the wireless
network at a particular time instance. Let Xt

i,j be a Bernoulli
random variable that models the existence of the edge (i, j)
between nodes i and j at time t, and define Xt =

(
Xt
i,j

)
i<j

to be the state of the network at time t. In the next subsection,
we model the existence of an edge between two nodes at given
locations as a two-state Markov chain with on and off states.
This enables us to derive a lower and upper bound on the
entropy rate of the dynamic system, as shown in section III.

B. Two-State Markov Model for Connection Links
In a real-world wireless communication system, the envi-

ronment can cause the creation of several reflected, diffracted,
and/or scattered copies of a transmitted signal. Therefore,
the receiving antenna picks up a superposition of a series
of attenuated and delayed versions of the original signal. A
transmission from node i to node j is successful if the received
instantaneous signal-to-noise ratio (SNR), γi,j , is greater than
a certain threshold γth determined by the communication
hardware, and the modulation and coding scheme of the
wireless system. Therefore, at every time-step t, the Bernoulli
random variable Xt

i,j , conditioned on the pair distance Ri,j ,
is equal to

Xt
i,j |Ri,j =

{
0, if 0 < γti,j < γth,

1, if γth ≤ γti,j <∞.
(1)

In a typical multipath propagation environment, the received
signal envelope shows a Rayleigh distribution. With additive
Gaussian noise, the received instantaneous SNR γi,j has an
exponential distribution with probability density function

f(γi,j) =
1

γ0
e−

γi,j/γ0 , γi,j ≥ 0 (2)

where γ0 is the average SNR, i.e. γ0 = E [γi,j ]. The SNR
at the receiver (in the absence of interference) decays with
distance like γ0 ∼ r−ηi,j , where η > 0 is the path loss
exponent. Hence, the probability of existence of the edge (i, j),
conditioned on the pair distance, at time t, is equal to

P
(
Xt
i,j = 1|Ri,j = ri,j

)
= e−

γth/γ0

= e−(
ri,j/r0)

η

(3)

where r0 ∼ (1/γth)
1/η defines the typical connection range and

depends on several system parameters, such as the transmit
power, wavelength, bandwidth and the noise spectral density.
Typically, eq. (3) is referred to as the pair connection function
for nodes i and j.

In a time-varying multipath channel, the emitted wave is
subject to the Doppler effect, i.e., a shift in the received
frequency due to the movements of either the transmitter, the
receiver, and/or external scatterers. In this work, we assume
stationary terminals and moving scatterers [27]. Extensions to
mobile terminals are left to future work. The fading character-
istics of the channel are determined by the maximum Doppler
frequency, νi,j , which is a measure for the rate of change of
the channel [28]. The level crossing rate of the instantaneous
received SNR γi,j is a measure of the rapidity of the fading. It
quantifies how often the signal level crosses the threshold γth,
usually in the positive-going direction, and is defined as [25]

LCR (γth) =
√
2π

(
γth
γ0

)1/2

νi,j e−
γth/γ0 . (4)

Expressing the level crossing rate as a function of pair distance
Ri,j , we obtain

LCR (ri,j) =
√
2π

(
ri,j
r0

)η/2
νi,j e−(

ri,j/r0)
η

. (5)

Under the slow fading assumption, the level crossing rate at
γth is much smaller than the average number of symbols
per second transmitted when the channel is in state “on”
(a link exists) or “off” (a link does not exist). Hence, in a
communication system with a transmission rate of B symbols
per second, the state transition probability, conditioned on the
pair distance Ri,j , can be approximated as [25]

P
(
Xt
i,j = 1− a|Xt−1

i,j = a,Ri,j = ri,j
)

≈ LCR(ri,j)
P
(
Xt−1
i,j = a|Ri,j

)
×B

(6)

for each a ∈ {0, 1}. Conditioned on the pair distances, we
assume that the edge trajectories, X1

i,j , . . . , X
t
i,j , ∀i < j, are



independent and we model the evolution of each edge (i, j)
as a stationary Markov chain. That is,

P
(
X1 = x1, . . . ,Xt = xt|R = r

)
=
∏
i<j

[
t∏

u=2

P
(
Xu
i,j = xui,j |Xu−1

i,j = xu−1i,j , Ri,j = ri,j
)

×P
(
X1
i,j = x1i,j |Ri,j = ri,j

) ]
(7)

for each xu ∈ {0, 1}n(n−1)/2, u = 1, . . . , t and r ∈
[0, D]n(n−1)/2. Therefore, the joint pdf of the network state
variables is obtained by averaging eq. (7) over the pair
distances, i.e.,

P
(
X1 = x1, . . . ,Xt = xt

)
=

∫
R
P
(
X1 = x1, . . . ,Xt = xt|R = r

)
fR(r)dr (8)

where the integration domain is R = [0, D]n(n−1)/2. After
averaging, the resulting stochastic process Xt does not possess
the Markov property. However, Xt inherit the stationary prop-
erty, i.e., the joint distribution of any subset of the sequence
of the random variables is invariant with respect to shifts in
the time index [22]. In the next Section, we make progress by
deriving a lower and an upper bound on the entropy rate of
the dynamic system.

III. ENTROPY RATE OF A SPATIOTEMPORAL NETWORK

We quantify the topological uncertainty in the context of
wireless networks by studying the entropy rate of the stochas-
tic process capturing the state of the dynamic system. The en-
tropy rate of the stationary stochastic process Xt = (Xt

i,j)i<j
is defined by [22]

H (X ) = lim
t→∞

1

t
H
(
X1, . . . ,Xt

)
. (9)

We can interpret the entropy rate as a measure of the un-
certainty of the future state of the dynamic system given its
past states. It quantifies how quickly the underlying network
topology is varying with time.

A. Upper Bound on the Entropy Rate

In the following, we consider the trajectories of individual
links, i.e., X1

i,j , . . . , X
t
i,j , ∀i < j. For any time-step t, we can

write

H
(
X1, . . . ,Xt

)
≤
∑
i<j

H
(
X1
i,j , . . . , X

t
i,j

)
(10)

where the inequality follows from the subadditivity property
of the entropy, i.e., the joint entropy can not be greater than the
sum of the entropies of disjoint subsets of variables. Equality
holds if and only if

(
Xt
i,j

)
i<j

are independent. Next, by the
chain rule, it follows that

H
(
X1, . . . ,Xt

)
≤
∑
i<j

[
t∑

u=2

H
(
Xu
i,j |Xu−1

i,j , . . . , X1
i,j

)
+H

(
X1
i,j

)]
. (11)

A fundamental result of information theory states that condi-
tioning reduces entropy [22]. Hence, we can write

H
(
X1, . . . ,Xt

)
≤
∑
i<j

[
t∑

u=2

H
(
Xu
i,j |Xu−1

i,j

)
+H

(
X1
i,j

)]
=
∑
i<j

[
(t− 1)H

(
X2
i,j |X1

i,j

)
+H

(
X1
i,j

)]
(12)

where the second equality follows from the stationary property
of the stochastic process Xt = (Xt

i,j)i<j . Dividing by t and
taking the limit t → ∞, and by using eqs. (10) and (12), we
arrive at the entropy rate relation

H (X ) ≤
∑
i<j

H
(
X2
i,j |X1

i,j

)
(13)

where

H
(
X2
i,j |X1

i,j

)
= −

∑
a∈{0,1}

P
(
X1
i,j = a

)
×

∑
b∈{0,1}

P
(
X2
i,j = b|X1

i,j = a
)
logP

(
X2
i,j = b|X1

i,j = a
)
.

(14)

P (Xi,j = a) is simply the probability that edge (i, j) exists
(a = 1) or not (a = 0), averaged over the pair distance Ri,j .
More accurately, we can write

P
(
X1
i,j = a

)
=

∫ D

0

P
(
X1
i,j = a|Ri,j = ri,j

)
fRi,j (ri,j) dri,j . (15)

It is straightforward to notice that these probabilities are equal
for different links, i.e., P (Xi,j = a) = P (Xk,l = a) for
(k, l) 6= (i, j). In the same fashion, P

(
X2
i,j = b|X1

i,j = a
)

is
the edge transition probability averaged over the pair distance,
and is given by

P
(
X2
i,j = b|X1

i,j = a
)

=

∫ D

0

P
(
X2
i,j = b|X1

i,j = a,Ri,j = ri,j
)
fRi,j (ri,j) dri,j .

(16)

It is clear from eqs. (6) and (16) that when different links have
equal maximum Doppler frequencies, they will also have equal
transition probabilities. Assuming that the maximum Doppler
frequencies of different links are equal, the upper bound on
the entropy rate simplifies to

H (X ) ≤
(
n

2

)
H
(
X2

1,2|X1
1,2

)
. (17)

In the large n limit the upper bound on the entropy rate scales
like O

(
n2
)
.



B. Lower Bound on the Entropy Rate

To enable us to find a lower bound on the entropy rate of
a soft RGG evolving over time, we turn to the information
theoretic notion of conditional entropy. By using a similar
argument to that employed in eq. (12), it is possible to show
that

H
(
X1,X2, . . . ,Xt

)
≥ H

(
X1,X2, . . . ,Xt|R

)
. (18)

Conditioned on pair distances, the link trajectories are inde-
pendent, and each of them is a stationary Markov chain, as
explained in section II-B. This leads naturally to the following
entropy relation

H
(
X1,X2, . . . ,Xt

)
≥
∑
i<j

[
(t− 1)H

(
X2
i,j |X1

i,j , Ri,j
)
+H

(
X1
i,j |Ri,j

)]
. (19)

Equivalently, combining the arguments employed in eq. (13)
with the assumption made in eq. (17), we obtain

H(X ) ≥
(
n

2

)
H
(
X2

1,2|X1
1,2, R1,2

)
(20)

where

H
(
X2

1,2|X1
1,2, R1,2

)
= −

∫ D

0

fR(r1,2)dr1,2

×
∑

a∈{0,1}

P
(
X1

1,2 = a|R1,2 = r1,2
)

×
∑

b∈{0,1}

[
P
(
X2

1,2 = b|X1
1,2 = a,R1,2 = r1,2

)
× logP

(
X2

1,2 = b|X1
1,2 = a,R1,2 = r1,2

)]
. (21)

Hence, to evaluate the lower bound, we assume prior knowl-
edge of the node locations and average the entropy rate
over the spatial distribution. Putting together eqs. (17), (20),
and (21) manifests in the relation(
n

2

)
H
(
X2

1,2|X1
1,2, R1,2

)
≤ H(X ) ≤

(
n

2

)
H
(
X2

1,2|X1
1,2

)
.

(22)

IV. NUMERICAL EXPERIMENTS

In the following, we consider a network of n = 50 nodes
located randomly in a circle/square/triangle. The geometry
of the domain K defines fR(r). Analytic expressions for
fR(r) are known for simple, convex geometries [29], [30].
Before presenting the numerical results, we need to guarantee
the assumptions of our model as stated in Section II-B. As
aforesaid, we approximate the transition probabilities given
in eq. (6) under the slow fading assumption. If we take, for
instance, a communication system using 802.11a/g protocols,
the symbol rate is B = 12 MBd. Given this constraint,
the maximum Doppler frequency ν must vary in the range
1 Hz ≤ ν ≤ 1 kHz for 2 ≤ η ≤ 5.

We now study the entropy bounds derived in Section III.
To that end, in Fig. 1, we plot the upper and lower bound
on the entropy rate of a fifty-node RGG for the cases where

η = 2, 3, 4 versus the typical connection range r0. Then, we
analyze the effect of the Doppler frequency on the entropy
rate of the dynamic system. Fig. 2 illustrates the entropy rate
of a fifty-node RGG versus the maximum Doppler frequency,
which is a measure for the rate of change of the channel,
for different bounding geometries. If the maximum Doppler
frequency increases, the topological uncertainty of network
increases. A few important things can be noted from both
Fig. 1 and Fig. 2. First, we notice that for practical values of
the Doppler frequency the system’s dynamics can be quantified
by a few bits. Second, it can be observed that when the nodes
are randomly located inside a square or a circle, the geometry
of the domain does not significantly affect the entropy rate.
Whereas, choosing triangle as the confining geometry has a
non-negligible effect on it. Third, the increase in the upper
bound and the reduction in lower bound for increasing “hard-
ness” in the connection function (3) is evident in these figures.
Therefore, we can notice that the gap between the upper and
lower bound widen with increasing η. Mathematically, the
parameter η controls the stretch of the decaying exponential.
For η →∞, we recover the hard connection model. In the case
of the lower bound, as we increase η, the pairwise uncertainty
(and consequently the conditional entropy rate) decreases [31].
Clearly, as η →∞ the lower bound tends to zero, but the upper
bound on entropy rate H(X ) is still O(n2). Finally, for very
soft connection functions there is little dependence upon the
spatial embedding.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we formally analyzed the evolution of the
random topology of a time-varying wireless network via the
entropy rate. In this regard, we took into account both the
temporal and the spatial properties of the system. The entropy
rate provides insights into the topological uncertainty of the
spatiotemporal network and quantifies how quickly the under-
lying topology is varying with time. Given the pair distances,
we modeled the evolution of each edge as a stationary Markov
chain. We then showed that the stochastic process describing
the state of the dynamic system is stationary. This result
enabled us to derive a simple upper bound on the entropy rate.
We also introduced the concept of conditional entropy rate
and used it to derive a lower bound on the entropy rate. Both
bounds are obtained under the assumption that the maximum
Doppler frequencies of different links are equal. The results
presented in this paper provide insights into how the time-
varying fading channel affects the dynamics of the network.
This perspective can be useful for storing and communicating
network topology information, calculating routing tables and
for fault localization and operational management in Software-
defined networking.

The presented framework can be extended to mobile ad-
hoc wireless networks to analyze the topological uncertainty
caused by node movement using different mobility models.
Future work will focus on the analysis of the system stability
through the concept of entropy rate, with the goal to develop
a new metric to optimize routing protocols.
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Fig. 1: Entropy rate of a fifty-node RGG with soft pair connection function in two dimensions; bounding geometries: square of unit side
length, circle of radius 1/√π, and equilateral triangle of side length 2/ 4√3; path loss exponent values are η = 2, 3, 4; maximum Doppler

frequency ν = 500 Hz.
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Fig. 2: Entropy rate of a fifty-node RGG with soft pair connection function in two dimensions; bounding geometries: square of unit side
length, circle of radius 1/√π, and equilateral triangle of side length 2/ 4√3; path loss exponent values are η = 2, 3, 4; typical connection

range r0 = 0.7.

ACKNOWLEDGMENT

The authors wish to acknowledge the support of Moogsoft
and EPSRC under grant number EP/N002350/1 (“Spatially
Embedded Networks”). Work by M.-A. Badiu was supported
by Independent Research Fund Denmark grant number DFF-
5054-002 and was carried out during his visit to University of
Oxford.

REFERENCES

[1] M. E. Newman, “The structure and function of complex networks,”
SIAM review, vol. 45, no. 2, pp. 167–256, 2003.

[2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang,
“Complex networks: Structure and dynamics,” Physics reports, vol. 424,
no. 4, pp. 175–308, 2006.

[3] M. J. Williams and M. Musolesi, “Spatio-temporal networks: reachabil-
ity, centrality and robustness,” Royal Society open science, vol. 3, no. 6,
p. 160196, 2016.

[4] M. Barthélemy, “Spatial networks,” Physics Reports, vol. 499, no. 1-3,
pp. 1–101, 2011.

[5] P. Holme, “Modern temporal network theory: a colloquium,” The Euro-
pean Physical Journal B, vol. 88, no. 9, p. 234, 2015.

[6] S.-M. Cheng, V. Karyotis, P.-Y. Chen, K.-C. Chen, and S. Papavassiliou,
“Diffusion models for information dissemination dynamics in wire-
less complex communication networks,” Journal of Complex Systems,
vol. 2013, 2013.

[7] D. Han and G. Chesi, “Robust synchronization via homogeneous
parameter-dependent polynomial contraction matrix,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 61, no. 10, pp. 2931–
2940, 2014.

[8] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic networking: data
forwarding in disconnected mobile ad hoc networks,” IEEE communi-
cations Magazine, vol. 44, no. 11, 2006.

[9] B. An and S. Papavassiliou, “An entropy-based model for supporting
and evaluating route stability in mobile ad hoc wireless networks,” IEEE
Communications Letters, vol. 6, no. 8, pp. 328–330, 2002.

[10] M. łgorzata Steinder and A. S. Sethi, “A survey of fault localization
techniques in computer networks,” Science of computer programming,
vol. 53, no. 2, pp. 165–194, 2004.

[11] M. Dehmer, “Information processing in complex networks: Graph en-
tropy and information functionals,” Applied Mathematics and Computa-
tion, vol. 201, no. 1-2, pp. 82–94, 2008.

[12] P. Tee, G. Parisis, and I. Wakeman, “Vertex entropy as a critical node
measure in network monitoring,” IEEE Transactions on Network and
Service Management, vol. 14, no. 3, pp. 646–660, 2017.

[13] K. Anand and G. Bianconi, “Entropy measures for networks: Toward an
information theory of complex topologies,” Physical Review E, vol. 80,
no. 4, p. 045102, 2009.

[14] K. Anand, G. Bianconi, and S. Severini, “Shannon and von neumann
entropy of random networks with heterogeneous expected degree,”
Physical Review E, vol. 83, no. 3, p. 036109, 2011.

[15] M. Rosvall, A. V. Esquivel, A. Lancichinetti, J. D. West, and R. Lam-
biotte, “Memory in network flows and its effects on spreading dynamics
and community detection,” Nature communications, vol. 5, p. 4630,
2014.



[16] J. Saramäki and P. Holme, “Exploring temporal networks with greedy
walks,” The European Physical Journal B, vol. 88, no. 12, p. 334, 2015.

[17] J. P. Coon, “Topological uncertainty in wireless networks,” in Global
Communications Conference (GLOBECOM), 2016 IEEE, pp. 1–6, IEEE,
2016.

[18] J. P. Coon and P. J. Smith, “Topological entropy in wireless networks
subject to composite fading,” in Communications (ICC), 2017 IEEE
International Conference on, pp. 1–7, IEEE, 2017.

[19] A. Cika, J. P. Coon, and S. Kim, “Effects of directivity on wireless
network complexity,” in Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks (WiOpt), 2017 15th International Symposium on,
pp. 1–7, IEEE, 2017.

[20] M.-A. Badiu and J. P. Coon, “On the distribution of random geometric
graphs,” arXiv preprint arXiv:1801.04757, 2018.

[21] J. P. Coon, M. A. Badiu, and D. Gündüz, “On the conditional entropy
of wireless networks,” in 2018 International Workshop on Spatial
Stochastic Models for Wireless Networks (spaswin)-Invited Paper, 2018.

[22] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[23] J. Gómez-Gardeñes and V. Latora, “Entropy rate of diffusion processes
on complex networks,” Physical Review E, vol. 78, no. 6, p. 065102,
2008.

[24] M. D. Penrose et al., “Connectivity of soft random geometric graphs,”
The Annals of Applied Probability, vol. 26, no. 2, pp. 986–1028, 2016.

[25] H. S. Wang and N. Moayeri, “Finite-state markov channel-a useful
model for radio communication channels,” IEEE transactions on ve-
hicular technology, vol. 44, no. 1, pp. 163–171, 1995.

[26] Q. Zhang and S. A. Kassam, “Finite-state markov model for rayleigh
fading channels,” IEEE Transactions on communications, vol. 47, no. 11,
pp. 1688–1692, 1999.

[27] J. B. Andersen, J. O. Nielsen, G. F. Pedersen, G. Bauch, and G. Dietl,
“Doppler spectrum from moving scatterers in a random environment,”
IEEE Transactions on Wireless Communications, vol. 8, no. 6, 2009.

[28] A. F. Molisch, Wireless communications, vol. 34. John Wiley & Sons,
2012.

[29] U. Bäsel, “Random chords and point distances in regular polygons,”
Acta Mathematica Universitatis Comenianae, vol. 83, no. 1, pp. 1–18,
2014.

[30] A. M. Mathai, An introduction to geometrical probability: distributional
aspects with applications, vol. 1. CRC Press, 1999.

[31] J. P. Coon, C. P. Dettmann, and O. Georgiou, “Entropy of spatial network
ensembles,” arXiv preprint arXiv:1707.01901, 2017.


